
EVOLUTIONARY 
ALGORITHMS

Edited by Eisuke Kita



Evolutionary Algorithms
Edited by Eisuke Kita

Published by InTech
Janeza Trdine 9, 51000 Rijeka, Croatia

Copyright © 2011 InTech
All chapters are Open Access articles distributed under the Creative Commons 
Non Commercial Share Alike Attribution 3.0 license, which permits to copy, 
distribute, transmit, and adapt the work in any medium, so long as the original 
work is properly cited. After this work has been published by InTech, authors 
have the right to republish it, in whole or part, in any publication of which they 
are the author, and to make other personal use of the work. Any republication, 
referencing or personal use of the work must explicitly identify the original source.

Statements and opinions expressed in the chapters are these of the individual contributors 
and not necessarily those of the editors or publisher. No responsibility is accepted 
for the accuracy of information contained in the published articles. The publisher 
assumes no responsibility for any damage or injury to persons or property arising out 
of the use of any materials, instructions, methods or ideas contained in the book.
 
Publishing Process Manager Katarina Lovrecic
Technical Editor Teodora Smiljanic
Cover Designer Martina Sirotic
Image Copyright Designus, 2010. Used under license from Shutterstock.com

First published March, 2011
Printed in India

A free online edition of this book is available at www.intechopen.com
Additional hard copies can be obtained from orders@intechweb.org 

Evolutionary Algorithms,  Edited by Eisuke Kita 
    p. cm. 
ISBN 978-953-307-171-8



free online editions of InTech 
Books and Journals can be found at
www.intechopen.com





Part 1

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Preface IX

New Algorithms 1

Hybridization of Evolutionary Algorithms 3
Iztok Fister, Marjan Mernik and Janez Brest

Linear Evolutionary Algorithm 27
Kezong Tang, Xiaojing Yuan, Puchen Liu and Jingyu Yang

Genetic Algorithm Based on Schemata Theory 41
Eisuke Kita and Takashi Maruyama

In Vitro Fertilization Genetic Algorithm 57
Celso G. Camilo-Junior and Keiji Yamanaka

Bioluminescent Swarm Optimization Algorithm 69
Daniel Rossato de Oliveira, Rafael S. Parpinelli and Heitor S. Lopes

A Memetic Particle Swarm Optimization
Algorithm for Network Vulnerability Analysis 85
Mahdi Abadi and Saeed Jalili

Quantum-Inspired Differential Evolutionary 
Algorithm for Permutative Scheduling Problems 109
Tianmin Zheng and Mitsuo Yamashiro

Quantum-Inspired Particle Swarm Optimization for 
Feature Selection and Parameter Optimization in Evolving 
Spiking Neural Networks for Classification Tasks 133
Haza Nuzly Abdull Hamed, Nikola K. Kasabov 
and Siti Mariyam Shamsuddin

Analytical Programming - a Novel Approach 
for Evolutionary Synthesis of Symbolic Structures 149
Ivan Zelinka, Donald Davendra, Roman Senkerik, 
Roman Jasek and Zuzana Oplatkova

Contents



ContentsVI

PPCea: A Domain-Specific Language for Programmable 
Parameter Control in Evolutionary Algorithms 177
Shih-Hsi Liu, Marjan Mernik, Mohammed Zubair,
Matej Črepinšek and Barrett R. Bryant

Evolution Algorithms in Fuzzy Data Problems 201
Witold Kosiński, Katarzyna Węgrzyn-Wolska and Piotr Borzymek

Variants of Hybrid Genetic Algorithms 
for Optimizing Likelihood ARMA Model 
Function and Many of Problems 219
Basad Ali Hussain Al-Sarray and Rawa’a Dawoud Al-Dabbagh

Tracing Engineering Evolution 
with Evolutionary Algorithms 247
Tino Stanković, Kalman Žiha and Dorian Marjanović

Applications 269

Evaluating the α-Dominance Operator 
in Multiobjective Optimization for the Probabilistic
Traveling Salesman Problem with Profits 271
Bingchun Zhu, Junichi Suzuki and Pruet Boonma

Scheduling of Construction Projects 
with a Hybrid Evolutionary Algorithm’s Application 295
Wojciech Bożejko, Zdzisław  Hejducki, 
Magdalena Rogalska and Mieczysław Wodecki

A Memetic Algorithm for 
the Car Renter Salesman Problem 309
Marco Goldbarg, Paulo Asconavieta and Elizabeth Goldbarg

Multi-Objective Scheduling 
on a Single Machine with Evolutionary Algorithm 327
A. S. Xanthopoulos, D. E. Koulouriotis and V. D. Tourassis

Evolutionary Algorithms 
in Decomposition-Based Logic Synthesis 343
Mariusz Rawski

A Memory-Storable Quantum-Inspired Evolutionary 
Algorithm for Network Coding Resource Minimization 363
Yuefeng Ji and Huanlai Xing

Using Evolutionary Algorithms 
for Optimization of Analogue Electronic Filters 381
Lukáš Dolívka and Jiří Hospodka

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Part 2

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Chapter 20



Contents VII

Evolutionary Optimization of Microwave Filters 407
Maria J. P. Dantas, Adson S. Rocha, 
Ciro Macedo, Leonardo da C. Brito, 
Paulo C. M. Machado and Paulo H. P. de Carvalho

Feature Extraction from High-Resolution Remotely 
Sensed Imagery using Evolutionary Computation 423
Henrique Momm and Greg Easson

Evolutionary Feature Subset Selection 
for Pattern Recognition Applications 443
G.A. Papakostas, D.E. Koulouriotis, 
A.S. Polydoros and V.D. Tourassis

A Spot Modeling Evolutionary Algorithm
for Segmenting Microarray Images 459
Eleni Zacharia and Dimitris Maroulis

Discretization of a Random Field 
– a Multiobjective Algorithm Approach 481
Guang-Yih Sheu

Evolutionary Algorithms in Modelling of Biosystems 495
Rosario Guzman-Cruz, Rodrigo Castañeda-Miranda, Juan García-
Escalante, Luis Solis-Sanchez, Daniel Alaniz-Lumbreras, Joshua 
Mendoza-Jasso, Alfredo Lara-Herrera, Gerardo Ornelas-Vargas, 
Efrén Gonzalez-Ramirez and Ricardo Montoya-Zamora

Stages of Gene Regulatory Network Inference:
the Evolutionary Algorithm Role 521
Alina Sîrbu, Heather J. Ruskin and Martin Crane

Evolutionary Algorithms 
in Crystal Structure Analysis 547
Attilio Immirzi, Consiglia Tedesco and Loredana Erra

Evolutionary Enhanced Level Set Method
for Structural Topology Optimization 565
Haipeng Jia, Chundong Jiang, Lihui Du, Bo Liu and Chunbo Jiang

Chapter 21

Chapter 22

Chapter 23

Chapter 24

Chapter 25

Chapter 26

Chapter 27

Chapter 28

Chapter 29





Preface

Evolutionary algorithms (EAs) are the population-based metaheuristic optimization 
algorithms. Candidate solutions to the optimization problem are defi ned as individu-
als in a population, and evolution of the population leads to fi nding bett er solutions. 
The fi tness of individuals to the environment is estimated and some mechanisms in-
spired by biological evolution are applied to evolution of the population. 

Genetic algorithm (GA), Evolution strategy (ES), Genetic programming (GP), and Evo-
lutionary programming (EP) are very popular Evolutionary algorithms. Genetic Algo-
rithm, which was presented by Holland in 1970s, mainly uses selection, crossover and 
mutation operators for evolution of the population. Evolutionary Strategy, which was 
presented by Rechenberg and Schwefel in 1960s, uses natural problem-dependent rep-
resentations and primarily mutation and selection as operators. Genetic programming 
and Evolutionary programming are GA- and ES-based methodologies to fi nd com-
puter program or mathematical function that perform user-defi ned task, respectively. 

As related techniques, Ant colony optimization (ACO) and Particle swarm optimiza-
tion (PSO) are well known. Ant colony optimization (ACO) was presented by Dorigo 
in 1992 and Particle swarm optimization (PSO) was by Kennedy, Eberhart and Shi in 
1995. While Genetic Algorithm and Evolutionary Strategy are inspired from the geneti-
cal evolution, Ant colony optimization and Particle swarm optimization are from the 
behavior of social insects (ants) and bird swarm, respectively. Therefore, Ant colony 
optimization and Particle swarm optimization are usually classifi ed into the swarm 
intelligence algorithms. 

Evolutionary algorithms are successively applied to wide optimization problems in 
the engineering, marketing, operations research, and social science, such as include 
scheduling, genetics, material selection, structural design and so on. Apart from math-
ematical optimization problems, evolutionary algorithms have also been used as an 
experimental framework within biological evolution and natural selection in the fi eld 
of artifi cial life. 

The book consists of 29 chapters. Chapters 1 to 9 describe the algorithms for enhancing 
the search performance of evolutionary algorithms such as Genetic Algorithm, Swarm 
Optimization Algorithm and Quantum-inspired Algorithm. Chapter 10 introduces the 
programming language for evolutionary algorithm. Chapter 11 explains evolutionary 
algorithms for the fuzzy data problems. Chapters 12 to 13 discuss theoretical analysis 
of evolutionary algorithms. The remaining chapters describe the applications of the 



X Preface

evolutionary algorithms. In chapters 12 to 17, the evolutionary algorithms are applied 
to several scheduling problems such as Traveling salesman problem, Job Scheduling 
problem and so on. Chapters 18 and 24 describe how to use evolutionary algorithm to 
logic synthesis, network coding, fi lters, patt ern recognition and so on. Chapters 25 to 
29 also discuss the other applications of evolutionary algorithms such as random fi eld 
discretization, biosystem simulation, gene regulatory, crystal structure analysis and 
structural design.

Eisuke Kita
Graduate School of Information Science 

Nagoya University
Japan
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New Algorithms 





Hybridization of Evolutionary Algorithms

Iztok Fister, Marjan Mernik and Janez Brest
University of Maribor

Slovenia

1. Introduction

Evolutionary algorithms are a type of general problem solvers that can be applied to many
difficult optimization problems. Because of their generality, these algorithms act similarly
like Swiss Army knife (Michalewicz & Fogel, 2004) that is a handy set of tools that can be
used to address a variety of tasks. In general, a definite task can be performed better with an
associated special tool. However, in the absence of this tool, the Swiss Army knife may be
more suitable as a substitute. For example, to cut a piece of bread the kitchen knife is more
suitable, but when traveling the Swiss Army knife is fine.
Similarly, when a problem to be solved from a domain where the problem-specific knowledge
is absent evolutionary algorithms can be successfully applied. Evolutionary algorithms are
easy to implement and often provide adequate solutions. An origin of these algorithms is
found in the Darwian principles of natural selection (Darwin, 1859). In accordance with these
principles, only the fittest individuals can survive in the struggle for existence and reproduce
their good characteristics into next generation.
As illustrated in Fig. 1, evolutionary algorithms operate with the population of solutions.
At first, the solution needs to be defined within an evolutionary algorithm. Usually, this
definition cannot be described in the original problem context directly. In contrast, the solution
is defined by data structures that describe the original problem context indirectly and thus,
determine the search space within an evolutionary search (optimization process). There exists
the analogy in the nature, where the genotype encodes the phenotype, as well. Consequently,
a genotype-phenotype mapping determines how the genotypic representation is mapped to
the phenotypic property. In other words, the phenotypic property determines the solution in
original problem context. Before an evolutionary process actually starts, the initial population
needs to be generated. The initial population is generated most often randomly. A basis of
an evolutionary algorithm represents an evolutionary search in which the selected solutions
undergo an operation of reproduction, i.e., a crossover and a mutation. As a result, new
candidate solutions (offsprings) are produced that compete, according to their fitness, with
old ones for a place in the next generation. The fitness is evaluated by an evaluation function
(also called fitness function) that defines requirements of the optimization (minimization or
maximization of the fitness function). In this study, the minimization of the fitness function
is considered. As the population evolves solutions becomes fitter and fitter. Finally, the
evolutionary search can be iterated until a solution with sufficient quality (fitness) is found
or the predefined number of generations is reached (Eiben & Smith, 2003). Note that some
steps in Fig. 1 can be omitted (e.g., mutation, survivor selection).
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Fig. 1. Scheme of Evolutionary Algorithms

An evolutionary search is categorized by two terms: exploration and exploitation. The former
term is connected with a discovering of the new solutions, while the later with a search in
the vicinity of knowing good solutions (Eiben & Smith, 2003; Liu et al., 2009). Both terms,
however, interweave each other in the evolutionary search. The evolutionary search acts
correctly when a sufficient diversity of population is present. The population diversity can
be measured differently: the number of different fitness values, the number of different
genotypes, the number of different phenotypes, entropy, etc. The higher the population
diversity, the better exploration can be expected. Losing of population diversity can lead to
the premature convergence.
Exploration and exploitation of evolutionary algorithms are controlled by the control
parameters, for instance the population size, the probability of mutation pm , the probability
of crossover pc, and the tournament size. To avoid a wrong setting of these, the control
parameters can be embedded into the genotype of individuals together with problem
variables and undergo through evolutionary operations. This idea is exploited by a
self-adaptation. The performance of a self-adaptive evolutionary algorithm depends on
the characteristics of population distribution that directs the evolutionary search towards
appropriate regions of the search space (Meyer-Nieberg & Beyer, 2007). Igel & Toussaint
(2003), however, widened the notion of self-adaptation with a generalized concept of
self-adaptation. This concept relies on the neutral theory of molecular evolution (Kimura,
1968). Regarding this theory, the most mutations on molecular level are selection neutral and
therefore, cannot have any impact on fitness of individual. Consequently, the major part of
evolutionary changes are not result of natural selection but result of random genetic drift
that acts on neutral allele. An neutral allele is one or more forms of a particular gene that
has no impact on fitness of individual (Hamilton, 2009). In contrast to natural selection,
the random genetic drift is a whole stochastic process that is caused by sampling error and
affects the frequency of mutated allele. On basis of this theory Igel and Toussaint ascertain
that the neutral genotype-phenotype mapping is not injective. That is, more genotypes
can be mapped into the same phenotype. By self-adaptation, a neutral part of genotype
(problem variables) that determines the phenotype enables discovering the search space
independent of the phenotypic variations. On the other hand, the rest part of genotype
(control parameters) determines the strategy of discovering the search space and therefore,
influences the exploration distribution.
Although evolutionary algorithms can be applied to many real-world optimization problems
their performance is still subject of the No Free Lunch (NFL) theorem (Wolpert & Macready,
1997). According to this theorem any two algorithms are equivalent, when their performance
is compared across all possible problems. Fortunately, the NFL theorem can be circumvented
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for a given problem by a hybridization that incorporates the problem specific knowledge into
evolutionary algorithms.

Fig. 2. Hybridization of Evolutionary Algorithms

In Fig. 2 some possibilities to hybridize evolutionary algorithms are illustrated. At first, the
initial population can be generated by incorporating solutions of existing algorithms or by
using heuristics, local search, etc. In addition, the local search can be applied to the population
of offsprings. Actually, the evolutionary algorithm hybridized with local search is called a
memetic algorithm as well (Moscato, 1999; Wilfried, 2010). Evolutionary operators (mutation,
crossover, parent and survivor selection) can incorporate problem-specific knowledge or
apply the operators from other algorithms. Finally, a fitness function offers the most
possibilities for a hybridization because it can be used as decoder that decodes the indirect
represented genotype into feasible solution. By this mapping, however, the problem specific
knowledge or known heuristics can be incorporated to the problem solver.
In this chapter the hybrid self-adaptive evolutionary algorithm (HSA-EA) is presented that is
hybridized with:

• construction heuristic,

• local search,

• neutral survivor selection, and

• heuristic initialization procedure.

This algorithm acts as meta-heuristic, where the down-level evolutionary algorithm is used
as generator of new solutions, while for the upper-level construction of the solutions a
traditional heuristic is applied. This construction heuristic represents the hybridization of
evaluation function. Each generated solution is improved by the local search heuristics. This
evolutionary algorithm supports an existence of neutral solutions, i.e., solutions with equal
values of a fitness function but different genotype representation. Such solutions can be
arisen often in matured generations of evolutionary process and are subject of neutral survivor
selection. This selection operator models oneself upon a neutral theory of molecular evolution
(Kimura, 1968) and tries to direct the evolutionary search to new, undiscovered regions of
search space. In fact, the neutral survivor selection represents hybridization of evolutionary
operators, in this case, the survivor selection operator. The hybrid self-adaptive evolutionary
algorithm can be used especially for solving of the hardest combinatorial optimization
problems (Fister et al., 2010).
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The chapter is further organized as follows. In the Sect. 2 the self-adaptation in evolutionary
algorithms is discussed. There, the connection between neutrality and self-adaptation is
explained. Sect. 3 describes hybridization elements of the self-adaptive evolutionary
algorithm. Sect. 4 introduces the implementations of hybrid self-adaptive evolutionary
algorithm for graph 3-coloring in details. Performances of this algorithm are substantiated
with extensive collection of results. The chapter is concluded with summarization of the
performed work and announcement of the possibilities for the further work.

2. The self-adaptive evolutionary algorithms

Optimization is a dynamical process, therefore, the values of parameters that are set at
initialization become worse during the run. The necessity to adapt control parameters during
the runs of evolutionary algorithms born an idea of self-adaptation (Holland, 1992), where
some control parameters are embedded into genotype. This genotype undergoes effects of
variation operators. Mostly, with the notion of self-adaptation Evolutionary Strategies (Beyer,
1998; Rechenberg, 1973; Schwefel, 1977) are connected that are used for solving continuous
optimization problems. Typically, the problem variables in Evolutionary Strategies are
represented as real-coded vector y = (y1, . . . , yn) that are embedded into genotype together
with control parameters (mostly mutation parameters). These parameters determine mutation
strengths σ that must be greater than zero. Usually, the mutation strengths are assigned to
each problem variable. In that case, the uncorrelated mutation with n step sizes is obtained
(Eiben & Smith, 2003). Here, the candidate solution is represented as (y1, . . . , yn, σ1, . . . , σn).
The mutation is now specified as follows:

σ
′
i = σi · exp(τ

′ · N(0, 1) + τ · Ni(0, 1)), (1)

y
′
i = yi + σ

′
i · Ni(0, 1), (2)

where τ
′

∝ 1/
√

2 · n and τ ∝ 1/
√

2 · √n denote the learning rates. To keep the mutation
strengths σi greater than zero, the following rule is used

σi < ε0 ⇒ σi = ε0. (3)

Frequently, a crossover operator is used in the self-adaptive Evolutionary Strategies. This
operator from two parents forms one offsprings. Typically, a discrete and arithmetic crossover
is used. The former, from among the values of two parents xi and yi that are located on i-th
position, selects the value of offspring zi randomly. The later calculates the value of offspring
zi from the values of two parents xi and yi that are located on i-th position according to the
following equation:

zi = α · xi + (1 − α) · yi, (4)

where parameter α captures the values from interval α ∈ [0 . . . 1]. In the case of α = 1/2, the
uniform arithmetic crossover is obtained.
The potential benefits of neutrality was subject of many researches in the biological science
(Conrad, 1990; Hynen, 1996; Kimura, 1968). At the same time, the growing interest for the
usage of this knowledge in evolutionary computation was raised (Barnett, 1998; Ebner et al.,
2001). Toussaint & Igel (2002) dealt with the non-injectivity of genotype-phenotype mapping
that is the main characteristic of this mapping. That is, more genotypes can be mapped to the
same phenotype. Igel & Toussaint (2003) pointed out that in the absence of an external control
and with a constant genotype-phenotype mapping only neutral genetic variations can allow
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an adaptation of exploration distribution without changing the phenotypes in the population.
However, the neutral genetic variations act on the genotype of parent but does not influence
on the phenotype of offspring.
As a result, control parameters in evolutionary strategies represent a search strategy. The
change of this strategy enables a discovery of new regions of the search space. The genotype,
therefore, does not include only the information addressing its phenotype but the information
about further discovering of the search space as well. In summary, the neutrality is not
necessary redundant but it is prerequisite for self-adaptation. This concept is called the
general concept of self-adaptation as well (Meyer-Nieberg & Beyer, 2007).

3. How to hybridize the self-adaptive evolutionary algorithms

Evolutionary algorithms are a generic tool that can be used for solving many hard
optimization problems. However, the solving of that problems showed that evolutionary
algorithms are too problem-independent. Therefore, there are hybridized with several
techniques and heuristics that are capable to incorporate problem-specific knowledge. Grosan
& Abraham (2007) identified mostly used hybrid architectures today as follows:

• hybridization between two evolutionary algorithms (Grefenstette, 1986),

• neural network assisted evolutionary algorithm (Wang, 2005),

• fuzzy logic assisted evolutionary algorithm (Herrera & Lozano, 1996; Lee & Takagi, 1993),

• particle swarm optimization assisted evolutionary algorithm (Eberhart & Kennedy, 1995;
Kennedy & Eberhart, 1995),

• ant colony optimization assisted evolutionary algorithm (Fleurent & Ferland, 1994; Tseng
& Liang, 2005),

• bacterial foraging optimization assisted evolutionary algorithm (Kim & Cho, 2005;
Neppalli & Chen, 1996),

• hybridization between an evolutionary algorithm and other heuristics, like local search
(Moscato, 1999), tabu search (Galinier & Hao, 1999), simulated annealing (Ganesh &
Punniyamoorthy, 2004), hill climbing (Koza et al., 2003), dynamic programming (Doerr
et al., 2009), etc.

In general, successfully implementation of evolutionary algorithms for solving a given
problem depends on incorporated problem-specific knowledge. As already mentioned before,
all elements of evolutionary algorithms can be hybridized. Mostly, a hybridization addresses
the following elements of evolutionary algorithms (Michalewicz, 1992):

• initial population,

• genotype-phenotype mapping,

• evaluation function, and

• variation and selection operators.

First, problem-specific knowledge incorporated into heuristic procedures can be used
for creating an initial population. Second, genotype-phenotype mapping is used by
evolutionary algorithms, where the solutions are represented in an indirect way. In that
cases, a constructing algorithm that maps the genotype representation into a corresponding
phenotypic solution needs to be applied. This constructor can incorporate various heuristic or
other problem-specific knowledge. Third, to improve the current solutions by an evaluation
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Algorithm 1 The construction heuristic. I: task, S: solution.

1: while NOT f inal_solution(y ∈ S) do
2: add_element_to_solution_heuristicaly(yi ∈ I, S);
3: end while

function, local search heuristics can be used. Finally, problem-specific knowledge can be
exploited by heuristic variation and selection operators.
The mentioned hybridizations can be used to hybridize the self-adaptive evolutionary
algorithms as well. In the rest of chapter, we propose three kinds of hybridizations that was
employed to the proposed hybrid self-adaptive evolutionary algorithms:

• the construction heuristics that can be used by the genotype-phenotype mapping,

• the local search heuristics that can be used by the evaluation function, and

• the neutral survivor selection that incorporates the problem-specific knowledge.

Because the initialization of initial population is problem dependent we omit it from our
discussion.

3.1 The construction heuristics
Usually, evolutionary algorithms are used for problem solving, where a lot of experience and
knowledge is accumulated in various heuristic algorithms. Typically, these algorithms work
well on limited number of problems (Hoos & Stützle, 2005). On the other hand, evolutionary
algorithms are a general method suitable to solve very different kinds of problems. In general,
these algorithms are less efficient than heuristics specialized to solve the given problem. If
we want to combine a benefit of both kind of algorithms then the evolutionary algorithm
can be used for discovering new solutions that the heuristic exploits for building of new,
probably better solutions. Construction heuristics build the solution of optimization problem
incrementally, i.e., elements are added to a solution step by step (Algorithm 1).

3.2 The local search
A local search belongs to a class of improvement heuristics (Aarts & Lenstra, 1997). In our
case, main characteristic of these is that the current solution is taken and improved as long as
improvements are perceived.
The local search is an iterative process of discovering points in the vicinity of current solution.
If a better solution is found the current solution is replaced by it. A neighborhood of the
current solution y is defined as a set of solutions that can be reached using an unary operator
N : S → 2S (Hoos & Stützle, 2005). In fact, each neighbor y′ in neighborhood N can be
reached from current solution y in k strokes. Therefore, this neighborhood is called k − opt
neighborhood of current solution y as well. For example, let the binary represented solution
y and 1-opt operator on it are given. In that case, each of neighbors N (y) can be reached
changing exactly one bit. The neighborhood of this operator is defined as

N1-opt(y) = {y′ ∈ S|dH(y, y′) = 1}, (5)

where dH denotes a Hamming distance of two binary vectors as follows

dH(y, y′) =
n

∑
i=1

(yi ⊕ y′i), (6)

8 Evolutionary Algorithms



Algorithm 2 The local search. I: task, S: solution.

1: generate_initial_solution(y ∈ S);
2: repeat
3: f ind_next_neighbor(y′ ∈ N (y));
4: if ( f (y′) < f (y)) then
5: y = y′;
6: end if
7: until set_o f _neighbor_empty;

where operator ⊕ means exclusive or operation. Essentially, the Hamming distance in
Equation 6 is calculated by counting the number of different bits between vectors y and y′.
The 1-opt operator defines the set of feasible 1-opt strokes while the number of feasible 1-opt
strokes determines the size of neighborhood.
As illustrated by Algorithm 2, the local search can be described as follows (Michalewicz &
Fogel, 2004):

• The initial solution is generated that becomes the current solution (procedure
generate_initial_solution).

• The current solution is transformed with k − opt strokes and the given solution y′ is
evaluated (procedure f ind_next_neighbor).

• If the new solution y′ is better than the current y the current solution is replaced. On the
other hand, the current solution is kept.

• Lines 2 to 7 are repeated until the set of neighbors is not empty (procedure
set_o f _neighbor_empty).

In summary, the k − opt operator represents a basic element of the local search from
which depends how exhaustive the neighborhood will be discovered. Therefore, the
problem-specific knowledge needs to be incorporated by building of the efficient operator.

3.3 The neutral survivor selection
A genotype diversity is one of main prerequisites for the efficient self-adaptation. The smaller
genotypic diversity causes that the population is crowded in the search space. As a result,
the search space is exploited. On the other hand, the larger genotypic diversity causes that
the population is more distributed within the search space and therefore, the search space is
explored (Bäck, 1996). Explicitly, the genotype diversity of population is maintained with
a proposed neutral survivor selection that is inspired by the neutral theory of molecular
evolution (Kimura, 1968), where the neutral mutation determines to the individual three
possible destinies, as follows:

• the fittest individual can survive in the struggle for existence,

• the less fitter individual is eliminated by the natural selection,

• individual with the same fitness undergo an operation of genetic drift, where its survivor
is dependent on a chance.

Each candidate solution represents a point in the search space. If the fitness value is assigned
to each feasible solution then these form a fitness landscape that consists of peeks, valleys
and plateaus (Wright, 1932). In fact, the peaks in the fitness landscape represents points
with higher fitness, the valleys points with the lower fitness while plateaus denotes regions,

9Hybridization of Evolutionary Algorithms



where the solutions are neutral (Stadler, 1995). The concept of the fitness landscape plays
an important role in evolutionary computation as well. Moreover, with its help behavior
of evolutionary algorithms by solving the optimization problem can be understood. If on the
search space we look from a standpoint of fitness landscape then the heuristical algorithm tries
to navigate through this landscape with aim to discover the highest peeks in the landscape
(Merz & Freisleben, 1999).
However, to determine how distant one solution is from the other, some measure is needed.
Which measure to use depends on a given problem. In the case of genetic algorithms, where
we deal with the binary solutions, the Hamming distance (Equation 6) can be used. When
the solutions are represented as real-coded vectors an Euclidian distance is more appropriate.
The Euclidian distance between two vectors x and y is expressed as follows:

dE(x, y) =

√
1
n
·

n

∑
i=1

(xi − yi)2, (7)

and measures the root of quadrat differences between elements of vectors x and y. The main
characteristics of fitness landscapes that have a great impact on the evolutionary search are
the following (Merz & Freisleben, 1999):

• the fitness differences between neighboring points in the fitness landscape: to determine
a ruggedness of the landscape, i.e., more rugged as the landscape, more difficultly the
optimal solution can be found;

• the number of peaks (local optima) in the landscape: the higher the number of peaks, the
more difficulty the evolutionary algorithms can direct the search to the optimal solution;

• how the local optima are distributed in the search space: to determine the distribution of
the peeks in the fitness landscape;

• how the topology of the basins of attraction influences on the exit from the local optima: to
determine how difficult the evolutionary search that gets stuck into local optima can find
the exit from it and continue with the discovering of the search space;

• existence of the neutral networks: the solutions with the equal value of fitness represent a
plateaus in the fitness landscape.

When the stochastic fitness function is used for evaluation of individuals the fitness landscape
is changed over time. In this way, the dynamic landscape is obtained, where the concept
of fitness landscape can be applied, first of all, to analyze the neutral networks that arise,
typically, in the matured generations. To determine, how the solutions are dissipated over the
search space some reference point is needed. For this reason, the current best solution y∗ in
the population is used. This is added to the population of μ solutions.
An operation of the neutral survivor selection is divided into two phases. In the first phase,
the evolutionary algorithm from the population of λ offsprings finds a set of neutral solutions
NS = {y1, . . . , yk} that represents the best solutions in the population of offsprings. If the
neutral solutions are better than or equal to the reference, i.e. f (yi) ≤ f (y∗) for i = 1, . . . , k,
then reference solution y∗ is replaced with the neutral solution yi ∈ NS that is the most
faraway from reference solution according to the Equation 7. Thereby, it is expected that
the evolutionary search is directed to the new, undiscovered region of the search space. In the
second phase, the updated reference solution y∗ is used to determine the next population of
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survivors. Therefore, all offsprings are ordered with regard to the ordering relation ≺ (read:
is better than) as follows:

f (y1) ≺ . . . ≺ f (yi) ≺ f (yi+1) ≺ . . . ≺ f (yλ), (8)

where the ordering relation ≺ is defined as

f (yi) ≺ f (yi+1) ⇒
{

f (yi) < f (yi+1),
f (yi) = f (yi+1) ∧ (d(yi, y∗) > d(yi+1, y∗)). (9)

Finally, for the next generation the evolutionary algorithm selects the best μ offsprings
according to the Equation 8. These individuals capture the random positions in the next
generation. Likewise the neutral theory of molecular evolution, the neutral survivor selection
offers to the offsprings three possible outcomes, as follows. The best offsprings survive.
Additionally, the offspring from the set of neutral solutions that is far away of reference
solution can become the new reference solution. The less fitter offsprings are usually
eliminated from the population. All other solutions, that can be neutral as well, can survive if
they are ordered on the first μ positions regarding to Equation 8.

4. The hybrid self-adaptive evolutionary algorithms in practice

In this section an implementation of the hybrid self-adaptive evolutionary algorithms
(HSA-EA) for solving combinatorial optimization problems is represented. The
implementation of this algorithm in practice consists of the following phases:

• finding the best heuristic that solves the problem on a traditional way and adapting it to
use by the self-adaptive evolutionary algorithm,

• defining the other elements of the self-adaptive evolutionary algorithm,

• defining the suitable local search heuristics, and

• including the neutral survivor selection.

The main idea behind use of the construction heuristics in the HSA-EA is to exploit the
knowledge accumulated in existing heuristics. Moreover, this knowledge is embedded
into the evolutionary algorithm that is capable to discover the new solutions. To work
simultaneously both algorithms need to operate with the same representation of solutions.
If this is not a case a decoder can be used. The solutions are encoded by the evolutionary
algorithm as the real-coded vectors and decoded before the construction of solutions. The
whole task is performed in genotype-phenotype mapping that is illustrated in Fig. 3.
The genotype-phenotype mapping consists of two phases as follows:

• decoding,

• constructing.

Evolutionary algorithms operate in genotypic search space, where each genotype consists of
real-coded problem variables and control parameters. For encoded solution only the problem
variables are taken. This solution is further decoded by decoder into a decoded solution
that is appropriate for handling of a construction heuristic. Finally, the construction heuristic
constructs the solution within the original problem context, i.e., problem solution space. This
solution is evaluated by the suitable evaluation function.
The other elements of self-adaptive evolutionary algorithm consists of:
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Fig. 3. The genotype-phenotype mapping by hybrid self-adaptive evolutionary algorithm

Algorithm 3 Hybrid Self-Adaptive Evolutionary Algorithm.

1: t = 0;
2: Q(0) = initialization_procedure();
3: P(0) = evaluate_and_improve(Q(0));
4: while not termination_condition do
5: P′ = select_parent(P(t));
6: P′′ = mutate_and_crossover(P′);
7: P′′′ = evaluate_and_improve(P′′);
8: P(t+1) = select_survivor(P′′′);
9: t = t + 1;

10: end while

• evaluation function,

• population model,

• parent selection mechanism,

• variation operators (mutation and crossover), and

• initialization procedure and termination condition.

The evaluation function depends on a given problem. The self-adaptive evolutionary
algorithm uses the population model (μ, λ), where the λ offsprings is generated from the
μ parents. However, the parents that are selected with tournament selection (Eiben & Smith,
2003) are replaced by the μ the best offsprings according to the appropriate population model.
The ratio λ/μ ≈ 7 is used for the efficient self-adaptation (Eiben & Smith, 2003). Typically,
the normal uncorrelated mutation with n step sizes, discrete and arithmetic crossover are
used by the HSA-EA. Normally, the probabilities of mutation and crossover are set according
to the given problem. Selection of the suitable local search heuristics that improve the
current solution is a crucial for the performance of the HSA-EA. On the other hand, the
implementation of neutral survivor selection is straightforward. Finally, the scheme of the
HSA-EA is represented in the Algorithm 3.
In the rest of the chapter we present the implementation of the HSA-EA for the graph
3-coloring. This algorithm is hybridized with the DSatur (Brelaz, 1979) construction heuristic
that is well-known traditional heuristic for the graph 3-coloring.
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4.1 Graph 3-coloring
Graph 3-coloring can be informally defined as follows. Let assume, an undirected graph G =
(V, E) is given, where V denotes a finite set of vertices and E a finite set of unordered pairs of
vertices named edges (Murty & Bondy, 2008). The vertices of graph G have to be colored with
three colors such that no one of vertices connected with an edge is not colored with the same
color.
Graph 3-coloring can be formalized as constraint satisfaction problem (CSP) that is denoted
as a pair 〈S, φ〉, where S denotes a free search space and φ a Boolean function on S. The
free search space denotes the domain of candidate solutions x ∈ S and does not contain any
constraints, i.e., each candidate solution is feasible. The function φ divides the search space S
into feasible and unfeasible regions. The solution of constraint satisfaction problem is found
when all constraints are satisfied, i.e., when φ(x) = true.
However, for the 3-coloring of graph G = (V, E) the free search space S consists of all
permutations of vertices vi ∈ V for i = 1 . . . n. On the other hand, the function φ (also
feasibility condition) is composed of constraints on vertices. That is, for each vertex vi ∈ V
the corresponding constraint Cvi is defined as the set of constraints involving vertex vi, i.e.,
edges (vi, vj) ∈ E for j = 1 . . . m connecting to vertex vi. The feasibility condition is expressed
as conjunction of all constraints φ(x) = ∧vi∈VCvi(x).
Direct constraint handling in evolutionary algorithms is not straightforward. To overcome this
problem, the constraint satisfaction problems are, typically, transformed into unconstrained
(also free optimization problem) by the sense of a penalty function. The more the infeasible
solution is far away from feasible region, the higher is the penalty. Moreover, this penalty
function can act as an evaluation function by the evolutionary algorithm. For graph 3-coloring
it can be expressed as

f (x) =
n

∑
i=0

ψ(x, Cvi), (10)

where the function ψ(x, Cvi) is defined as

ψ(x, Cvi) =

{
1 if x violates at least one cj ∈ Cvi ,
0 otherwise.

(11)

Note that all constraints in solution x ∈ S are satisfied, i.e., φ(x) = true if and only if f (x) = 0.
In this way, the Equation 10 represents the feasibility condition and can be used to estimate the
quality of solution x ∈ S in the permutation search space. The permutation x determines the
order in which the vertices need to be colored. The size of the search space is huge, i.e., n!. As
can be seen from Equation 10, the evaluation function depends on the number of constraint
violations, i.e., the number of uncolored vertices. This fact causes that more solutions can have
the same value of the evaluation function. Consequently, the large neutral networks can arise
(Stadler, 1995). However, the neutral solutions are avoided if the slightly modified evaluation
function is applied, as follows:

f (x) =
n

∑
i=0

wi × ψ(x, Cvi), wi �= 0, (12)

where wi represents the weight. Higher than the value of weights harder the appropriate
vertex is to color.
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4.1.1 The hybrid self-adaptive evolutionary algorithm for graph 3-coloring
The hybrid self-adaptive evolutionary algorithm is hybridized with the DSatur (Brelaz, 1979)
construction heuristic and the local search heuristics. In addition, the problem specific
knowledge is incorporated by the initialization procedure and the neutral survivor selection.
In this section we concentrate, especially, on a description of those elements in evolutionary
algorithm that incorporate the problem specific knowledge. That are:

• the initialization procedure,

• the genotype-phenotype mapping,

• local search heuristics and

• the neutral survivor selection.

The other elements of this evolutionary algorithm, as well as neutral survivor selection, are
common and therefore, discussed earlier in the chapter.

The Initialization Procedure
Initially, original DSatur algorithm orders the vertices vi ∈ V for i = 1 . . . n of a given graph
G descendingly according to the vertex degrees denoted by dG(vi) that counts the number of
edges that are incident with the vertex vi (Murty & Bondy, 2008). To simulate behavior of the
original DSatur algorithm (Brelaz, 1979), the first solution in the population is initialized as
follows:

y(0)i =
dG(vi)

maxi=1...ndG(vi)
, for i = 1 . . . n. (13)

Because the genotype representation is mapped into a permutation of weights by decoder the
same ordering as by original DSatur is obtained, where the solution can be found in the first
step. However, the other μ − 1 solutions in the population are initialized randomly.

The Genotype-phenotype mapping
As illustrated in Fig. 3, the solution is represented in genotype search space as tuple
〈y1, . . . , yn, σ1, . . . , σn〉, where problem variables yi for i = 1 . . . n denote how hard the given
vertex is to color and control parameters σi for i = 1 . . . n mutation steps of uncorrelated
mutation. A decoder decodes the problem variables into permutation of vertices and
corresponding weights. However, all feasible permutation of vertices form the permutation
search space. The solution in this search space is represented as tuple 〈v1, . . . , vn, w1, . . . , wn〉,
where variables vi for i = 1 . . . n denote the permutation of vertices and variables wi
corresponding weights. The vertices are ordered into permutation so that vertex vi is
predecessor of vertex vi+1 if and only if wi ≥ wi+1. Values of weights wi are obtained by
assigning the corresponding values of problem variables, i.e. wi = yi for i = 1 . . . n. Finally,
DSatur construction heuristic maps the permutation of vertices and corresponding weights
into phenotypic solution space that consists of all possible 3-colorings ci. Note that the size
of this space is 3n. DSatur construction heuristic acts like original DSatur algorithm (Brelaz,
1979), i.e. it takes the permutation of vertices and color these as follows:

• the heuristic selects a vertex with the highest saturation, and colors it with the lowest of
the three colors;

• in the case of a tie, the heuristic selects a vertex with the maximal weight;

• in the case of a tie, the heuristic selects a vertex randomly.
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Algorithm 4 Evaluate and improve. y: solution.

1: est = evaluate(y);
2: repeat
3: climbing = FALSE;
4: y′ = k_move(y);
5: ls_est = evaluate(y′);
6: if ls_est < est then
7: y = y′;
8: est = ls_est;
9: climbing = TRUE;

10: end if
11: until climbing = TRUE

The main difference between this heuristic and the original DSatur algorithm is in the second
step where the heuristic selects the vertices according to the weights instead of degrees.

Local Search Heuristics
The current solution is improved by a sense of local search heuristics. At each evaluation
of solution the best neighbor is obtained by acting of the following original local search
heuristics:

• inverse,

• ordering by saturation,

• ordering by weights, and

• swap.

The evaluation of solution is presented in Algorithm 4 from which it can be seen that the
local search procedure (k_move(y)) is iterated until improvements are perceived. However,
this procedure implements all four mentioned local search heuristics. The best neighbor is
generated from the current solution by local search heuristics with k-exchanging of vertices.
In the case, the best neighbor is better than the current solution the later is replaced by the
former.
In the rest of the subsection, an operation of the local search heuristics is illustrated in Fig. 4-7
by samples, where a graph with nine vertices is presented. The graph is composed of a
permutation of vertices v, corresponding coloring c, weights w and saturation degrees d.

Fig. 4. Inverse local search heuristic

The inverse local search heuristic finds all uncolored vertices in a solution and inverts their
order. As can be shown in Fig. 4, the uncolored vertices 4, 6 and 8 are shadowed. The best
neighbor is obtained by inverting of their order as is presented on right-hand side of this
figure. The number of vertex exchanged is dependent of the number of uncolored vertices
(k − opt neighborhood).
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Fig. 5. Ordering by saturation local search heuristic

The ordering by saturation local search heuristic acts as follows. The first uncolored vertex
is taken at the first. To this vertex a set of adjacent vertices are selected. Then, these vertices
are ordered descending with regard to the values of saturation degree. Finally, the adjacent
vertex with the highest value of saturation degree in the set of adjacent vertices is swapped
with the uncolored vertex. Here, the simple 1-opt neighborhood of current solution is defined
by this local search heuristic. In the example on Fig. 5 the first uncolored vertex 4 is shadowed,
while its adjacent vertices 1, 6 and 7 are hatched. However, the vertices 1 and 7 have the same
saturation degree, therefore, the vertex 7 is selected randomly. Finally, the vertices 4 in 7 are
swapped (right-hand side of Fig. 5).

Fig. 6. Ordering by weights local search heuristic

When ordering of weights, the local search heuristic takes the first uncolored vertex and
determines a set of adjacent vertices including it. This set of vertices is then ordered
descending with regard to the values of weights. This local search heuristic determines
the k − opt neighborhood of current solution, where k is dependent of a degree of the first
uncolored vertex. As illustrated by Fig. 6, the uncolored vertex 4 is shadowed, while its
adjacent vertices 1, 6 and 7 are hatched. The appropriate ordering of the selected set of vertices
is shown in the right-hand of Fig. 6 after the operation of the local search heuristic.

Fig. 7. Swap local search heuristic

The swap local search heuristic finds the first uncolored vertex and descendingly orders the
set of all predecessors in the solution according to the saturation degree. Then, the uncolored
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vertex is swapped with the vertex from the set of predecessors with the highest saturation
degree. When more vertices with the same highest saturation degree are arisen, the subset of
these vertices is determined. The vertex from this subset is then selected randomly. Therefore,
the best neighbor of the current solution is determined by an exchange of two vertices (1-opt
neighborhood). As illustrated in Fig. 7, the first uncolored vertex 4 is shadowed, while the
vertices 0 and 4 that represent the subset of vertices with the highest saturation are hatched.
In fact, the vertex 0 is selected randomly and the vertices 0 and 4 are swapped as is presented
in right-hand of Fig. 7.

4.1.2 Analysis of the hybrid self-adaptive evolutionary algorithm for graph 3-coloring
The goal of this subsection is twofold. At the first, an influence of the local search heuristics on
results of the HSA-EA is analyzed in details. Further, a comparison of the HSA-EA hybridized
with the neutral survivor selection and the HSA-EA with the deterministic selection is made.
In this context, the impact of the heuristic initialization procedure are taken into consideration
as well.
Characteristics of the HSA-EA used in experiments were as follows. The normal distributed
mutation was employed and applied with mutation probability of 1.0. The crossover was not
used. The tournament selection with size 3 selects the parents for mutation. The population
model (15, 100) was suitable for the self-adaptation because the ratio between parents and
generated offspring amounted to 100/15 ≈ 7 as recommended by Bäck (1996). As termination
condition, the maximum number of evaluations to solution was used. Fortunately, the average
number of evaluations to solution (AES) that counts the number of evaluation function calls
was employed as the performance measure of efficiency. In addition, the average number
of uncolored nodes (AUN) was employed as the performance measure of solution quality.
This measure was applied when the HSA-EA does not find the solution and counts the
number of uncolored vertices. Nevertheless, the success rate (SR) was defined as the primary
performance measure and expressed as the ratio between the runs in which the solution was
found and all performed runs.
The Culberson (2008) random graph generator was employed for generation of random
graphs that constituted the test suite. It is capable to generate the graphs of various
types, number of vertices, edge densities and seeds of random generator. In this study we
concentrated on the equi-partite type of graphs. This type of graphs is not the most difficult to
color but difficult enough for many existing algorithms (Culberson & Luo, 2006). The random
graph generator divides the vertices of graph into three color sets before generating randomly.
In sense of equi-partite random graph, these color sets are as close in size as possible.
All generated graphs consisted of n = 1, 000 vertices. An edge density is controlled by
parameter p of the random graph generator that determines probability that two vertices
vi and vj in the graph G are connected with an edge (vi, vj) (Chiarandini & Stützle, 2010).
However, if p is small the graph is not connected because the edges are sparse. When
p is increased the number of edges raised and the graph becomes interconnected. As a
result, the number of constraints that needs to be satisfied by the coloring algorithm increases
until suddenly the graph becomes uncolorable. This occurrence depends on a ratio between
the number of edges and the number of vertices. The ratio is referred to as the threshold
(Hayes, 2003). That is, in the vicinity of the threshold the vertices of the random generated
graph becomes hard to color or even the graph becomes uncolorable. Fortunately, the graph
instances with this ratio much higher that the threshold are easy to color because these graphs
are densely interconnected. Therefore, many global optima exist in the search space that can
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be discovered easy by many graph 3-coloring algorithms. Interestingly, for random generated
graphs the threshold arises near to the value 2.35 (Hayes, 2003). For example, the equi-partite
graph generated with number of vertices 1, 000 and the edge density determined by p = 0.007
consists of 2,366 edges. Because the ratio 2, 366/1, 000 = 2.37 is near to the threshold, we can
suppose that this instance of graph is hard to color. The seed s of random graph generator
determines which of the two vertices vi and vj are randomly drawn from different 3-color
sets to form an edge (vi, vj) but it does not affect the performance of the graph 3-coloring
algorithm (Eiben et al., 1998). In this study, the instances of random graphs with seed s = 5
were employed.
To capture a phenomenon of the threshold, the parameter p by generation of the equi-partite
graphs was varied from p = 0.005 to p = 0.012 in a step of 0.0005. In this way, the test suite
consisted of 15 instances of graphs, in which the hardest graph with p = 0.007 was presented
as well. In fact, the evolutionary algorithm was applied to each instance 25 times and the
average results of these runs were considered.

The impact of the local search heuristics
In this experiments, the impact of four implemented local search heuristics on results of the
HSA-EA was taken into consideration. Results of the experiments are illustrated in the Fig. 8
that is divided into six graphs and arranged according to the particular measures SR, AES
and AUN. The graphs on the left side of the figure, i.e. 8.a, 8.c and 8.e, represent a behavior of
the HSA-EA hybridized with four different local search heuristics. This kind of the HSA-EA
is referred to as original HSA-EA in the rest of chapter.
A seen by the Fig. 8.a, no one of the HSA-EA versions was succeed to solve the hardest
instance of graph with p = 0.007. The best results in the vicinity of the threshold is observed
by the HSA-EA hybridizing with the ordering by saturation local search heuristic (SR = 0.36
by p = 0.0075). The overall best performance is shown by the HSA-EA using the swap local
search heuristic. Although the results of this algorithm is not the best by instances the nearest
to the threshold (SR = 0.2 by p = 0.0075), this local search heuristic outperforms the other by
solving the remaining instances in the collection.
In average, results according to the AES (Fig. 8.c) show that the HSA-EA hybridized with
the swap local search heuristic finds the solutions with the smallest number of the fitness
evaluations. However, troubles are arisen in the vicinity of the threshold, where the HSA-EA
with other local search heuristics are faced with the difficulties as well. Moreover, at the
threshold the HSA-EA hybridizing with all the used local search heuristics reaches the limit
of 300,000 allowed function evaluations.
The HSA-EA hybridizing with the ordering by saturation local search heuristic demonstrates
the worst results according to the AUN, as presented in the Fig. 8.e. The graph instance by
p = 0.0095 was exposed as the most critical by this algorithm (AUN = 50) although this is
not the closest to the threshold. In average, when the HSA-EA was hybridized with the other
local search heuristics than the ordering by saturation, all instances in the collection were
solved with less than 20 uncolored vertices.
In the right side of the Fig. 8, results of different versions of the HSA-EA are collected. The
first version that is designated as None operates with the same parameters as the original
HSA-EA but without the local search heuristics. The label LS in this figure indicates the
original version of the HSA-EA. Finally, the label Init denotes the original version of the
HSA-EA with the exception of initialization procedure. While all considered versions of the
HSA-EA uses the heuristic initialization procedure this version of the algorithm employs the
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Fig. 8. Influence of local search heuristics on results of HSA-EA solving equi-partite graphs
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pure random initialization. Note, in the figure, results for this version of the HSA-EA were
obtained after 25 runs, while for the versions of the HSA-EA with the local search heuristics
the average results were obtained after performing of all four local search heuristics, i.e. after
100 runs.
In Fig. 8.b results of different versions of the HSA-EA according to the SR are presented. The
best results by the instances the nearest to the threshold (p ∈ [0.0075 . . . 0.008]) are observed
by the original HSA-EA. Conversely, the HSA-EA with the random initialization procedure
(Init) gained the worst results by the instances the nearest to the threshold, while these were
better while the edge density was raised regarding the original HSA-EA. The turning point
represents the instance of graph with p = 0.008. After this point is reached the best results
were overtaken by the HSA-EA with the random initialization procedure (Init).
In contrary, the best results by the instances the nearest to the threshold according to the
AES was observed by the HSA-EA without local search heuristics (None). Here, the turning
point regarding the performance of the HSA-EA (p = 0.008) was observed as well. After this
point results of the HSA-EA without local search heuristics becomes worse. Conversely, the
HSA-EA with random initialization procedure that was the worst by the instances before the
turning point becomes the best after this.
As illustrated by Fig. 8.f, all versions of the HSA-EA leaved in average less than 30 uncolored
vertices by the 3-coloring. The bad result by the original HSA-EA coloring the graph with
p = 0.0095 was caused because of the ordering by saturation local search heuristic that got
stuck in the local optima. Nevertheless, note that most important measure is SR.

The impact of the neutral survivor selection
In this experiments the impact of the neutral survivor selection on results of the HSA-EA was
analyzed. In this context, the HSA-EA with deterministic survivor selection was developed
with the following characteristic:

• The Equation 12 that prevents the generation of neutral solutions was used instead of the
Equation 10.

• The deterministic survivor selection was employed instead of the neutral survivor
solution. This selection orders the solutions according to the increasing values of the fitness
function. In the next generation the first μ solutions is selected to survive.

Before starting with the analysis, we need to prove the existence of neutral solution and to
establish they characteristics. Therefore, a typical run of the HSA-EA with neutral survivor
selection is compared with the typical run of the HSA-EA with the deterministic survivor
selection. As example, the 3-coloring of the equi-partite graph with p = 0.010 was taken into
consideration. This graph is easy to solve by both versions of the HSA-EA. Characteristics of
the HSA-EA by solving it are presented in Fig. 9.
In the Fig. 9.a the best and the average number of uncolored nodes that were achieved by the
HSA-EA with neutral and the HSA-EA with deterministic survivor selection are presented.
The figure shows that the HSA-EA with the neutral survivor selection converge to the optimal
solution very fast. To improve the number of uncolored nodes from 140 to 10 only 10,000
solutions to evaluation were needed. After that, the improvement stagnates (slow progress
is detected only) until the optimal solution is found. The closer look at the average number
of uncolored nodes indicates that this value changed over every generation. Typically, the
average fitness value is increased when the new best solution is found because the other
solutions in the population try to adapt itself to the best solution. This self-adaptation consists
of adjusting the step sizes that from larger starting values becomes smaller and smaller over
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Fig. 9. Characteristics of the HSA-EA runs on equi-partite graph with p = 0.010

the generations until the new best solution is found. The exploring of the search space is
occurred by this adjusting of the step sizes. Conversely, the average fitness values are changed
by the HSA-EA in the situations where the best values are not found as well. The reason for
that behavior is the stochastic evaluation function that can evaluate the same permutation of
vertices always differently.
More interestingly, the neutral solution occurs when the average fitness values comes near
to the best (Fig. 9.b). As illustrated by this figure, the most neutral solutions arise in the later
generations when the population becomes matured. In example from Fig. 9.b, the most neutral
solutions occurred after 20,000 and 30,000 evaluations of fitness function, where almost 30%
of neutral solution occupied the current population.
In contrary, the HSA-EA with deterministic survivor selection starts with the lower number
of uncolored vertices (Fig. 9.c) than the HSA-EA with neutral selection. However, the
convergence of this algorithm is slower than by its counterpart with the neutral selection.
A closer look at the average fitness value uncovers that the average fitness value never come
close to the best fitness value. A falling and the rising of the average fitness values are caused
by the stochastic evaluation function.
In the Fig. 9.d a diversity of population as produced by the HSA-EA with different survivor
selections is presented. The diversity of population is calculated as a standard deviation of the
vector consisting of the mean weight values in the population. Both HSA-EA from this figure
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lose diversity of the initial population (close to value 8.0) very fast. The diversity falls under
the value 1.0. Over the generations this diversity is raised until it becomes stable around the
value 1.0. Here, the notable differences between curves of both HSA-EA are not observed.
To determine what impact the neutral survivor selection has on results of the HSA-EA, a
comparison between results of the HSA-EA with neutral survivor selection (Neutral) and the
HSA-EA with deterministic survivor selection (Deter) was done. However, both versions
of the HSA-EA run without local search heuristics. Results of these are represented in the
Fig. 10. As reference point, the results of the original HSA-EA hybridized with the swap local
search heuristic (Re f ) that obtains the overall best results are added to the figure. The figure
is divided in two graphs where the first graph (Fig. 10.a) presents results of the HSA-EA with
heuristic initialization procedure and the second graph (Fig. 10.b) results of the HSA-EA with
random initialization procedure according to the SR.
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Fig. 10. Comparison of the HSA-EA with different survivor selections according to the SR

As shown by the Fig. 10.a the HSA-EA with neutral survivor selection (Neutral) exposes
better results by the instances near to the threshold (p ∈ [0.0075 . . . 0.008]) while the HSA-EA
with deterministic survivor selection (Deter) was slightly better by the instance of graph with
p = 0.0085. Interestingly, while the curve of the former regularly increases the curve of the
later is sawing because it raises and falls from the instance to the instance. In contrary, from
the Fig. 10.b it can be seen that the HSA-EA with neutral survivor selection outperforms its
counterpart with deterministic survivor selection by all instances of random graphs if the
random initialization procedure is applied.
In summary, the original HSA-EA with swap local search heuristic used as reference
outperforms all observed versions of the HSA-EA.

4.1.3 Summary
In this subsection the characteristics of the HSA-EA were studied on the collection of
equi-partite graphs, where we focused on the behavior of the algorithm in the vicinity of the
threshold. Therefore, an impact of the hybridizing elements, like the initialization procedure,
the local search heuristics, and neutral survivor selection, on results of the HSA-EA are
compared. The results of these comparisons in vicinity of the threshold (p ∈ [0.0065 . . . 0.010])
are presented in Table 1, where these are arranged according to the applied selection (column
Sel.), the local search heuristics (column LS) and initialization procedure (column Init).
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In column SR average results of the corresponding version of the HSA-EA are presented.
Additionally, the column SRavg1 denotes the averages of the HSA-EA using both kind of
initialization procedure. Finally, the column SRavg2 represents the average results according
to SR that are dependent on the different kind of survivor selection only.

Sel. LS Init SR SRavg1 SRavg2

Neut.
No

Rand1 0.52
0.56

0.62
Heur1 0.61

Yes Rand2 0.66 0.66
Heur2 0.67

Det.
No

Rand3 0.46
0.53

0.57Heur3 0.61

Yes
Rand4 0.60

0.60Heur4 0.61

Table 1. Average results of various versions of the HSA-EA according to the SR

As shown by the table 1, results of the HSA-EA with deterministic survivor selection without
local search heuristics and without random initialization procedure (SR = 0.46, denoted as
Rand3) were worse than results or its counterpart with neutral survivor selection (SR = 0.52,
denoted as Rand1) in average for more than 10.0%. Moreover, the local search heuristics
improved results of the HSA-EA with neutral survivor selection and random initialization
procedure from SR = 0.52 (denoted as Rand1) to SR = 0.66 (denoted as Rand2) that amounts
to almost 10.0%. Finally, the heuristic initialization improved results of the HSA-EA with
neutral selection and with local search heuristics from SR = 0.66 (denoted as Rand2) to
SR = 0.67 (denoted as Heur2), i.e. for 1.5%. Note that the SR = 0.67 represents the best
result that was found during the experimentation.
In summary, the construction heuristics has the most impact on results of the HSA-EA. That
is, the basis of the graph 3-coloring represents the self-adaptive evolutionary algorithm with
corresponding construction heuristic. However, to improve results of this base algorithm
additional hybrid elements were developed. As evident, the local search heuristics improves
the base algorithm for 10.0%, the neutral survivor selection for another 10.0% and finally the
heuristic initialization procedure additionally 1.5%.

5. Conclusion

Evolutionary algorithms are a good general problem solver but suffer from a lack of domain
specific knowledge. However, the problem specific knowledge can be added to evolutionary
algorithms by hybridizing different parts of evolutionary algorithms. In this chapter, the
hybridization of search and selection operators are discussed. The existing heuristic function
that constructs the solution of the problem in a traditional way can be used and embedded
into the evolutionary algorithm that serves as a generator of new solutions. Moreover, the
generation of new solutions can be improved by local search heuristics, which are problem
specific. To hybridized selection operator a new neutral selection operator has been developed
that is capable to deal with neutral solutions, i.e., solutions that have the different genotype
but expose the equal values of objective function. The aim of this operator is to directs
the evolutionary search into new undiscovered regions of the search space, while on the
other hand exploits problem specific knowledge. To avoid wrong setting of parameters that
control the behavior of the evolutionary algorithm, the self-adaptation is used as well. Such
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hybrid self-adaptive evolutionary algorithms have been applied to the the graph 3-coloring
that is well-known NP-complete problem. This algorithm was applied to the collection of
random graphs, where the phenomenon of a threshold was captured. A threshold determines
the instanced of random generated graphs that are hard to color. Extensive experiments
shown that this hybridization greatly improves the results of the evolutionary algorithms.
Furthermore, the impact of the particular hybridization is analyzed in details as well.
In continuation of work the graph k-coloring will be investigated. On the other hand, the
neutral selection operator needs to be improved with tabu search that will prevent that the
reference solution will be selected repeatedly.
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1. Introduction 
During the past three decades, global optimization problems (including single-objective 
optimization problems (SOP) and multi-objective optimization problems (MOP)) have been 
intensively studied not only in Computer Science, but also in Engineering. There are many 
solutions in literature, such as gradient projection method [1-3], Lagrangian and augmented 
Lagrangian penalty methods [4-6], and aggregate constraint method [7-9]. Among these 
methods, penalty function method is an important approach to solve global optimization 
problems.. To obtain the optimal solution of the original problem, the first step is to convert 
the optimization problem into an unconstrained optimization problem with a certain 
penalty function (such as Lagrangian multiplier). As the penalty multiplier approaches zero 
or infinite, the iteration point might approach optimal too. However, at the same time, the 
objective function of the unconstrained optimization problem might gradually become 
worse. This leads to increased computational complexity and long computational time in 
implementing the penalty function method to solve the complex optimization problems. In 
most of the research, both the original constraints and objective function are required to be 
smooth (or differentiable). However, in real-world problem, it is seldom to be able to 
guarantee a derivative for of the specific complex optimization problem. Hence, the 
development of efficient algorithms for handling complex optimization problems is of great 
importance. In this chapter, we present a new framework and algorithm that can solve 
problems belong to the family of stochastic search algorithms, often referred to as 
evolutionary algorithms.  
Evolutionary algorithms (EAs) are stochastic optimization techniques based on natural 
evolution and survival of the fittest strategy found in biological organisms. Evolutionary 
algorithms have been successfully applied to solve complex optimization problems in 
business [10,11], engineering [12,13], and science [14,15]. Some commonly used EAs are 
Genetic algorithms (GAs)[16], Evolutionary Programming (EP)[17], Evolutionary Strategy 
(ES)[18] and Differential Evolution (DE)[19]. Each of these methods has its own 
characteristics, strengths and weaknesses. In general, a EA algorithm generate a set of initial 
solutions randomly based on the given seed and population size. Afterwards, it will go 
through evolution operations such as cross-over and mutation before evaluated by the 
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objective function. The winning entity in the population will be selected as the parents (or 
seed) of the next generation (i.e., iteration).  The optimization iteration continues until the 
termination criteria are satisfied. Typically, either the evolution process reached user 
defined maximum number of iteration or the improvement in objective function between 
the two generations converges. 
The major advantages of the improved EAs compared with traditional optimization 
techniques include [20-23]:  
1. EAs do not require objective function to be continuous and can be used in algebraic 

form. 
2. EAs tend to escape more easily from local optimum due to the randomness introduced 

at the beginning and perturbation introduced by the mutation operation. The amount of 
perturbation is a parameter defends on the step size specified by the user. 

3. EAs do not require specific domain information or prior knowledge although they can 
exploit it if such information is available. It does not involve calculation of the gradients 
of the objective function. 

4. EAs are conceptually simple and relatively easy to implement. 
The major disadvantages of EAs are their poor performance in handling constraints, long 
computational time, and high computational complexity, especially when the solution space 
is hard to explore. To overcome these difficulties, some ‘more intelligent’ rules and /or 
hybrid techniques such as evolutionary-gradient search (EGS) have been developed to 
extend EAs to overcome the slow convergence phenomena of the EAs near the optimum 
solution [24-27]. In addition, improving fitness function, crossover and mutation operators, 
selection mechanisms, and adaptive controlling of parameter settings all enhance EA’s 
efficiency and performance. An excellent comparison study of evolutionary algorithms has 
been published for global optimization problems by Michalewicz and Schoenauer [28]. 
Among the evolutionary algorithms the methods based on penalty functions have proven to 
be the most popular. These methods augment the cost function, so that it includes the 
squared or absolute values of the constraint violations multiplied by penalty coefficients. 
However, there are also serious drawbacks with penalty function methods. For example, 
small values of the penalty coefficients drive the search outside the feasible region and often 
produce infeasible solutions [29], if imposing very severe penalties makes it difficult to drive 
the population to the optimum [29-31]. To overcome these drawbacks, Kim and Myung [26] 
proposed the concept of two phase evolutionary algorithm, where the penalty method is 
implemented in the first phase, while during the second phase an augmented Lagrangian 
function is applied on the best solution of the first phase. Tahk and Sun [32] presented the 
co-evolutionary augmented Lagrangian method which uses an evolution of two populations 
with opposite objectives to solve constrained optimization problems. Tang proposed a 
special hybrid genetic algorithm (HGA) [33]with penalty function and gradient direction 
search, which uses mutation along the weighted gradient direction as the main operation 
and only in the later generation it utilizes an arithmetic combinatorial crossover. The 
approach presented in [34] is an extended hybrid genetic algorithm (EHGA), which is a 
fuzzy-based methodology that embeds the information of the infeasible points into the 
evaluation function. 
Based on the above analysis, our major concern in this chapter was how to design a linear 
fitness function based on the general penalty function so as to fast evaluate candidate 
solutions, regardless of the design variables’ dimensions of solving the complex 
optimization problems. The major advantage of linear function is their simplicity and 
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computational attractiveness. The chapter starts with the review that we have a briefly 
review for various evolutionary approaches in the last years. In the sequel we will focus on 
this compression process, in which search space of design variables will be compressed into 
2-dimensional performance space and it is possible to fast discriminate ‘good’ solutions 
from candidate solutions, regardless of the complexity of original space. In addition, our 
method combines two improved operators in reproduction phase, i.e., crossover and 
mutation. Simulation results over a comprehensive set of benchmark functions show that 
our method is feasible and effective. Meanwhile, it can provide good performance in terms 
of uniformity and diversity of solutions. 

2. Description of EA 
Evolutionary algorithm is a random search based optimization technique. Various 
applications have shown that when problems are formulated properly, EA can give good 
results with reasonable time complexity. EA mimics the process of natural selection and 
starts with artificial individuals (represented by a population of “chromosomes”). EA tries 
to evolve those individuals that are fitter and, by applying genetic operators (crossover and 
mutation), it attempts to produce descendants that are better than their parents in terms of a 
certain quantitative measure. In spite of their diversity, most of them are based on the same 
iterative procedure. 
As a heuristic population-based method, EA is really like a “black box”, completely 
independent from the characteristic of the problem. Fig.1 presents the classical EA flow 
chart. An initial population of individuals is generated randomly. Each of these individuals 
is evaluated in terms of a certain “fitness function” that can “guide” EA to the desired 
region of the search space. EA’s three genetic operators (Selection, Crossover and Mutation) 
are the main components to improve the EA’s behavior. Selection is the process that mimics 
the “survival of the fittest” principle in the biological theory of evolution. Firstly, the 
selection operator assures that individuals are copied to the next generation with a 
probability associated to their fitness values. Although selection is implemented in a EA as a 
policy for determining the best candidate individuals that will be presented in the next 
generation with a higher probability, it does not search the space further, because it just 
copies the previous candidate individuals. The search results from the creation of new 
individuals from old ones. Secondly, the crossover operator is implemented in EA by 
exchanging chromosome segments between two randomly selected chromosomes.  
 

 
Fig. 1. Evolutioary algorithm flow chart 
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Crossover process provides a mechanism to allow new chromosomes to inherit the 
properties from old ones. Thirdly, mutation is a random perturbation to one or more genes 
in the chromosomes during evolutionary process. The purpose of the mutation operator is 
to provide a mechanism to avoid local optima by exploring the new regions of the search 
space, which selection and crossover could not fully guarantee. The searching process 
terminates when the predefined criterion is satisfied. 

3. Related concepts of MOP 
Almost all real world engineering designing problems are characterized by the presence of 
several conflicting and/or cooperating objectives, as opposed to having a single objective, 
and result in a set of non-dominated solutions. This set, generally called Pareto front, helps 
the decision-maker to identify the best compromise solutions by eliminating inferior ones 
and articulating his preference pertaining to the different objectives once he has an 
additional knowledge of the Pareto frontier. The term MOP is used to broadly classify 
problems with more than one objective. Without loss of generality, a general multi-objective 
optimization problem can be expressed in the following equations: 

 1 2min ( ) ( ( ), ( ),..., ( ))T
kF x f x f x f x=  (1) 

 1 2. . ( ) ( ( ), ( ),..., ( )) 0T
ls t G x g x g x g x= ≤  (2) 

 1 2( ) ( ( ), ( ),..., ( )) 0l l mH x h x h x h x+ += =  (3) 
 

where k is the number of objective functions, l and m-l are the number of unequal and equal 
constraints respectively, and the vector G(x) represents constraints that probably are easily 
handled explicitly, such as lower and upper bounds on the variables, x=(x1,x2,…,xn)∈ S ⊆Ω. 
n is the number of designing variables. Ω and S are the searching space of objective function 
and the feasible searching space, respectively. 
The Pareto optimal concept is initially introduced by Vilfredo Pareto in the 19th century, 
and the concept has already been widely used in MOP to aid designers in their decision-
making processes. In this paper, we assume that all objectives are to be minimized for clarity 
purpose since maximization of any maximization of any ( )f− i . The  Pareto optimal concept 
is stated as follows[35,36]: 
Definition 1   order relation between design vectors. Let  x and x’ be two designing variables. 
The dominance relations in a minimization problem are: 
x dominates x’ (x≺ x’), iff  ft(x) < ft(x’) and ft’(x) ≯  ft’(x’), ∀ t’≠ t∈  [1, k]. 
x are incomparable with x’ (x～x’),iff ft(x) < ft(x’) and ft’(x) ＞ ft’(x’), t’≠t∈  [1, k]. 
Definition 2  Pareto-optimal solution. A solution x is called Pareto-optimal if there is no 
other x’ ∈ F, such that f(x’) < f(x). All the Pareto-optimal solutions define the Pareto-optimal 
set. 
Definition  3   Non-dominated solution.  A solution x∈ S is non-dominated with respect to a 
set x’ ∈ S  if and only if ∃/  x’ ∈ S, verifying that x’ ≺ x. 
Definition  4   Non-dominated set. Given a set of solutions S’, such that S’ ∈ S and Y’=f(S’), 
the function h(S’) returns the set of non-dominated solutions from S’: 
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h(S’)={∀ x∈ S’ | x is non-dominated by any other z’, z’ ∈ S’ } 

Fig.2 graphically describes the process of mapping from designing space to objective space 
with objectives (f1 and f2), and the Pareto-optimal set are shown as the Pareto optimal front. 
All of the Pareto solutions in designing space are equally important and all are the global 
optimal solutions. The decision-maker articulates his preference pertaining to the different 
objectives once he has knowledge of the Pareto front. 
 

Objective space 
Design space 

Pareto front 

S

x2                                                  f2

x1                                     f1  
Fig. 2. Mapping from design space to objective space. 

4. The linear fitness function (LFF) 
A very popular approach for handling complex constraints by using EAs is to adopt penalty 
function such as [37-39].  When handling individuals violating any one of the constraints, if  
the added penalties do not depend on the current iteration number and remain constant 
during the entire evolutionary process, then the penalty function is called static penalty 
function, and its penalties are weighted sum of all constraint violations. If, alternatively, the 
current iteration number is considered while determining the penalties, then the penalty 
function is called dynamic penalty function. In this paper, we adopt static penalty function 
as the following manner: 

 max(0, ( )), 1
( )

| ( )|, 1
j

j
j

g x j q
p x

h x l j m
⎧ ≤ ≤⎪= ⎨ + ≤ ≤⎪⎩

 (4) 

where ( )jp x  denotes the degree of individual violating constraints. The generally fitness 
function for evaluating individuals can be defined as below: 

 
1

( ) ( ) ( )
m

j
j

fitness x f x r p x
=

= + × ∑  (5) 

1
( ) ( ) ( ),

k
T

i i
i

f x w f x w F x
=

= =∑  

where f(x) is a convex combination of the different objectives in that the multi-objective 
problem is converted into a scalar optimization one. The weighted value wi  is chosen such 
that wi ≥ 0, i=1,…,n, and 

1
1

k

i
i

w
=

=∑ . 
One of existing difficulties in penalty function is mainly that parameter r is not easily to be 
selected and controlled [37]. For many MOP, we note that the searching space of the design 
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vector is always situated in n-dimension space (n≥2). In terms of human imagination of 
space, if we can attempt to give a good method to transform n-dimension space into low 
dimensional space for MOP since the dimensions below three are geometrically prone to 
human understanding. Therefore, we give the following transforming procedure. 

1 2
1

( ), ( )
m

i
i

y f x y p x
=

= = ∑ . If we can make an appropriate mapping between vector  1 2[ , ]y y y=  

and x , then fitness(x) can be represented as a linear fitness function: 
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a x y
a x y

a r yx

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥= = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

without loss of generality, the variable x is still denoted by x. x is a point in 2-dimension 
space. 0Ta y =  ascertains a hyperplane via origin, then the entire search space is divided into 
two subspaces with 2-dimension respectively. a is a normal vector in hyperplane (see Fig.3). 
The division of initial searching space with n-dimension is equivalent to the above results, 
and the searching process is focused on 1Φ . A mapping process is described between 
feasible region S and corresponding abnormity region 3Φ  while any point x in 2-dimension 
space is required to satisfy one of the following expressions: 
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 (7) 

Further analysis shows that linear fitness function may be regarded as an algebraic 
measurement from point x to the hyperplane. 
 

 
Fig. 3. Transformation of searching space. 

By means of above anaysis, we give a new linear fitness function to evaluate individuals: 

X1 

X2

r 

α

Φ1：fitness>0

Φ2：fitness<0 
 

w

Φ3

 

H：fitness=0
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Ta xfitness x
a

=  (8) 

While evaluating new individuals we may directly use formula (8) without considering the 
feasibility of individual. It is very convenient to identify the good or bad individuals from 
population according to corresponding fitness values. 

5. Evolutionary operators 
In conventional EAs, the basic operators are selection and mutation. The selection assigns 
greater probabilities to the fittest individuals according to its fitness. Crossover is the 
exchange of information between different individuals, and it is the principal process in 
generating new individuals. Mutation is a security factor to avoid entrapment at any other 
point when the population is completely converged. The parents undergo crossover and 
mutation to generate two new children, and each individual in the population evolve to get 
higher generation by generation. 

5.1 Crossover operator 
The crossover operator based on a modified self-adaptive density adopts two parents to 
generate children [40]. The procedure is formulated as follows: 
First, two individuals are selected using a random selection procedure to generate new 
individuals. The two parents can be expressed as X=(x1, x2, …, xd ) and Y=(y1,y2,…,yd), where 
xi < yi.  

 [ , ] [ , ]
2 2

i i i i
ii i i

x y y xx y x y− −
+ + =  (9) 

Here, we give a density function in (10). It depends on two parameters a and β, and a, 
β∈ [0,1].We give a cumulated distribution function in (11) and ,0 1.

i ix yG≤ ≤ It ascertains 
parameter iη in children by (12). 1

,i ix yG− is the inverse function of ,i ix yG in (12). 

 ,, ( , , ) : [ ]
i i

ix y ig x x y rα β α β× × →  (10) 

 , ( , , ) : [ , ] [0,1]
i i

ix y iG x x yα β α β× × →  (11) 

 1
, ( , , )

i ii x yG rη α β−=  (12) 

The experimental results show that density crossover operator is good at finding optimal 
solutions and enlarging the search region. 

5.2 Mutation operator 
The neighborhood mutation operator is introduced in Ref.[41]. Individual mutation is in its 
neighborhood space by using x’=x+a×r, where x’ and x are child and parent respectively, a is 
a uniformly random number in [-1,1], and r is the radius of neighborhood space 
dynamically compressed  using r=r×cr, where cr=(1+0.1b×c)-t and cr is the compression ratio, 
b and c are random integer between 0 and 9, t is the current generation. 
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Although the neighborhood mutation operator evenly scans the whole neighborhood space 
of individual at the beginning, the exploration becomes localized with the generation 
increasing. In order to overcome this deficiency, the following improvements are made on 
the neighborhood mutation operator. Give a binary number δ , add the following part. 

 
' '

'
'

( , ), 0

( , ), 1
i

new
i i

x t b x if
x

x t x a if

λ δ

λ δ

⎧ + − =⎪= ⎨
− − =⎪⎩

 (13) 

 max( , ) (1 ), (1 / )t r t nγ βλ τ τ γ= − = −  

where r is a random number in [0,1], nmax and β denote total iterative number and random 
number respectively. The added part uniformly explores the whole searching space during 
the execution of the algorithm. Hence, it may overcome the deficiency of the neighborhood 
mutation operator. By integrating the above two parts, not only the abilities of the global 
search and local exploration are balanced, but also the diversity of the population increases. 
As a result, the premature convergence is avoided in a way. The experimental results show 
that the improved mutation operator is very feasible for the known searching space and 
insure '

newx  is a random number in [ai, bi]. 

6. Numerical experiments 
6.1 Linear evolutionary algorithm 
The LEA has a different design from other variants of EAs. It does not use any information 
from the dominated individuals. In each generation, we only preserve nondominated 
individuals. The number of generated children is a fixed constant η . However, we limit the 
number of the nondominated individuals using a nearest neighborhood distance function 
(NNDF) in Ref.[41], which can help disperse the non-dominated individuals. The LEA is 
described as follows: 
Step 1. (Initialization). Generate an initial population containing Npop individuals where 

Npop is the number of individuals in each population. 
Step 2. (Evaluation). Calculate the fitness values of the generated individuals using the 

LFF. Update a tentative set of non-dominated solutions. The number of non-
dominated solutions is und. 

Step 3. (Selection). If und  > umax, select umax individuals using NNDF, then und = umax. 
Step 4. (Crossover and mutation). Generate the η  offspring using crossover based on 

density and modified neighbourhood space mutation. 
Step 5. (Termination test). If a prespecified stopping condition is not satisfied, return to 

step 2. 
In step 3, we control the number of non-dominated individuals so as not to exceed a 
maximum number, umax. Hence the generated offspring are under control. To filter better 
individuals from the tentative set, we evenly distribute the individuals on the Pareto front 
using NNDF. 
Consider the entire complexity of one iteration of the proposed algorithm, the overall 
complexities of the algorithm are focused on evaluation and selection. Assuming the solved 
optimization problems totally have m decision variables, and population size is n. The basic 
operations and their worst-case complexities are as follows: 
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1. Evaluation in step 2 o(2n(n+m)). 
2. Selection in step 3 o(n2). 
The overall complexity of the algorithm is o(2n(n+m)), which is governed by evaluation in 
step2 (including linear mapping for decision variables from n-dimension to 2-dimension 
and updating a tentative set of non-dominated solutions). 

6.2 Simulation results 
Simulations are performed in MATLAB with a 2 GHZ Pentium PC. In our study, five 
numerical constrained optimization problems were divided into two groups (G1 and G2) 
were applied to test the LEA. These benchmark problems are taken from Ref.[37] and [41]. 
G1 only contains inequality constraints in test problems which involving two designing 
variables. G2 contains inequality and equality constraints of single objective optimization 
problems which have no limitation on the number of designing variables. For all conducted 
experiments, four parameters of the LEA, namely, population size (Popt), iterative number 
(NG), Crossover probability (CP) and mutation probability (MP) are set 200, 300, 0.9, 0.05. 
All problems are repeated for 200 in the same environment.  
G1: Test Problem 1 BNH 

2 2 2 2
1 1 2 1 1 2 2 1 2min ( ) ( ( ), ( )); ( ) 4 4 ; ( ) ( 5) ( 5)F x f x f x f x x x f x x x= = + = − + −  

. .s t 2 2 2 2 2
1 1 2 2 1( ) ( 5) 25; ( ) ( 8) ( 3) 7C x x x C x x x= − + ≤ = − + + ≥  

 1 20 5,0 3x x≤ ≤ ≤ ≤ .  

Test problem 2 TNK 

2 1 2 1 1 2 2min ( ) ( ( ), ( )); ( ) ; ( ) ;F x f x f x f x x f x x= = =  

. .s t 2 2
1 1 2 1 2( ) 0.1cos(16arctan( / )) 1 0;C x x x x x= + − − ≥  

        2 2
2 1 2( ) ( 0.5) ( 0.5) 0.5C x x x= − + − ≤ ; 

        1 20 ,0x xπ π≤ ≤ ≤ ≤ . 

Test problem 3 Constr-Er 

3 1 2 1 1 2 2 1min ( ) ( ( ), ( )); ( ) ; ( ) (1 ) / ;F x f x f x f x x f x x x= = = +  

. .s t 1 1 2 2 1 2( ) 9 6 0; ( ) 9 1 0;C x x x C x x x= + − ≥ = − − ≥   

                 1 20.1 1,0 5x x≤ ≤ ≤ ≤ . 

Here, the circular symbols represent the results obtained using NSGA-II or LEA in six 
figures. For case 1, BNH is a two-objective function problem with a convex Pareto front and 
constrained conditions are two inequalities. LEA gives a very good approximation of the 
Pareto front by obtaining evenly distributed solutions, as shown in Fig.5. However, Fig.4 
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shows that although a number of optimal solutions are obtained using NSGA-II, in terms of 
diversity of solutions, these solutions are not evenly spread out over the entire front. There 
exists some disconnected spaces on Pareto front in Fig.4. The Pareto front consists of 

* *
1 2x x= ∈ [0,3], *

1x ∈ [3,5] and *
2x =3. For case 2, constraint conditions are also two 

inequalities’ state. The Pareto front is well predicted, and a number of optimal solutions 
obtained are spread out over the entire front using the LEA in Fig.7. Decision makers make 
a final choice of optimal solution according to real conditions from Pareto optimal set. But 
result of Fig.6 shows that we probably are not able to well predict the three disconnected 
curves. For case 3, it is the two-objective function problem of Constr-Ex with two-
dimensional curve. Fig.9 shows the predicted Pareto front in the two-dimensional objective 
space obtained by the LEA. The method can capture the distinct solution along this front. 
Fig.8 shows that comparative method can performs well elsewhere along the Pareto front. 
We adopt some performance measures described in [42] so as to obtain more quantitative 
measures of algorithm performances. These performance metrics are generational distance 
and the diversity metric. The performance of algorithm is measured both in terms of the 
proximity to the true Pareto front that is achieved as well as in terms of the diversity of the 
optimal solutions. The means and variance of these measures are evaluated by conducting 
20 distinct runs of each simulation. The results are tabulated in table 1. From  table 1, we can 
see that the LEA has better convergence performance than NSGA-II because it is obvious 
that the generational distance metric is larger than the later, and diversity metric is also 
larger using NSGA-II. The LEA is an effective and robust method.  
 

 
Fig. 4. Pareto front on BNH using NSGA-II      Fig. 5. Pareto front on BNH using LEA 

 

 
Fig. 6. Pareto front on TNK using NSGA-II      Fig. 7. Pareto front on TNK using LEA 
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Fig. 8. Pareto front on CE using NSGA-II         Fig. 9. Pareto front on CE using LEA 
 

Generational distance Diversity Test problems 
Mean Variance Mean Variance 

0.0032356 0.0000009 0.4516783 0.00156753 BNH 
0.0026733 0.0000005 0.4356745 0.00107867 
0.0051289 0.0000012 0.2389783 0.00825676 TNK 
0.0050125 0.0000011 0.2337892 0.77867826 
0.0043216 0.0000011 0.3567882 0.00578933 CE 

 

0.0040102 0.0000010 

 

0.3389563 0.00623124 

Table 1. The results of mean and variance on test problems using NSGA-II and LEA 
respectively. 
 

G2: Test Problem 2  TP1 

3 3
1 1 2 2min ( ) 3 0.000001 2 (0.000002 / 3)g x x x x x= + + +  

. .s t  4 3 4 30.55 0, 0.55 0x x x x− + ≥ − + + ≥ ； 

3 4 11000sin( 0.25) 1000sin( 0.25) 894.8 0;x x x− − + − − + − =  

3 3 4 21000sin( 0.25) 1000sin( 0.25) 894.8 0;x x x x− + − − + − =

4 4 31000sin( 0.25) 1000sin( 0.25) 1294.8 0x x x− + − − + =  

0 1200( 1,2)ix i≤ ≤ = ； 055 0.55( 3,4)ix i≤ ≤ = . 

Test Problem 2  TP2 

1 2 3 4 5min ( ) x x x x xg x e=  

. .s t 2 2 2 2 2
1 2 3 4 5 10 0x x x x x+ + + + − = ; 

3 3
2 3 4 5 1 25 0, 1 0x x x x x x− = + + = ; 

2.3 2.3( 1,2)ix i− ≤ ≤ = ； 3.2 3.2( 3,4,5)ix i− ≤ ≤ = . 
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Two test problems in second group contain equality and inequality’s constraints that are 
tested for single objective optimization problems. In many real-world optimization 
problems, optimal solutions of them are obtained by transforming MOP into single objective 
optimization. Thus, the research of single objective optimization is also very improtant in 
engineering application areas. For TP1, we find total optimal solutions for 25, 
(668.94675327911,  1013.10377656821, 0.10773654866, 0.39654576851). Distance of optimal 
solution is 2.3323246783310e-13, which is corresponding to optimal value 5198.5467. For test 
problems 2, we find total optimal solutions for 21, x = ( -1.77365745561,1.45675698761,-
1.5678457772,0.66755656893,-0.75778765788), which is corresponding to the optimal value 
0.055894567. The mean and worst values of solutions are formulated for two test problems 
in Table 2. 
For TP1 and TP2, results of the first row are obtained using LEA, similarly, the second row 
takes a Pareto strength evolutionary algorithm [37] (denoted by ZW). The third row means 
results of a random sorting [43] (denoted by RY). From Table 2, we can see that the LEA 
outperforms other two algorithms in terms of experimental data involving the best value, 
mean and the worst value, as demonstrate the LEA is a robust algorithm with generality 
and effectivity. 
 

Problems Best Mean Worst 
LEA 5126.4266 5126.5461 5126.9586 
ZW 5126.49811 5126.52654 5127.15641 TP1 
RY 5126.497 5128.881 5142.472 
LEA 0.053945563 0.053999775 0.054993677 
ZW 0.053949831 0.053950257 0.053972292 TP2 
RY 0.053957 0.057006 0.216915 

Table 2. Comparison among LEA(new algorithm), ZW(in  Ref.[27]) and RY(in Ref.[33]) (40 
independent run) 

7. Conclusion 
In this paper, we propose an approach of using the LEA to optimize MOP, which finds the 
optimal solutions using the method of transforming the search space with high dimensions 
into low dimensional space. Numerical experiments show that the LEA performed well in 
the problems of two groups in terms of the quality of the solutions found. Moreover, the 
LEA is also a fast and robust method. A future work aims to validate this new optimization 
method on real-life engineering optimiztion problems (e.g. issued from mechanical 
engineering and power systems). 
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1. Introduction

In actual complicated optimization problems, it is often difficult to find a global optimum
solution in admissible computing time. Therefore, in industrial problems, we should
find quasi-optimum solution in admissible computing time. In that case, evolutionary
computations (ECs) are very attractive.
There are several algorithms in the EC family; genetic algorithm (GA), evolutionary strategy
(ES), genetic programming (GP), and so on(4; 5; 10). Genetic algorithm (GA) has been firstly
presented by J.Holland in 1975(5). The GA, which is the algorithm to mimic the natural
evolution, is widely applied to optimization, adaptation and learning problems. The basic
algorithm of the GA is often called as simple genetic algorithm (SGA)(4). Many improved
algorithms are derived from the SGA. The search performance of the SGA can be discussed
from the viewpoints of the early convergence and the evolutionary stagnation(2; 10). The early
convergence means that all individuals are rapidly attracted to a local optimum solution and
therefore, the global optimum solution cannot be found. The evolutionary stagnation means
that the convergence speed becomes slower as the iterative process goes. Once a quasi-optimal
solution is found, it is generally difficult for the SGA to find better ones. For overcoming these
difficulties, Sato et.al. has presented Minimal Generation Gap (MGG)(8). The application of
GA with MGG to several actual problems reveals that the GA with MGG is very effective for
actual optimization problems(6).
Stochastic Schemata Exploiter (SSE) is also classified into the ECs(1). Although the basic
concept of SSE comes from the GA, its algorithm is very different from GA. In GA, the
individuals are generated randomly in order to construct a population. After estimating the
fitness of individuals, parents are selected from the population according to the fitness value.
Offspring are generated from the parents by using genetic operators such as the mutation, the
crossover, and so on. SSE algorithm also starts from the population of randomly generated
individuals. After estimating the fitness of individuals, sub-populations are generated from
the whole population according to semi-order relationship of the sub-populations. Common
schemata are extracted from the sub-populations and offspring are generated from the
common schemata. The SSE has two attractive features. Firstly, the SSE convergence speed is
faster than the SGA because SSE can spread better schemata over the whole population faster
than the GA. Secondly, there are very small number of control parameters which has to be
defined by users in advance. Since the selection and crossover operators are not necessary
in SSE, the control parameters are only population size and mutation rate. However, SSE
sometimes converges to not global optimum solution but local one.
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Fig. 1. Simple genetic algorithm (SGA)

The aim of this study is to improve the search performance of SSE without sacrificing the
convergence speed. For this purpose, we introduce in this chapter Extended Schemata
Exploiter (ESSE) and cross-generational elitist selection SSE (cSSE). In the ESSE, once the
common schemata list is defined from the common schemata which are extracted from the
individuals in the sub-populations, the list is modified by deleting individual schemata,
updating similar schemata and so on. In the cSSE, the cross generational elitist selection(3)
is introduced to the original SSE. In the numerical examples, SSE, ESSE and cSSE are
compared with genetic algorithm (GA) with minimum generation gap (MGG) and Bayesian
Optimization Algorithm (BOA).
The remaining of the chapter is organized as follows. Algorithms of GA, SSE, ESSE, cSSE and
BOA are compared briefly in section 2. In sections 3 and 4, the SSE, ESSE and cSSE algorithms
are described minutely. Numerical examples are shown in section 5. Some conclusions are
summarized again in section 6.

2. Back ground

2.1 Genetic algorithm
Genetic algorithm (GA) was firstly presented by J.Holland in 1975(5). The most fundamental
genetic algorithm is often called as simple genetic algorithm (SGA)(4). SGA is illustrated in
Fig.1.

1. Construct an initial population by individuals with randomly defined chromosomes.
2. Estimate individuals fitness.
3. Select parents from the population according to the roulette selection of the fitness value.
4. Generate two offspring from the parents by one-point crossover operator.
5. Apply mutation operator to all offspring.
6. Go to step 2 unless convergence criterion is satisfied.

SGA has two disadvantages; the early convergence and evolutionary stagnation(2; 10). The
early convergence means that all individuals in the population converge to same local
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Fig. 2. Stochastic schemata exploiter (SSE)

Fig. 3. Example of chromosome and common schema

optimum solutions at early generation and therefore, the global (real) optimum solution
cannot be found. The evolutionary stagnation means that the convergence speed slows down
at final generations. Minimal Generation Gap (MGG) was presented for overcoming these
problems(8). Several numerical results show that the GA with MGG can find better global
solutions although the convergence speed is sacrificed(6). The process of the GA with JMMG
is summarized as follows.

1. Construct an initial population by individuals with randomly defined chromosomes.
2. Select parents from the population randomly.
3. Generate two offspring from the parents by one-point crossover operator.
4. Estimate fitness of two parents and two offspring.
5. Select the best individual among them.
6. Select the other individual than the best one among them randomly.
7. Replace two selected individuals with parents.
8. Go to step 2 unless convergence criterion is satisfied.

2.2 Stochastic schemata exploiter
The SGA search process can be explained according to the schemata theory. The SGA final
goal is to find the set of 0’ and 1’s which represents the optimal solution of the function.

43Genetic Algorithm Based on Schemata Theory



Common set of the individual chromosomes is named as common schemata (Fig3). In the
common schema, the uncommon ‘0’s and ‘1’s for all chromosomes are replace with ‘*’s. As the
SGA search process goes, common schemata of the better individuals develops to the binary
representation of an optimal solution. If the developing speed of the common schemata can
be accelerated, the SGA search performance must be improved well. This is the basic concept
of Stochastic Schemata Exploiter (SSE).
The algorithm of SSE is illustrated in Fig.2.
1. Construct an initial population by individuals with randomly defined chromosomes.
2. Estimate individual fitness.
3. Rank individuals according to the descending order of their fitness.
4. Generate sub-populations according to individual rank.
5. Extract common schemata from the individuals in each sub-population.
6. Generate offspring from the extracted schemata.
7. Go to step 2 unless convergence criterion is satisfied.
While SGA generates offspring from parents (individuals), SSE generates from the common
schemata extracted from better individuals. Therefore, SSE can accelerate the developing
speed of the better common schemata.
The SSE algorithm is described minutely in section 3.

2.3 Extended stochastic schemata exploiter
SSE extracts the common schemata from better individuals. The extracted common schemata
are very often identical or very similar schemata. If the identical or very similar common
schemata are deleted from the common schemata list, a wider variety of individuals can be
generated from the list. This is the basic idea of the extended stochastic schemata exploiter
(ESSE).
When two schemata are selected from the list, their similarities are classified as follows:
• Case 1: two schemata are identical,
• Case 2: one schema is included into the other one,
• Case 3: they are partially identical, and
• Case 4: they are different.
ESSE operations 1,2 and 3 are defined for the case 1, 2 and 3, respectively.
The ESSE algorithm is composed of the original SSE algorithm and one or more of the above
ESSE operations. The ESSE algorithm is illustrated in Fig.4. The different process against SSE
is to update the common schemata list by applying the ESSE operations.
The ESSE algorithm is described minutely in section 4.1.

2.4 Cross generational elitist selection SSE
ESSE updates the common schemata list by deleting the identical or similar common schemata
from the list in order to improve the search performance. The computational cost for updating
the list, however, is relatively expensive.
The aim of cross generational elitist selection SSE (cSSE) is to reduce the computational cost
without sacrificing the ESSE search performance. For the purpose, instead of update of the
common schemata list in ESSE, the cSSE adopts cross-generational elitist selection(3) and
exclusion of identical individuals from a population.
The cSSE algorithm is illustrated in Fig.5. The different process against ESSE is to select better
individuals alone from the large population composed of all parents and all offspring in order
to define a new population.
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Fig. 4. Extended stochastic schemata exploiter (ESSE)

The cSSE algorithm is described minutely in section 4.2.

2.5 Bayesian optimization algorithm
Estimation of Distribution Algorithm (EDA) is also one of evolutionary computations. The
EDA searches a solution according to stochastic model learned from the information of the
better solutions in the population. Since offspring are generated from the stochastic model,
the selection, the crossover, and the mutation operations are not necessary in EDA.
Bayesian Optimization Algorithm (BOA), which is one of the EDA, was presented by Pelikan
et. al.(7). In BOA, the Bayesian network plays as the stochastic model of EDA. The
convergence speed of BOA is much faster than that of SGA. In this study, BOA is adopted
for confirming the convergence speed of SSE, ESSE and cSSE.

3. Stochastic schemata exploiter

3.1 SSE algorithm
We would like to explain again the process of the stochastic schemata exploiter (SSE).

1. Construct an initial population with randomly generating M individuals.
2. Estimate individual fitness
3. Rank individuals according to the descending order of their fitness.
4. Define M sub-populations according to individual rank.
5. Extract common schemata from individuals in M sub-populations.
6. Generate M offspring from the extracted schemata.
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Fig. 5. Cross generational elitist selection stochastic schemata exploiter (cSSE)

7. Go to step 2 unless convergence criterion is satisfied.

The particular processes in the SSE are defining sub-populations, extracting common
schemata, and generating new individuals. So, we would like to explain them in the
followings.

3.2 Defining sub-populations
The sub-populations are generated according to the semi-order relation between the
sub-populations. In the followings, we will explain the semi-order relation and then, how
to define sub-populations.

3.2.1 Semi-order relation
The population P is composed of the individuals c1, c2, · · · and cM, which are numbered
according to the descending order of their fitness function. Therefore, the individual
ck denotes the k−th best individuals in the population P. The symbol S denotes the
sub-population of the population P. When the individual ck is excluded from S, a new
population is represented as S − ck. The operator ∪ denotes the union of sets.
When the worst individual in the sub-population S is numbered as L(S), the following
semi-order relation is held in the sub-populations of the population P.

46 Evolutionary Algorithms



1. Since the individual c(L(S)) is the worst one in the sub-population S, the individual
c(L(S)+1) is worse by one order than the individual c(L(S)). When the individual c(L(S)+1)
is added to a sub-population S, the new sub-population is defined as S ∪ c(L(S)+1). A first
semi-order relation is given as

f (S) ≥ f (S ∪ c(L(S)+1)) (1)

where f (S) denotes the average fitness of the individuals in the sub-population S.

2. When the individual c(L(S)) is replaced with the individual c(L(S)+1), the new population
is defined as (S − cL(S)) ∪ c(L(S)+1). A second semi-order relation is given as

f (S) ≥ f ((S − cL(S)) ∪ c(L(S)+1)) (2)

3.2.2 Sub-population
The use of semi-order relation gives the following order of sub-populations.
Since it is obvious that the best sub-population is composed of the best individual c1 alone,
we have a first sub-population

S1 = {c1}.

When adding the individual c2 to the sub-population S1 = {c1} according to the semi-order
relation (1), we have a second sub-population

S2 = {c1, c2}.

When replacing the individual c1 in the sub-population S1 with the individual c2 according to
the semi-order relation (2), we have a third sub-population

S3 = {c2}.

When adding the individual c3 to the sub-population S2 = {c1, c2} according to the
semi-order relation (1), we have a fourth sub-population

S4 = {c1, c2, c3}
When replacing the individual c2 in the sub-population S2 with the individual c3 according to
the semi-order relation (2), we have

S4 = {c1, c3}.

We can define the other sub-populations in the similar way.

3.3 Extracting common schemata
After defining the sub-populations, the common schemata are extracted as the common set of
the chromosome of the individuals in the sub-populations (Fig.3).

3.4 Generating new individuals
The extracted schemata are composed of three characters; “0”, “1”, and “∗”. So, the new
individuals are defined by randomly replacing “∗” by “0” or “1” (Fig.3).
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4. Extended SSE and cross generational elitist selection SSE

4.1 Extended SSE (ESSE)
4.1.1 Algorithm
The ESSE algorithm is illustrated in Fig.4 and summarized as follows.

1. Construct an initial population by individuals with randomly defined chromosomes.
2. Estimate individual fitness.
3. Rank individuals according to the descending order of their fitness.
4. Generate sub-populations according to individual rank.
5. Extract common schemata from the individuals in sub-populations and register them to

the common schemata list.
6. Update the common schemata list by applying the ESSE operations.
7. Generate offspring from the extracted schemata.
8. Go to step 2 unless convergence criterion is satisfied.

4.1.2 ESSE operations
The SSE algorithm often generates identical or very similar schemata from different
sub-populations. Extended Stochastic Schemata Exploiter (ESSE) updates the common
schemata list by applying the ESSE operations.
When the schema A is extracted from the sub-population SA, the fitness of the schema A is
defined as the average fitness of all individuals in the sub-population SA, which is referred to
as f (SA).
The following operations are applied for two schemata A and B.

4.1.2.1 ESSE Operation 1

If the schemata A and B are identical, the following processes are performed.

1. A is kept and B is deleted from the schemata list.
2. A common schema is extracted from SA ∪ SB.

4.1.2.2 ESSE Operation 2

If the schema A is included into the schema B, it is considered that the schema B is grown up
from the schema A. In this case, the following process is performed.

1. If f (SA) > f (SB), A is kept and the common schema is extracted from SA ∪ SB.
2. If f (SA) ≤ f (SB), B is kept and the common schema is extracted from SA ∪ SB.

4.1.2.3 ESSE Operation 3

If the schema A and B are partially identical, the following processes are performed.

1. If f (SA) > f (SB), A is kept. If not so, B is kept.
2. A common schema is extracted from SA ∪ SB.

4.1.3 ESSE family
The ESSE is composed of the original SSE and one or more ESSE operations. So, we can define
the seven ESSE algorithms according to the selection of ESSE operations. They are named as
c1, c2, · · · and c7.

c1: Original SSE with ESSE operation 1.
c2: Original SSE with ESSE operations 1 and 2.
c3: Original SSE with ESSE operation 2.
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c4: Original SSE with ESSE operations 2 and 3.
c5: Original SSE with ESSE operation 3.
c6: Original SSE with ESSE operations 1 and 3.
c7: Original SSE with ESSE operations 1, 2 and 3.

4.2 Cross generational elitist selection SSE (cSSE)
4.2.1 Cross generational elitist selection
The cross generational elitist selection was presented by Eshelman(3). Algorithm of cross
generational elitist selection is summarized as follows.
1. At generation t − 1, offspring are generated from individuals in the population.
2. Populations of parents and offspring are referred to as P(t − 1) and O(t − 1), respectively.
3. P(t − 1) and O(t − 1) are merged to new population P′(t − 1). When the sizes of P(t − 1)

and O(t − 1) are M, the size of P′(t − 1) is 2M.
4. Individuals in P′(t − 1) are ranked according to their fitness.
5. The population P(t) is generated by selecting M best individuals from P′(t − 1).
The original algorithm of cross-generational elitist selection allow multiple identical
individuals to exist in a population. However, the algorithm of cross generational elitist
selection in cSSE is modified so that identical individuals are deleted from the population.

4.2.2 Algorithm
The cSSE algorithm is illustrated in Fig.5 and summarized as follows.
1. Construct an initial population by individuals with M randomly defined chromosomes.
2. Estimate individual fitness.
3. Rank M individuals according to the descending order of their fitness.
4. Generate M sub-populations according to individual ranks.
5. Extract common schemata from the individuals in M sub-populations.
6. Generate M offspring from M extracted schemata.
7. Delete identical individuals from 2M individuals in the population composed of M parents

and M offspring.
8. Select M better individuals from the remaining individuals to define new population.
9. Go to step 2 unless convergence criterion is satisfied.
In the above process, the steps 7 and 8 correspond to the cross generational elitist selection.

5. Numerical example

5.1 Test Problems
We would like to compare the algorithm performance in deception and knapsack problems(9).

5.1.1 Deception problem
The deception problem is defined as the summation of the 4-bit deception problems(9). The
4-bit deception problem is shown in Table 1. The objective function and the design variable of
the problem is defined as

fdeception =
n

∑
i=1

fd(xi) (3)

xi ∈ 0000, 0001, · · · , 1111

where n denotes the number of 4-bit deception problem and n = 10.
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fd(1111) = 30 fd(0000) = 28 fd(0001) = 26 fd(0010) = 24
fd(0100) = 22 fd(1000) = 20 fd(0011) = 18 fd(0101) = 16
fd(0110) = 14 fd(1001) = 12 fd(1010) = 10 fd(1100) = 8
fd(1110) = 6 fd(1101) = 4 fd(1011) = 2 fd(0111) = 0

Table 1. Part solutions of deceptive problem

Ni 10 50 100
c1 298.24 300.00 300.00
c2 298.92 300.00 300.00
c3 297.32 300.00 300.00
c4 297.84 299.56 299.12
c5 298.12 300.00 300.00
c6 297.64 300.00 300.00
c7 291.40 290.52 290.80

Table 2. Final solutions on deception problem

Ni 10 50 100
c1 16107.1 16150.2 16153.5
c2 16094.2 16149.5 16154.0
c3 16066.3 16135.7 16134.3
c4 16074.4 16121.3 16128.5
c5 16090.9 16142.9 16147.7
c6 16103.5 16148.1 16153.7
c7 15738.6 15644.9 15663.4

Table 3. Final solutions on knapsack problem

5.1.2 Knapsack problem
When there are n bag gages in a knapsack, the knapsack problem is defined as the
maximization of the value of the knapsack without exceeding the weight limit b. The problem
is defined as

max
{xi}

n

∑
i=1

cixi

subject to
n

∑
i=1

aixi ≤ b (4)

xi ∈ 0, 1 (i = 1, · · · , n)

where the weight and the value of the bag i are referred to as ai and ci, respectively, which are
randomly taken within 1 ≤ ai, ci ≤ 100. Besides, b = 10000 and n = 400.

5.2 ESSE performance evaluation
A two-point crossover is adopted for the SGA and GA with MGG. The crossover rate is 1
(100%). A maximum number of the generation is 40,000 in the deception problem and 10,000
in the knapsack problem. The population size is ni = 10, 50 or 100. Fifty simulations are
performed for each problem from the different initial populations. Their average values are
shown in figures.
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5.2.1 Comparison of ESSE family
We notice from Tables 2 and 3 that the ESSE-c1, c2 and c6 have the better search performance
than the others. The results show that ESSE operation 1 is effective because ESSE-c1, c2 and
c6 have the ESSE operation 1. When focusing the ESSE-c2 which has ESSE operation 1 and 2,
we notice that it has good search performance at the deception problem with ni = 10 and the
knapsack problem with ni = 100. Therefore, the effectiveness of the ESSE operations 2 and 3
may depend on the problem to be solved.

5.2.2 Comparison of ESSE, SSE, SGA, and GA with MGG
The results in the previous section show that the ESSE-c1 is the best among the ESSE family.
The ESSE-c1 is compared with SGA, GA with MGG and SSE.

5.2.2.1 Deception problem

Convergence history of the best individual fitness is shown in Fig.6. The figure is plotted
with the generation as a horizontal axis and the best individual fitness as a vertical axis,
respectively. Numbers following to the algorithm name, in the figures, denote the population
size ni. The population size is determined from numerical experiments as the best value for
each algorithm. We notice from figure 6 that the convergence speed of SSE and ESSE-c1 are
faster than SGA and GA with MGG and specially, that the ESSE-c1 is the fastest among them.
The ESSE-c1 is compared with the SSE in the different population sizes. Convergence history
of the average value of the best individuals at every iterations is shown in Fig.7. In case of the
large population size (50 and 100 individuals), the convergence speed of the c1 is faster than
the SSE.

5.2.2.2 Knapsack problem

Convergence history of the best individual fitness is shown in Fig.8. Figure is plotted with the
generation as a horizontal axis and the best individual fitness as a vertical axis, respectively.
We notice the similar results as the deception problem from the figures; i.e., the convergence
speed of SSE and ESSE-c1 is faster than the others.
The ESSE-c1 is compared with the SSE in the different population sizes. Convergence history
of the best individual fitness is shown in Fig.9. In all population sizes, the ESSE-c1 shows
faster convergence speed than the SSE. Specially, the ESSE-c1 with 50 individuals can find
slightly better solution than the SSE with 100 individuals.

5.3 cSSE Performance evaluation
We would like to compare cSSE with GA with MGG, BOA and SSE.
In GA with MGG, two-point crossover of crossover rate = 1 is employed and all individuals
are replaced at every generations. In all algorithms, the best mutation rates are determined
from numerical experiments.
Maximum generation is 40,000 for deception problem and 15,000 for knapsack problem,
respectively. Population size is specified as Ni = 10, 50, 100 or 250 for GA with MGG, SSE and
cSSE and ni = 20, 100, 200 or 500 for BOA, respectively. Since BOA replaces half population
size at every generations, computational cost of fitness function is half as much as the other
algorithms. For equalizing the computational cost of all algorithms, the population size of
BOA is twice as many as the other algorithms. Simulations are performed 50 times from
different initial populations. The average values of the best individual fitness are shown.
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Fig. 6. Comparison of SGA, GA with MGG, SSE and ESSE-c1 in deception problem
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Fig. 7. Comparison of SSE and ESSE-c1 in deception problem

Ni (Ni for BOA) GA(MGG) BOA SSE cSSE
10 (20) 571.2 533.4 570.0 573.0

50 (100) 574.9 560.4 575.2 588.3
100 (200) 576.1 560.0 586.9 594.6
250 (500) 575.8 560.0 590.7 597.1

Table 4. Average values of final solutions (Deception problem)

52 Evolutionary Algorithms



 15800

 15850

 15900

 15950

 16000

 16050

 16100

 16150

 16200

 0  2000  4000  6000  8000  10000

A
ve

ra
ge

 v
al

ue
 o

f f
in

al
 s

ol
ut

io
ns

Generation

SGA 100 MGG 100 SSE 100 c1 100

Fig. 8. Comparison of SGA, GA with MGG, SSE and ESSE-c1 in knapsack problem

 15800

 15850

 15900

 15950

 16000

 16050

 16100

 16150

 16200

 0  2000  4000  6000  8000  10000

A
ve

ra
ge

 v
al

ue
 o

f f
in

al
 s

ol
ut

io
ns

Generation

SSE 10
c1 10

SSE 50
c1 50

SSE 100
c1 100

Fig. 9. Comparison of SSE and ESSE-c1 in knapsack problem

5.3.1 Deception problem
Convergence history of the best individual fitness is shown in Fig.10. Figure is plotted with
the generation as the horizontal axis and the fitness value as the vertical axis, respectively.
Table 2 shows the best individual fitness at final generation.
We notice from Table 4 that the final cSSE solution is the best among them for all cases of
population size. Figure 10 illustrates that the cSSE is the fastest among them. Although BOA
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Fig. 11. Comparison of GA with MGG, BOA, SSE and cSSE in knapsack problem

has very fast convergence speed, it may be attracted to a local optimum solution because the
final BOA solution is worse than the other.

5.3.2 Knapsack problem
Convergence history of the best individual fitness is shown in Fig.11. We notice that the
BOA outperforms the SSE and the cSSE and that the BOA is the best among them from the
view-point of both the computational time and the search performance. Remember that the
convergence speed of the BOA is generally faster than the GA, SSE and cSSE. Therefore, the
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Ni (Ni for BOA) GA(MGG) BOA SSE cSSE
10 (20) 16060.7 12754.9 16104.4 16141.0

50 (100) 16141.9 15829.3 16142.8 16154.1
100 (200) 16153.8 16111.9 16148.3 16154.8
250 (500) 16155.0 16153.9 16149.5 16155.0

Table 5. Average values of final solutions (Knapsack problem)

above results may denote that the solution space of the Knapsack problem is relatively simple
and that there is only one optimal solution in the space. Table 5 shows the fitness value of the
best solution at the final generation.
We notice from Table 5 that the final cSSE solution is the best among them. Note that the final
cSSE solution at Ni = 50 is better than GA solution at Ni = 100, BOA solution at Ni = 500,
and SSE at Ni = 250. Figure 11 illustrates that the convergence speed of MGG is the slowest
among them.

6. Conclusions

In this chapter, we described stochastic schemata exploiter (SSE) and its improved algorithms
such as Extended SSE (ESSE) and cross-generational elitist selection SSE (cSSE).
First, we compared seven ESSE algorithms in test problems. The ESSE-c1 algorithm, which
was composed of SSE and ESSE operation 1, showed better search performance than the other
ESSE algorithms in the test problems. We compared the ESSE-c1 with SGA, GA with MGG
and SSE. The convergence speed of SSE and ESSE-c1 is faster than the others. In some cases,
the speed of the ESSE-c1 is faster than the original SSE.
Next, we compared the cSSE with the other algorithms. From the view point of search
performance, we notice that cSSE can find slightly or much better solution than the others
in all examples. In comparing the convergence speed of algorithms, we notice that the cSSE
as well as BOA is fastest among them.
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1. Introduction

Some techniques are applied to the optimization problems. However, a few achieve
satisfactory performance when the problem is complex, for example, multimodal or
multiobjective. The Mathematical Programming algorithms which use the gradient as a search
guide have difficulty and do not often reach the optimum in multimodal problems. The
metaheuristics, on the other hand, don’t ensure the global optimum but they have good results
and, therefore, are quite used in these scenarios.
Metaheuristics could be classified by the number of potential solutions that are used:
solution-based metaheuristics, such as Hill-Climbing, Simulated Annealing and Tabu
search; population-based metaheuristics, such as the Evolutionary Algorithms; or hybrids
metaheuristics. The population-based algorithms start the search with several points in the
search space and, through the interactions of among points, try to find a new point with the
highest value of the objective function. This strategy, therefore, explores the search space
in several places simultaneously (Oriented Exploration). The solution-based algorithms are
based on a single point to exploit the search space (Oriented Exploitation). They often
use techniques to escape from the local optimum. The hybrid strategy tries to join the
intensification and diversification to improve both quality of computed solutions and the
robustness of solvers. All strategies show good results depending on the approached problem.
As an example of metaheuristic, we can cite: Simulated Anneling, Tabu Search, Grasp,
VND, VNS and Ant Colony. Among them, Evolutionary Algorithms, especially the Genetic
Algorithms, show excellent results and thus they are one of the most popular among
researchers.
Genetic algorithms are optimization methods inspired by the mechanisms of alive beings’
evolution Goldberg (1989). The algorithms based on this technique follow the principle of
natural selection and survival of the fittest (Charles Darwin).
One of the genetic algorithm advantages is the simplification in the formulation and solution
of optimization problems. Simple GAs usually work with coded descriptions formed by bits
strings of fixed size. Other types of GAs can work with bits strings of variable size, e.g. GAs
used for Genetic Programming FERREIRA (2001a;b); RODRIGUES (2003).
The GA is indicated for the solution of complex optimization problems, such as the real
problems, that involve a large number of variables and, consequently, high dimensional
search spaces. Moreover, in many cases where other optimization strategies fail in finding
a solution, GAs are good options. However, in some cases, the performance is not satisfactory
GEN & CHENG (1997); MICHALEWICZ (1996). Therefore, some works are developed with
the aim to improve the performance CHAINATE & PONGCHAROEN (2007); MUSIL et al.
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(1999); PARK et al. (2000); RAJAN et al. (2002); RONG-LONG & KOZO (2005); RUTTKAY
et al. (1995); WU et al. (2004); YANG & DOUGLAS (1998); YEN et al. (1998). Some works focus
in the convergence speed, though, most analyzes the efficacy. The preservation of genetic
diversity to avoid premature convergence is a frequently researched topic MAHFOUD (1992;
1995); SHIMODAIRA (2002); TACKETT & CARMI (1994).
Thus, in this paper we propose the In Vitro Fertilization Module (IVFm), to assist the GAs
evolution, avoiding the loss of information during evolution. The IVFm is an assistant
algorithm that runs in a parallel flow of GA’s flow and that recombines chromosomes in order
to do the information mining with individuals, which are proceeding from the populations
created by GAs or generated by the IVFm operators.
To test the efficacy, defined here as the capacity to reach the global optimum, and the
efficiency, defined as the capacity to accelerate the GA evolution, we opted for a benchmark
minimization problem that is multimodal with several local optimum. This problem was used
to establish the test scenarios.
The results from these three experiments show that the IVFm, especially with the operator
EAR-N, has excellent performance and contributes substantially to quick convergence of GA
to the global optimum.
The chapter will be organized as follows. One section about canonical GA. One section about
the IVFm and operators are described. One section about the premature convergence. One
section about the experimental results. Finally, the conclusion and suggestions future works.

2. IVFm: In Vitro Fertilization module

The GAs evolutionary process is composed by a cyclical flow, in which each iteration creates
a new generation. For each new generation, individuals are generated and introduced into
the population to replace some of the existing ones, which are discarded. However, many of
these eliminated individuals contain genes with information that is important for the search.
Nevertheless, they do not even go through the reproduction process before being discarded.
In other words, they were generated and eliminated and did not contribute to the evolution.
Therefore, we can say that in every iteration some information is lost, discarded without
analysis.
Although this process mimics the evolution of species, in which an individual could be born
and die without generating progeny, it is well-known that there is some loss of information.
The information lost may assume two possibilities. It might not go back to the population,
causing in some cases a reduction in efficacy and characterizing the loss of opportunity, or it
might return by mutation process with low probability. On last case, the efficiency is lower
because is needed much time until that information returns and is processed. Therefore,
we propose the In Vitro Fertilization Module (IVFm) that recombines the chromosomes from
population of GA and new individuals to better exploit the information presented.
Assisted Reproduction is a set of techniques of reproduction where the generation of a life is
manipulated and assisted by experts in order to ensure the success of the process. In Vitro
Fertilization (IVF) is one of Assisted Reproduction technique that collects egg cells from the
ovary of the mother and fertilizes them with prepared sperm from the father, forming the
pre-embryos. After manipulation, two pre-embryos are selected and transferred to the mother.
The first human baby generated by IVF born in 1978. From 1978 until today, many people have
been generated by the IVF.
Analogous to IVF the IVFm assesses various combinations and selects the individual
according its quality. IVFm is an algorithm executed in a parallel flow, which receives as input
a portion of the GA population and as output it returns an individual, which may be better
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Fig. 1. GA with the IVFm

than the best current (Figure 1). Thus, the IVFm could supply the GA of good individuals,
improving and accelerating the GA evolutionary process.
The ideal way to absorb all the information in individuals would be to recombine them
gene-gene, until you find the best combination, which would be computationally unfeasible,
especially for larger chromosomes. Therefore, we opted to generate children from the
recombination of chromosome parts of some individuals with the best one (section 2.4). If the
process generates a better individual, this replaces the current best. Otherwise, if the operator
does not produce a better individual, there is no interference in the population.
There are two groups of operators for IVFm until this moment. The first one with operators
that use as genetic material only the population generated by GA and the second one with
operators that alter chromosomes that will be recombined. The second group strategy is to
improve the IVFm’s population with information that may be beneficial for the recombination
process. The operator AR (Assisted Recombination) is a member of the first group and the
operators EAR-T, EAR-P and EAR-N are members of the second group.
The IVFm is detailed in the following sections. Section 2.1 describes the execution flow, section
2.2 describes the division of genetic material, section 2.3 shows the operators and section 2.4
describes the process of recombination.

2.1 The IVFm execution flow
At the beginning of the GA execution, the division of the genetic material is defined (section
2.2) as well as the number of individuals that will be used by IVFm (NuIndiv). This
configuration is only done in the beginning of the execution of the algorithm.
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Fig. 2. Two groups selected as the genetic material to exchange

After receiving the current population of GA, each IVFm generation executes the following
tasks:

1. Find the fittest individual and label it as Father;

2. Receive as input the following parameters: the N GA individuals (NuIndiv), which are
handled in the recombination process;

3. On the EAR strategy, from N selected individuals, the half (N / 2) changes the
chromosomes, forming N’. On the AR strategy N’ = N;

4. The fittest (father) and the N’ individuals are recombined. As there is only one father for
each recombination process, the generated children are siblings;

5. If IVFm generates good individuals, they are inserted in the new population, replacing
elected individuals, chosen by the elitism process. Without elitism, individuals replace
any others aleatorily.

Task 5 above, explains the interference form of IVFm in the population, generated by GA. The
interference only happens when good individuals, better than the best available previously,
are generated by the proposed algorithm.

2.2 Division of Genetic Material
Before the recombination (exchange of genetic material) the chromosome is divided into
groups of genes or gene to gene. This is called the Genetic Material Division to be exchanged.
This is an important step of the algorithm, because we believe that knowledge of the problem
helps the designer to choose the best way to divide the chromosome, and so, help the
algorithm to solve the problem.
One option is to divide the chromosome according to the coded variables, e.g. if the first
3 genes represent the variable x and the past 2 the y, then the chromosome is divided
into two groups, the first one containing 3 genes and the other one 2 (Figure 2). Thus, in
recombination process the exchanges are among the variable values (decoded values) and
not among encoded values. Therefore, this process provides the designer with a tool for
knowledge transferring.

2.3 IVFm’s operators
Four independent operators are proposed for the IVFm as strategies to help the GA to explore
the search space. The AR recombines the chromosomes of the current unchanged population.
On the EAR-T, all the genes of some chromosomes suffer mutation before recombination
process. On the EAR-P, one group of genes, formed by Genetic Material Division, suffer
mutation before recombination and EAR-N generates new individuals to participate in the
recombination process. All EAR operators (section 2.3.2) produce some kind of change in
population before the recombination, while the AR operator (section 2.3.1) uses the current
population without changes as genetic material. The operators are independent and the
combined use of these has not been tested yet.
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2.3.1 Assisted Recombination operator
Because of the low utilization by the GA of genetic material, we propose the Assisted
Recombination (AR) - an operator of the IVFm prepared to better exploit the genetic
information in chromosomes of the population generated by the GA. It is hoped, therefore,
that the operator contributes to genetic improvement.
The operator is composed of a single phase, called recombination (see details in section 2.4).
In this phase, the operator receives part of the GA population and, without making changes
to parents, produces children who are analyzed. If the operator finds better individual, this
replaces the current best. If the operator does not produce better individuals, there is no
interference in the population.
One of the principal AR features is the capability of assisting the recombinations and finding
individuals with good fitness, sometimes better than the fittest.

2.3.2 Exploratory Assisted Recombination operators
The Exploratory Assisted Recombination (EAR) operators are based on Assisted
Recombination and, therefore, have similarities. For instances, they use the N individuals of
the GA population in the improvement process, they have capacity to guide the recombination
and they have capacity to identify better individuals than the best current.
Like the Assisted Recombination, the aim of the EAR operators is to better exploit the
information produced by GA. The difference of this new class of operators is the ability to
make global search through the added exploratory characteristic.
The EAR operators have two phases. The first one, called search space exploration,
changes some chromosomes received from the GA and the second one that recombines the
chromosomes. These phases are the same to all operators of IVFm (section 2.4).
During the first phase (exploration of search space), the population of N selected individuals
is divided in half (N/2) and the individuals of last portion are totally (EAR-T) or partially
(EAR-P) changed.
The operator EAR-P applies mutation to the raffled part of the chromosome, divided by the
genetic material division. The operator EAR-T applies mutation to all the chromosomes and
the EAR-N operator randomly generates new N/2 individuals. After the modifications, the
changed individuals replace the N / 2 of the population.
Figure 3 describes the process from the choice of N / 2 individuals until the new changed
population (N ’), which will be used during the recombination (section 2.4). Is established for
this example the division of the genetic material into two parts. The first, with 3 genes and the
second with 2 genes. The number of individuals from the GA is 12 (qtdIndv), so the last 6 (N
/ 2) are changed.

2.4 The recombination
After establishing the groups of genes (division of genetic material) and the population N’,
the next step is recombination. In this phase, the chromosome is represented by a vector and
every element of this is a group of genes, defined by the division of genetic material. This
process is similar to the one applied in the Jung’s paper Jung (2003).
Analyzing the population N’, the best individual is reserved as father and the others as
mothers, being the number of mothers limited by the parameter NuIndiv. To create a son,
the mother gives an element of its vector and the father supplements the son’s chromosome
with the other elements of its own vector. This process repeats for all mothers, generating a
group of offspring. Other groups are generated by the exchange of the element donated by the
mother and the father’s chromosome complement, thus, the number of groups of offspring is
equal to the number of elements of the father’s vector.
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Fig. 3. EAR’s exploration process

After the generation of all groups of offspring, the best child is considered the best Super
Individual and it is compared to the father. If better, the son replaces the father in the IVFm’s
population and the recombination process restarts. If not, the algorithm interrupts the loop
and inserts the current father in the GA population.
As an example of a recombination iteration, Figure 4 shows:

• The divided chromosome (division of genetic material) into two parts. Group 1 with 3
genes and group 2 with 2 genes;

• Three mothers established by the parameter NuIndiv = 3, in which the mothers are the
three individuals after the father;

• The first group of offspring generated by the donation of the first element of the mother
vector and a complement of the father’s. For example, the second child from the “Sons of
Group 1” (01110) is the result of the union of the first element of the second mother (011)
and of the father’s complement, i.e. second element of the father vector (10);

• The second group of offspring. In this group, the mother donates the second vector
element and the father completes it with its first vector element. For example, the third
child from the “Sons of Group 2” (00100) is the result of the union of the second element
of the third mother (00) and of the father’s complement, i.e. first element of the father’s
vector (001). In this case, contrary to the “Sons of Group 1”, the child is formed by the
father’s first part and the mother’s second part;

• The best individual from the group of offspring is considered the super individual of the
group. The best among the super individuals is compared to the father. If it is better than
the father, the best super individual replaces the father in the next iteration. If not, the
algorithm interrupts the loop and returns the current father.

3. The premature convergence

One of the main features of the IVFm is the ability to better exploit the information present
in the population (information mining), generating good individuals who can improve and
accelerate the genetic evolution.
However, when we try to accelerate the GA’s genetic evolution a problem arise, the premature
convergence Goldberg (1989); SULTAN et al. (2007), defined as a fast loss of genetic diversity
in the population that harms the final solution. Despite being considered a problem when
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Fig. 4. Example of recombination process

the convergence is to a local optimum, the fast convergence is desirable if it is to the global
optimum.
The discussion about premature convergence goes through other concepts such as
exploration, global exploration of search space, and exploitation, local exploitation of the
search space EIBEN & SCHIPPERS (1998); Spears (1992). Thus, we can define premature
convergence as little exploration and premature exploitation. Usually, the algorithms that
use both strategies apply the global search at the beginning to identify promising regions, and
local search later to find the best solution in the good regions.
The GA is an algorithm which begins its execution focusing on exploration strategy, when
their genetic diversity is high, and at a certain time it focuses in the exploitation, when a
representative portion of individuals have similarities.
To avoid premature convergence to local optimum, it is important to make a good exploration.
In the Canonical GA’s case, the exploration is done by mutation, with a low probability, and by
the recombination of solutions generated by the beginning of the evolutionary process, when
the population usually has high genetic diversity. However, this process is slow, considering
that several generations are needed to prioritize one of the promising regions.
Allowing the GA to have a better use of its individuals (information mining), we believed that
the genetic evolution can be improved without increasing the probability of the premature
convergence.

4. Experiments

To test the performance of the proposed algorithm (IVFm) and its operators, we chose a
benchmark multimodal problem. The Rastrigin’s function (Equation 1) is widely used and
one of the hardest benchmark because of multimodality and its behavior with many peaks
and valleys, featuring several local optimum. Figure 5 shows the function.
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Fig. 5. Bidimensional Rastrigin function with A=10 and A=50

f (x) = nA+
n

∑
i=1

(x2
i − A cos(2πxi)); ∀i ∈ [1..n], xi ∈ [−5.12, 5.12] (1)

Given the function, the objective is to minimize yet still respecting the restrictions: −5.12 ≤
Xi ≤ 5.12 and values with four decimal places. Considering the restrictions, the minimum
point of the function is reached when Xi = 0. At this point the solution is global optimum,
generating a f (Xi) = 0.
This work presents 3 experiments. In the first experiment, the objective is to examine the
efficacy of the IVFm to minimize (Scenario 1.1) and its behavior when the parameter A is
changed (Scenario 1.2). In the second one, the aim is to analyze the behavior of IVFm when
the number of individuals is changed (genetic diversity) in the population. Hence, scenario 2.1
was created with 50 individuals; scenario 2.2 with 10 individuals, and 2.3 with 5 individuals.
In the third experiment, the impact of the dimensions increase (variable) is analyzed in IVFm.
Scenario 3.1 runs with 2 variables, and scenario 3.2 with 10 variables.
Table 1 shows the configurations of the experiments 1, 2 and 3. For better visualization, some
acronyms were used. Like MP for mutation probability, CP for crossover probability, NuG
for number of genes, GO for global optimum, DGM for division of genetic material, SC for
stopping criterion, G for generations and NuIndiv for number of IVFm’s individuals. The CP
is 0.65 and MP is 0.01 for all experiments.

4.1 Experimental results
The experiments aim to measure the efficiency - the capacity to accelerate the GA’s evolution
- and efficacy - the capacity to reach the global optimum. In this work, the efficiency is
measured by the average of NG and efficacy is analyzed by NGO%, success rate.
Figures 6, 7 and 8 show, respectively, the results of experiments 1, 2 and 3 of algorithms GA,
IVFm/AR (AR), IVFm/EAR-P (EAR-P), IVFm/EAR-T (EAR-T) and IVFm/EAR-N (EAR-N).

4.2 Analysis of results
Analyzing the results of scenario 1.1, Table 4 and Figure 7, about the efficacy, we can identify
a great performance of the IVFm and its operators because all operators reached the global
optimum on all the 20 executions. On the other hand, the GA without the aid of the IVFm
did not obtain good results, the canonical GA reached the global optimum on only 4 of the
20 executions (20%). On Scenario 1.2 the function parameter A was increased, characterizing
deepest valleys. Nevertheless, the IVFm and its operators continued with excellent results,
100% of efficacy. Already the GA presents on average performance with 50% of efficiency.
Analyzing the efficiency on experiment 1 - scenario 1.1, the EAR-N has the best result,
followed by EAR-T, EAR-P and AR. Scenario 1.2 identifies a small efficiency loss of the IVFm.
The GA without IVFm presents a lower efficiency, even if considering only the average of
executions on which the global optimum was reached.
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Experiment 1
Scenario GA IVFm Function

1.1 Pop NuG SC DGM NuIndiv Variables A
50 34 GO or

250 G
4 45 2 10

1.2 Pop NuG SC DGM NuIndiv Variables A
50 34 GO or

250 G
4 45 2 50

Experiment 2
Scenario GA IVFm Function

2.1 Pop NuG SC DGM NuIndiv Variables A
30 34 GO or

250 G
2 27 2 10

2.2 Pop NuG SC DGM NuIndiv Variables A
10 34 GO or

250 G
2 9 2 10

2.3 Pop NuG SC DGM NuIndiv Variables A
5 34 GO or

250 G
2 4 2 10

Experiment 3
Scenario GA IVFm Function

3.1 Pop NuG SC DGM NuIndiv Variables A
50 34 GO or

250 G
4 45 2 10

3.2 Pop NuG SC DGM NuIndiv Variables A
50 170 GO or

250 G
10 45 10 10

Table 1. Experiments configuration

Fig. 6. Experiment 1 results

On experiment 2 we can measure the impact of the reduction of individuals (genetic diversity)
on the proposed algorithm. On scenario 2.1 with 30 individuals, all operators of IVFm showed
100% of efficacy and the GA 50%. On scenario 2.2 with 10 individuals, we can observe a loss
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Fig. 7. Experiment 2 results

Fig. 8. Experiment 3 results

of performance by the EAR-T (40%), EAR-P (40%) and AR (40%). The EAR-N maintained an
excellent efficacy of 100% and GA fell to 20%. On scenario 2.3 with only 5 individuals, we can
prove the thesis that the operators EAR-P, EAR-T and AR, besides the canonical GA, suffer an
impact with the reduction of genetic material, because the success rates were 20%, 15%, 15%
and 5% respectively. The EAR-N also showed reduction of efficiency on scenario 2.3, though
returned surprising result of efficiency (85%), as even with very low genetic diversity.
Besides the direct dependence of the IVFm efficacy with the number of individuals,
experiment 2 shows the contribution of EAP to the GA on scenarios with a few genetic
material.
Finally, on experiment 3 we can identify the behavior of algorithms when we increased the
problem dimension, hence the complexity. On scenario 3.1 with 2 dimensions, variables X
and Y, the IVFm showed, once again, 100% of efficacy. On the other hand, the GA without
the IVFm showed only 20% of efficacy. Looking at the average of generations to reach the
global optimum (NG/AV), we can identify a better efficiency of EAR-N (53.6), followed by
EAR-T (67.73), AR (71.47) and EAR -P (73). On scenario 3.2 with 10 dimensions, the IVFm
keeps the 100% of efficacy, but we can observe a decrease in efficiency because of the NG/AV:
113.8 (EAR-N), 127.13 (EAR-T), 132.8 (AR) and 146.8 (EAR-P). Maintaining the effectiveness
of 100% on scenario 3.2, IVFm showed its robustness to Rastrigin multidimensional problem.
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On this scenario, the GA presents its worst performance, because it did not reach the global
optimum at any time, demonstrating the difficulty to evolve on highly multimodal and
multidimensional problems.

5. Conclusion

Some papers RAJAN et al. (2002); SINGH & DEB (2006); YANG & DOUGLAS (1998)
propose new algorithms that, independently, have better results than the GA. On some
benchmarks, however, this study suggests a joining algorithm (IVFm) that allows a better
use of information generated by the GA or by the IVFm.
Tests with the benchmark Rastrigin were executed to measure the effectiveness and efficiency
of the proposed IVFmGA. The established scenarios were divided in to 3 experiments with
different purposes. In the first one, the capacity of the IVFm was measured to reach the global
optimum in a multimodal context. The IVFm proved to be effective and efficient, because
it reached the global optimum in few generations, even with the increase of the function
parameter A that increased a larger complexity to the problem.
In the second experiment, some scenarios were set up to analyze the impact of the individuals’
reduction in the population. This reduction decreases the material and the genetic diversity,
which is usually very damaging to the evolutionary algorithms. With 30 individuals, scenario
2.1, IVFm was 100% effective, already with 10 and 5 the operators EAR-T, EAR-P and AR
suffered a reduction of effectiveness and efficiency. The operator EAR-N obtained better
results with 100% in scenarios 2.1 and 2.2 and 85% in scenario 2.3. These are considered
excellent performances because although it only had 5 individuals, it was capable of reaching
the global optimum in 85% of the cases.
In the experiment 3, the impact of the dimension increase in the algorithms was measured.
The IVFm had 100% of efficacy and a low efficiency reduction when the dimension increased
to 10. This result shows a robustness of the IVFm on dimensionality. The operators EAR-T,
EAR-P and AR had a good efficacy and robustness too.
Analyzing all tests done, we can observe that the IVFm was able to considerably increase the
efficacy and efficiency of GA.
Among the IVFm operators, the EAR-N was more effective and efficient than the others,
followed by EAR-T, EAR-P and AR. The good performance of the EAR-N is justified by
the way that it balances the exploration of the search area, generating new information, and
exploitation of promising areas, promoted by the recombination process.
Given the tests presented, we can notice that the IVFm has a great potential to help various
kinds of binary-coded evolutionary algorithms. Therefore, it is suggested as future work the
joining of the IVFm in different evolutionary algorithms for different types of applications.
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1. Introduction

Evolutionary Computation (EC) is a research area of metaheuristics mainly applied to
real-world optimization problems. EC is inspired by biological mechanisms such as
reproduction, mutation, recombination, natural selection and collective animal behavior.
Two branches of EC can be highlighted: Evolutionary Algorithms (EA) comprising Genetic
Algorithms (Goldberg, 1989), Genetic Programming (Koza, 1992), Differential Evolution
(Storn & Price, 1997), Harmony Search (Geem et al., 2001), and others; and Swarm Intelligence
(SI) comprising Ant Colony Optimization (ACO) (Dorigo & Stützle, 2004) and Particle Swarm
Optimization (PSO) (Kennedy & Eberhart, 2001; Poli et al., 2007) and others. The ACO
metaheuristic1 is inspired by the foraging behavior of ants. On the other hand, the PSO
metaheuristic2 is motivated by the coordinated movement of fish schools and bird flocks.
Both ACO and PSO approaches have been applied successfully in a vast range of problems
(Clerc, 2006; Dorigo & Stützle, 2004).
In recent years, new SI algorithms were proposed. They have in common biological
inspirations, such as bacterial foraging (Passino, 2002), slime molds life cycle
(Monismith & Mayfield, 2008), various bees behaviors (Karaboga & Akay, 2009), cockroaches
infestation (Havens et al., 2008), mosquitoes host-seeking (Feng et al., 2009), bats echolocation
(Yang, 2010), and fireflies bioluminescense (Krishnanand & Ghose, 2005; 2009; Yang, 2009).
This work proposes a new swarm-based evolutionary approach based on the bioluminescent
behavior of fireflies, called Bioluminescent Swarm Optimization (BSO) algorithm. The BSO
uses two basic characteristics of the Glow-worm Swarm Optimization (GSO) algorithm
proposed by (Krishnanand & Ghose, 2005): the luciferin attractant, and the stochastic
neighbor selection. However, BSO goes further introducing new features such as: stochastic
adaptive step sizing, global optimum attraction, leader movement, and mass extinction.
Besides, the proposed algorithm is hybridized with two local search techniques: local
unimodal sampling and single-dimension perturbation. All these features makes BSO a
powerful algorithm for hard optimization problems.
Experiments were done to analyze the sensitivity of the BSO to control parameters.
Later, extensive experiments were performed using several benchmark functions with high

1 ACO repository: http://iridia.ulb.ac.be/∼mdorigo/ACO/
2 PSO Repository: http://www.particleswarm.info
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dimensionality and different degrees of complexity. The performance of the BSO was
compared with a well-known SI method, Particle Swarm Optimization (PSO).
The remainder of the chapter is organized as follows. Section 2 reports the existent
bioluminescence inspired algorithms, focusing on the Glowworm Swarm Optimization
algorithm (GSO), in which our proposed algorithm is mainly based. Section 3 shows in details
the BSO algorithm and its main differences to the GSO algorithm. Section 4 explain how our
experiments were done, as well as the parameter tuning process that lead to default parameter
values. The results of these experiments are shown and discussed in Section 5. Conclusions
and future works are presented in Section 6.

2. Bioluminescense inspired algorithms

Lampyridae is a family of insects (order Coleoptera) that are capable to produce natural light
(bioluminescense) to attract a mate or a prey. They are commonly called fireflies or lightning
bugs. In the species Lampyris noctiluca the fireflies are also known as glow-worms and, despite
of the name, they are not worms. In this species, it is always the female who glows, and only
the male has wings. In other species, Luciola lusitanica, both male and female firefly may emit
light and both have wings (Fraga, 2008; Shimomura, 2006).
If a firefly is hungry or looks for a mate, its light glows to make the attraction of insects or
mates more effective. The brightness of the bioluminescent light depends on the available
amount of a pigment called luciferin3.
Two optimization algorithms reported in the literature were inspired by the bioluminescent
behavior of Lampyridae insects. The Firefly Algorithm (FA) was proposed by (Yang, 2009) as a
general purpose optimization algorithm and it was applied to the optimization of benchmark
functions. The Glow-worm Swarm Optimization Algorithm (GSO) that was designed to
capture multiple peaks in multimodal functions, without the aim of finding the global best.

2.1 Glow-worm Swarm Optimization algorithm
The Glow-worm Swarm Optimization (GSO) algorithm was first presented by
(Krishnanand & Ghose, 2005) to model the collective behavior in robotics. In this algorithm,
each glow-worm uses a probabilistic mechanism to select a neighbor that has an associated
luciferin value, and moves towards it. Glow-worms are attracted to neighbors that glow
brighter. The movements are based only on local information and interactions with selected
neighbor. This enables the swarm of glow-worms to divide themselves into disjoint
subgroups that eventually converge to multiple local optima of a given multimodal function.
The GSO algorithm is memoryless and the glow-worms do not retain any information about
the search space.
The original GSO is shown in Algorithm 1. It starts by randomly placing in the search space a
population of n glow-worms of dimension d. Each solution �xi = [xi1, xi2, ..., xid] is evaluated
by a fitness function f (�xi), i = 1, ...,n. At the beginning, all the glow-worms contain the
same amount of luciferin l0 and the same neighborhood range decision r0. Each iteration
consists of a luciferin update phase, followed by a movement phase based on a transition
rule. Other running parameters of the algorithm are: the luciferin decay constant (ρ), the
luciferin enhancement constant (γ), the step size (s), the number of neighbors (nt), the sensor
range (rs), and a constant value (β). However, the authors observed that only two parameters
have significant influence in the behavior of the algorithm: n and rs.

3 See the UK Glow worm survey home page at: http://www.glowworms.org.uk
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1: Set parameters: n, l0, r0, ρ, γ, β, s, rs, nt
2: Randomly generate the population of glow-worms �xi
3: for i = 1 to n do
4: Initialize luciferin li(0) = l0
5: Initialize neighborhood range ri

d(0) = r0
6: end for
7: t = 1
8: while stop condition not met do
9: for each glow-worm i do {update luci f erin}
10: li(t + 1) = (1− ρ) · li(t) + γ · f (xi(t))
11: end for
12: for each glow-worm i do {movement phase}
13: Find neighbors Ni(t)
14: for each glow-worm j ∈ Ni(t) do

15: Compute probability Pij(t) =
lj(t)−li(t)

∑k∈Ni(t) lk(t)−li(t)

16: end for
17: Select glow-worm j using Pij

18: Update glow-worm position with xi(t + 1) = xi(t) + s[
xj(t)−xi(t)

‖xj(t)−xi(t)‖ ]
19: Update decision range:
20: ri

d(t + 1) = min{rs, max{0, ri
d(t) + β · (nt − |Ni(t)|)}}

21: end for
22: t = t + 1
23: end while

Algorithm 1: The Glow-worm Swarm Optimization Algorithm (GSO)

The GSO algorithm was used by (Krishnanand & Ghose, 2009) to find multiple optima in
multimodal benchmark functions. This work also conducted detailed parameter tuning
experiments. When compared with a niched-PSO, GSO showed better results concerning the
number of peaks found in almost all test functions. GSO was also applied to hazard sensing
in ubiquitous environments (Krishnanand & Ghose, 2008). It should be stressed that in all
applications the objective is to find multiple peaks of multimodal functions.

3. The Bioluminescent Swarm Optimization algorithm

In this section we present in detail the proposed swarm-inspired algorithm for global
optimization named the Bioluminescent Swarm Optimization (BSO) algorithm. The section is
divided into five subsections, namely, a general description of BSO, stochastic adaptive step
sizing, global optimum attraction, mass extinction, and local search procedures.

3.1 General description of BSO algorithm
The BSO algorithm, shown in Algorithm 2, can be loosely seen as a hybrid between PSO
and GSO, but with some unique features. As GSO and many other algorithms, the first
step is initializing n particles in the d-dimensional search space. All particles, defined
by �xi = [xi1, xi2, ..., xid], are evaluated by a fitness function f it(�xi), i = 1, ...,n. BSO
uses luciferin-based attraction instead of fitness-based attraction between the particles, as
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proposed by the GSO. This process is controlled by the parameters ρ and γ, which are the
luciferin decay constant and the luciferin enhancement constant, respectively. It also uses
stochastic step size, similarly to PSO, instead of fixed step as in the GSO. This step size also
varies for each particle, according to its luciferin value, and controlled by the cs parameter.
This is shown in line 18 of Algorithm 2, later explained in Section 3.2.

1: Set parameters: n, ρ, γ, s0, cg , cs, lR, eT
2: Randomly generate the bioluminescent particle population �xi
3: for i = 1 to n do
4: Initialize luciferin li(0) = 0
5: end for
6: Find the global best g(t)
7: t = 1
8: while stop condition not met do
9: for each particle i do {update luci f erin}
10: li(t + 1) = (1− ρ) · li(t) + γ · f (xi(t))
11: end for
12: for each glow-worm i do {movement phase}
13: Find neighbors Ni(t)
14: for each particle j ∈ Ni(t) do

15: Compute probability Pij(t) =
lj(t)−li(t)

∑k∈Ni(t) lk(t)−li(t)

16: end for
17: Select glow-worm j using Pij

18: Update particle step size with s = s0 · 1
1+cs·li(t)

19: Update glow-worm position with

xi(t + 1) = xi(t) + rand · s · [ xj(t)−xi(t)
‖xj(t)−xi(t)‖ ] + cg · rand · s · [ g(t)−xi(t)

‖g(t)−xi(t)‖ ]
20: Find the global best g(t)
21: if t%lR = 0 then {LocalSearchProcedures}
22: Perform strong local search on g(t)
23: else
24: Perform weak local search on g(t)
25: end if
26: if iterations without a new g(t) = eT then {MassExtinction}
27: Reinitialize all particles but g(t)
28: end if
29: end for
30: t = t + 1
31: end while

Algorithm 2: The Bioluminescent Swarm Optimization Algorithm (BSO)

While the concept of global optimum does not exist in the GSO algorithm, every particle in
BSO is attracted to the global optimum, like PSO. This attraction is part of the equation in line
19 of the Algorithm 2, controlled by the parameter cg , and discussed later in Section 3.3. We
also propose a mass extinction mechanism shown in line 27. It is controlled by the parameter
eT, and explained in Section 3.4.

72 Evolutionary Algorithms



Bioluminescent Swarm Optimization Algorithm 5

In the GSO, particles without neighbors, that is, particles that are the best in its vicinity,
do not move. It is assumed that the most promising regions of the search space are those
regions inwhich the best solutionswere found and, therefore, they should be deeply explored.
Consequently, we propose two local search schemes. The first it a weak local search, shown in
line 24, and meant to be the default movement for the global best. The second one is a strong
local search, shown in line 22. This procedure is supposed to take place at each lR iterations.
Both methods will be discussed in Section 3.5.
A weakness of the GSO algorithm is the computational overhead due to frequent distance
measurements. It is necessary to know the distance between each particle at each iteration.
Therefore, the number of distance computations at each iteration is n2−n

2 , where n is the
number of particles. This means that the time spent only in this phase of the algorithm varies
quadratically with the population size. Consequently, this fact leads to a significant overhead
when using large populations.
To avoid this problem, BSO considers an infinite radius for the neighborhood. This means that
the neighborhood of a given particle is composed by all other particles having luciferin value
larger than its own. Experiments reported in Section 4 showed that this approach leads to a
huge improvement in processing time, with almost no degradation of the quality of solutions.
Consequently, the BSO algorithm has four more parameters: cs to control the adaptive step
sizing, cg, to control the global best attraction, eT, to control the mass extinction, and lR, to
control the strong local search. On the other hand, it does not have the parameters β, rs, r0,
and nt, present in the GSO algorithm. This is due to the infinite radius adopted by the BSO for
the neighborhood of each particle, since these four parameters were used to control the radius
of each particle.

3.2 Stochastic adaptive step sizing
The BSO algorithm uses Equation 1 to compute the next position of a given particle:

xi(t + 1) = xi(t) + rand · s · [ xj(t)− xi(t)

‖xj(t)− xi(t)‖ ] + cg · rand · s · [ g(t)− xi(t)
‖g(t)− xi(t)‖ ] (1)

where xi(t) is the current particle position, rand is a random number in the [0, 1] interval, s
is the current step size of the particle, cg is the global best attraction constant, and g(t) is the
global best position.
Unlike GSO that uses a fixed step size, BSO changes the step size stochastically, in the same
way as in PSO. Besides, the maximum step is adaptive, according to Equation 2:

s = s0 · 1
1+ cs · li(t)

(2)

where s0 is the maximum step, li(t) is the amount of luciferin of the particle, and cs is a
slowing constant. This means that a particle with a high level of luciferin will move slower,
while a particle with a low level of luciferin will move faster. Since the level of luciferin is
an information related to the fitness of the current and previous positions, particles laying in
promising regions of the search space will perform a more thorough search, with small steps.
Conversely, particles laying in regions of low quality will move faster, searching for better
regions.
The step sizes resulting from Equation 2 must be between 0 and s0. Therefore, one must assure
that li(t) is always non-negative, what can be achieved by guaranteeing non-negative fitness.
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This is also needed due to the roulette-wheel selection method, which will be explained
further.
The parameter cs is the slowing constant. It adjusts how much a particle will slow down due
to its luciferin value. Large values of cs lead to particles with low luciferin levels to perform a
thorough search, while small cs values makes only particles with very high luciferin levels to
perform this search.

3.3 Global optimum attraction
Although the concept of global optimum does not exist in the GSO, each particle in the BSO
algorithm is attracted both to the selected neighbor and to the current global optimum, as in
the PSO. This is shown in the third term of the Equation 1, where the constant cg means the
force of this attraction. This constant is usually very low, but the results are still noticeably
affected. Experiments reported on Section 4 show the effects.

3.4 Mass extinction
The GSO algorithm usually shows a fast convergence to multiple local optima. In the
BSO, the goal is to provide global optimization, not multiple peak finding. Although BSO
usually shows a slow and smooth convergence, as reported in Section 5, an early stagnation
may occur. Therefore, it is important to detect stagnation as soon as possible and take
corrective measures to avoid it. This is done through a mechanism known as Mass Extinction,
Decimation and Hot-Boot or, simply, Explosion. This method is frequently used in PSO,
genetic algorithms and other EC algorithms (Benítez & Lopes, 2010; Hembecker et al., 2007;
Kalegari & Lopes, 2010), although not used in the original GSO.
Explosionworks by reinitializing all or part of the particles, but keeping the main information
gathered so far, like global and local optima. In the BSO, since there is no intrinsic local
optimum information, we maintain just the best particle. This occurs when there is no
improvement of the best solution for a given number of iterations, represented by the eT
parameter. In the Algorithm 2, this verification is done in line 26. If the condition is true, that
is, the last improvement of the global best g(t) took place more than eT iterations before, all
particles are reinitialized, except g(t), as shown in line 27.

3.5 Local search procedures
Due to the dynamic grouping nature of the BSO particles, this algorithm performs strong
exploration. However, experiments have shown that its exploitation capability is not
intrinsically good. We propose a corrective measure using two local search procedures: a
weak one, to be executed on the best individual at each iteration; and a strong one, to be
executed on the global best found so far, at each lR iterations. In our experiments, Local
Unimodal Sampling (LUS) (Pedersen, 2010) was used every iteration, and a Single-Dimension
Perturbation Search (SDPS) at each lR iterations. The difference between these local search
procedures is not on quality or overhead of the algorithm, but only the computational effort
applied in each one. The strong one is meant to use much more function evaluations than the
weak.
Since the neighborhood of a particle is composed by the particles with higher luciferin
levels than itself, the best particle has no neighbors and, thus, does not move. Spending
computational effort with the worse particles, while leaving the best one behind is not
interesting, and so the weak local search is meant to correct this. Therefore, the weak local
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search is the default movement for the best particle. It is allowed one turn off the strong local
search, but the weak local search is an essential part of the BSO algorithm.

3.5.1 Local Unimodal Sampling
The Local Unimodal Sampling (LUS), shown in Algorithm 3, was proposed by (Pedersen,
2010) as a simple and fast method for numerical optimization that is adequate to unimodal
search spaces. It works by randomly sampling a position within a radius from the base
position, and decreasing this radius exponentially. Its parameters are the initial position �x0,
initial sampling radius r0w, the decrease rate q, and the iteration limit nw.
1: Set parameters: nw, r0w, q, �x0
2: �x = �x0
3: r = r0w
4: for i = 1 to nw do
5: Randomly generate the movement vector�a within r of �x
6: if f (�x +�a) > f (�x) then
7: �x = �x +�a
8: else
9: r = q · r
10: end if
11: end for

Algorithm 3: Local Unimodal Sampling (LUS) algorithm.

3.5.2 Single-Dimension Perturbation Search
The strong local search procedure (SDPS), shown inAlgorithm 4, is just a randomperturbation
in a single random dimension in each iteration. It is similar to the LUS, but the main
differences are: single-dimension instead of multi-dimension movement, and linear decay
of search space radius, instead of exponential. Its parameters are the initial position �x0, initial
sampling radius r0s, and the iteration limit ns.
1: Set parameters: ns, r0s, �x0
2: �x = �x0
3: for i = 1 to ns do
4: �c = �x {CandidateSolution}
5: r = r0s · ns−i

ns
6: Randomly choose a dimension j to perturbate
7: Compute step = rand · r {rand ∈ [−1, 1]}
8: �c[j] =�c[j] + step
9: if f (�c) > f (�x) then
10: �x = �c
11: end if
12: end for

Algorithm 4: Single-Dimension Perturbation Search (SDPS)

4. Experiments

All experiments were done using a desktop computer with a 2.8GHz quad-core processor,
2GB of RAM, running a minimal installation of Arch Linux. The application software was
development ANSI-C programming language. Since the BSO is a stochastic algorithm, all
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experiments were repeated 100 times with different random seeds. The performance of each
approach takes into account the average best solution found in each run and the average
processing time.
The BSO algorithm was applied to four well-known benchmark functions, extensively used
in the literature for the evaluation of metaheuristics (Digalakis & Margaritis, 2002). The
definition of the functions, the corresponding range of values and the minimum value known
are shown in Table 1.
Function Ranges Minimum value
f1(�x) = ∑

d
i=1(x

2
i − 10 cos(2πxi) + 10) −5.12 ≤ xi ≤ 5.12 f1(�0) = 0

f2(�x) = 1
4000

(
∑

d
i=1 x2i

)
−

(
∏

d
i=1 cos

(
xi√

i

))
+ 1 −600 ≤ xi ≤ 600 f2(�0) = 0

f3(�x) = ∑
d−1
i=1

(
0.5+

sin2
(√

x2i+1+x2i
)
−0.5

(0.001(x2i+1+x2i )+1)
2

)
−100 ≤ xi ≤ 100 f3(�0) = 0

f4(�x) = ∑
d−1
i=1 (100(xi+1 − x2i )

2 + (xi − 1)2) −30 ≤ xi ≤ 30 f3(�1) = 0

Table 1. Numerical benchmark functions

The first function ( f1(�x)) is the Rastrigin function that is a multimodal function and is based
on the Sphere function, with the addition of cosinemodulation to producemany local minima.
The locations of the minima are regularly distributed. The function was originally proposed
for two dimensions, and later generalized to d dimensions (Mühlenbein et al., 1991). The main
difficulty in finding optimal solutions to this function is that an optimization algorithm can
be easily trapped in a local optimum on its way towards the global optimum. �x is defined in
the range of [−5.12, 5.12] and the global minimum value for f1(�x) is 0 and the corresponding
global optimum solution is �xopt = (x1, x2, . . . , xd) = (0, 0, . . . , 0).
The second function ( f2(�x)) is the Griewank function (Griewank, 1981) that is strongly
multimodal, because the number of local optima increases exponentially with the
dimensionality (Cho et al., 2008). �x is defined in the range of [−600, 600] and the global
minimum value for f2(�x) is 0 and the corresponding global optimum solution is �xopt =
(x1, x2, . . . , xd) = (0, 0, . . . , 0).
The third function ( f3(�x)) is the generalized Schaffer function F6 (Floudas & Pardalos, 1990)
that is also strongly multimodal. �x is defined in the range of [−100, 100] and the global
minimum value for f3(�x) is 0 and the corresponding global optimum solution is �xopt =
(x1, x2, . . . , xd) = (0, 0, . . . , 0).
The fourth function ( f4(�x)) is the Rosenbrock function (Rosenbrock, 1960), which has a long
and narrow parabolic flat valley, where the global minimum is located . �x is defined in the
range of [−30, 30] and the global minimum value for f4(�x) is 0 and the corresponding global
optimum solution is �xopt = (x1, x2, . . . , xd) = (1, 1, . . . , 1).
Since the BSO is a maximization algorithm and these four functions are meant to be
minimized, a conversion is needed. Simply multiplying the fitness by −1 will not work,
because the roulette wheel selection method accepts only non-negative fitness values.
Therefore, the following transformation shown in Equation 3 was applied to it.

f it(�x) =
k

k + f (�x)
(3)

where f it(�x) is the corrected fitness to be maximized, f (�x) is the function raw value (which
we want to minimize), and k is a given constant. In our experiments, functions f1, f2 and f3
used k = 1, and f4 used k = 100.
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Should be noted that Equation 3 guarantees fitness values in the interval [0,1] for the tested
functions, which is needed for the step sizing process. In fact, if the function to be minimized
can produce negative fitness values, a more elaborate transformation will be needed. As
mentioned before, the fitness values must always be in the [0,1] interval.
The BSO was compared to the PSO algorithm using cognitive and social constants φ1 = φ2 =
1.8, and the inertia weight was set to ω = 0.6, as recommended in (Kennedy & Eberhart, 2001;
Vesterstrom & Thomsen, 2004).
The number of variables (dimensions) for all functions in our experiments was set to 10, 30
and 50. In all experiments, the maximum number of function evaluations and swarm size
were set to 500,000 and 500 particles, respectively. These two parameters were used both in
the BSO and the PSO algorithm. For all models, the stop condition is reaching the maximum
number of evaluations or a 10−5 error.
The number of iterations for each local search procedure in the BSO were set to nw = 10 and
ns = 100, meaning that the strong local search is ten times heavier than the weak local search.
The initial radius for each one was set to r0w = 0.1 and r0s = 1.0, and the sampling radius
decrease rate of the LUS was set to q = 0.6.

4.1 Parameter tuning
Wehave also investigated the behavior of BSO to different settings of some control parameters.
The objective is to suggest default values, whenever possible.
Parameters ρ and γ were fixed using the default values from GSO, that is, ρ = 0.4 and
γ = 0.6. The other parameters were tested using a factorial experiment (Box et al., 2005)
with the following values: n = [50; 300; 500; 1000], s0 = [0.3; 1.0; 3.0], lR = [0; 1; 5; 10; 50], cg =
[0.01; 0.03; 0.1], cs = [1; 5; 10], and eT = [100; 200]. A total of 1080 possible combinations of
these parameter values can be arranged. Experiments were done with all these combinations
of parameters, for each function of each dimension. Each parameter set was tested 20 times,
in independent runs, and the average best result found for each test was used later to define a
default parameter set.
In almost all problems, the bigger the population size n , the better the result, with n = 1000
achieving the best solutions, in average. However, in f2 and f4 for d = 30 and d = 50, the best
results were found using n = 50. This happened because the maximum number of function
evaluations was reached. The BSO has a very slow convergence, and the number of iterations
in which the limit of function evaluations was reachedwith large populations was not enough
to converge. In fact, even with a small population, the convergence curve still showed some
room to improvement, meaning that this limited number of evaluations was too small for
these instances of the problems. Therefore, we set as the default value n = 500, since it lead to
results almost as good as those found with n = 1000 in most problems, but had much better
solutions than this value when more time was needed by the algorithm.
The parameter s0 showed to be strongly dependent of the problem. For each instance of
the problems, a different value of s0 leaded to better solutions. This was expected, since
this parameter has a direct influence in the navigation steps in the search space. In search
spaces with different topologies, different values of s0 will be needed. The range used in our
experiments achieved good results for all functions. Therefore, s0 should be usually set in the
range [0.3..3.0]. In our experiments, we used s0 = 1.0 as the default value.
The global attraction, controlled by the cg parameter, lead to better results when set to the
lower values. The only exception was in f4. However, even in this function, small values
also yielded good solutions. Consequently, we defined cg = 0.03 as the default value for this
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parameter, since a good performance in all instances of the problems was achieved with this
value.
The stochastic step sizing, which controls the thoroughness of the search that each particle
performs, showed better results when the exploitation was privileged. This means higher
values of cs. As explained in Section 3.2, higher values of cs lead particles to explore the space
with slow movements, even in regions with not so high fitness levels. This parameter leads
to a trade-off between exploration and exploitation, and the user should tune it according to
what it is wanted to emphasize. In almost all experiments, good results were found using
cs = 5, and this value is set as the default for this parameter.
Our experiments also showed that the eT parameter has low influence in the quality of the
final results, but lower values had a slight advantage. Since good results were achieved in all
functions using eT = 100, we consider this as the default value.
Usually, the strong local search procedure (see Section 3.5.2) showed better results with lower
values. Lower values meanmore local search, not the contrary, and so, the more effort spent in
local search, the better the results. However, with lR = 1, too much function evaluations were
spent in the local search, and the algorithm had few time to explore the search space. With
small populations the effect was more pronounced, since the number of function evaluations
used by SDPS was proportionally larger. When testing the functions with lower dimensions,
this was not a problem, since the algorithm neededmuch less evaluations than the upper limit
set. However, when using d = 50, higher values of lR lead to better solutions, but the quality
dropped again when lR was set too high. Considering that lR = 5 leaded to good results for
all problems, this is defined as the default.
Table 2 summarizes the default values for the control parameters of BSO. Notice that the
maximum number of iterationsmaxIte, as well as themaximum number of evaluations cannot
be considered parameters of the BSO. They only control the stop criterion, which can be
different for each problem and application of the algorithm. One can set the stop criterion to
a predefined error value, number of fitness evaluations or processing time spent, for instance.

Symbol Name Default Value
n Population size 500
ρ Luciferin decay constant 0.4
γ Luciferin gain constant 0.6
s0 Maximum step size [0.3 .. 3.0]
eT Number of stagnated iterations to enable explosion 100
lR Period of local search procedures 5
cg Attraction to global best 0.03
cs Slowing constant 5

Table 2. Default values for the control parameters of BSO

5. Results and discussion

In this section we present results of our experiments and a comparison of performance
between PSO and BSO, as well as a study of the convergence behavior of each algorithm.

5.1 Numerical results
The statistical results of 100 independent runs obtained by BSO and PSO with default
parameters are shown in Tables 3 to 6. BSO was tested with and without the strong local
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search (SDPS). In the tables, besides the full BSO algorithm, it is also shown wBSO, a version
of BSO without the strong local search. Each column shows the average of the best values
obtained in each run followed by the respective standard deviations, and the mean of the
elapsed time in seconds by each algorithm for each function.
In Table 3, the results for function f1 indicate that the BSO algorithm has an overhead
significantly larger than PSO for small dimensions, but this overhead grows much slower
in higher dimensions. With d = 10, PSO was almost 4 times faster than BSO. On the other
hand, they took almost the same time to execute when d = 50. The quality of the solutions
found by the BSO were also much better than the PSO. The reason for this, further explained
in Section 5.2, is the slower convergence of BSO, avoiding getting trapped into local maxima.

d = 10 d = 30 d = 50
Model Quality Time (s) Quality Time (s) Quality Time (s)
BSO 0.00005 ± 0.00004 2.34 0.14368 ± 0.38712 2.84 0.32219 ± 0.80927 3.38
wBSO 0.00688 ± 0.00201 2.45 0.16968 ± 0.10514 3.04 0.88320 ± 0.59278 3.61
PSO 7.79839 ± 3.69998 0.61 27.8135 ± 7.41229 1.74 88.7282 ± 17.0144 3.04

Table 3. Statistical results obtained by all approaches - Function f1

The results for function f2, shown in Table 4, have the same time characteristics found
in f1. That is, large overhead for small dimensions, but equivalent performance for high
dimensions. The quality of the results were close between PSO and BSO, with better solutions
found by PSO than wBSO when d = 30 and d = 50.

d = 10 d = 30 d = 50
Model Quality Time (s) Quality Time (s) Quality Time (s)
BSO 0.03465 ± 0.02183 2.54 0.02628 ± 0.02542 3.15 0.02919 ± 0.01673 3.81
wBSO 0.08019 ± 0.02994 2.64 0.43223 ± 0.11680 3.39 0.74025 ± 0.09198 4.15
PSO 0.09003 ± 0.03284 0.67 0.23263 ±0.09442 1.97 0.66629 ± 0.10810 3.28

Table 4. Statistical results obtained by all approaches - Function f2

Concerning function f3, Table 5 shows that BSO again outperformed PSO, and the difference
between the time spent by each algorithm also decreased for higher dimensions.

d = 10 d = 30 d = 50
Model Quality Time (s) Quality Time (s) Quality Time (s)
BSO 0.07870 ± 0.02445 2.50 0.50525 ± 0.18516 3.39 1.39567 ± 0.55424 4.26
wBSO 0.09584 ± 0.02414 2.60 1.21714 ± 0.33930 3.52 3.36662 ± 1.10405 4.41
PSO 0.53988 ± 0.20318 0.62 5.60456 ± 0.90357 1.85 12.7432 ± 1.35718 3.10

Table 5. Statistical results obtained by all approaches - Function f3

Results for function f4, shown in Table 6, demonstrate that the time spent by PSOwhen d = 50
was higher than the time spent by the BSO. Overall, this indicates that BSO can be faster than
PSO if the number of dimensions is high enough. Here, the quality of the solutions found
degraded fastly for PSO, comparing with BSO, as the number of dimensions increased.

5.2 Convergence analysis
An important feature of the BSO algorithm is a very slow convergence, when compared, for
instance, with PSO. To show that, we ran a set of tests without the strong local search (using
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d = 10 d = 30 d = 50
Model Quality Time (s) Quality Time (s) Quality Time (s)
BSO 0.72827 ± 1.52126 2.16 27.0083 ± 1.75217 2.33 47.0415 ± 0.79140 2.48
wBSO 2.06372 ± 1.75578 2.23 33.0884 ± 10.4737 2.39 79.7785 ± 36.1792 2.56
PSO 0.92752 ± 2.07380 0.64 67.6840 ± 30.3727 1.86 290.274 ± 171.253 3.10

Table 6. Statistical results obtained by all approaches - Function f4

wBSO), since the weak local search is considered the default movement for the best particle,
and the PSO do not have a specific local search procedure in this implementation.
The results of these experiments are in Figures 1 to 4. In these figures, the fitness for both
methods are normalized by the best fitness found by each one. This means that there is no
information at all about the quality of the solutions found by each approach in these figures,
only about the convergence. The quality of the solutions was previously discussed in Section
5.1. These figures shows that BSO usually has a very slow start, then accelerate its convergence
speed, but still much slower than PSO. In f1, the BSO converged around iteration 400, while
PSO converged around iteration 100, see Figure 1. This slower convergence led to a much
better final result, as shown in Table 3.
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Fig. 1. Convergence curve for wBSO and PSO in f1, d=50

The convergence curves for function f2, shown in Figure 2, shows that BSO and PSO
converged around iteration 700 and 200, respectively. However, the quality of the solution
was not that good, as shown in Table 4.
Concerning function f3, the curves shown in Figure 3 indicate that convergence ocurredwhen
BSO reached approximately 500 iterations, and PSO found its final solution as soon as iteration
100, what lead to very bad results.
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Fig. 2. Convergence curve for wBSO and PSO in f2, d=50
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Fig. 3. Convergence curve for wBSO and PSO in f3, d=50
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For function f4, Figure 4 shows that the BSO algorithm reached 900 iterationswith presumably
some potential to improve the solution, while the PSO stopped near 250 iterations.
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Fig. 4. Convergence curve for wBSO and PSO in f4, d=50

In these four studies, using functions with 50 dimensions, BSO converged between 4 to 5 times
slower than PSO. As consequence, this lead to very good solutions, since fast convergence
usually makes the algorithm to get trapped into local maxima. The results were similar for
the other dimensions studied (not shown here), always with a smooth convergence in the BSO
algorithm.

6. Conclusions and future work

In this work we proposed a swarm-based algorithm for global optimization named
Bioluminescent Swarm Optimization (BSO) algorithm. The algorithm is based both on
research on the behavior of real Lampyridae family of insects and on Swarm Intelligence
concepts and principles.
The BSO algorithm has a very good exploration capability, avoiding getting trapped into
local maxima, while its local search procedures improved the otherwise somewhat weak
exploitation. However, the introduction of local search did not remove the slow convergence
characteristic, leading to high-quality final results with a smooth convergence.
The experiments concerning the BSO robustness suggested that the algorithm has low
sensitivity to parameter tuning. Hence, in most cases, the default parameters proposed here
should lead to good results just by tuning the s0 parameter and the population size n.
We have compared the performance of BSO and one of the most widely used swarm
intelligence method (PSO) in four benchmark functions, using three different number of
dimensions for each one. Results obtained by the BSO algorithm were much better than those
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obtained by the other approach, indicating that the proposed algorithm is an interesting and
promising strategy for global optimization of complex problems.
Future work will address the selection system, self-tuning of the parameters, and
multi-objective optimization. We will also apply the BSO algorithm to other benchmark
functions, and real-world problems. We will investigate other local search methods to be
used as the strong local search procedure, since this approach proved to be very promising.
In the same way, hybridizing the proposed algorithm with other evolutionary computation
methods may lead to improved performance.
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1. Introduction 
As computer networks continue to grow, it becomes increasingly more important to 
automate the process of evaluating their vulnerability to attacks. Despite the best efforts of 
software architects and developers, network hosts inevitably contain a number of 
vulnerabilities. Hence, it is not feasible for a network administrator to remove all 
vulnerabilities present in the network hosts. Therefore, the recent focus in security of such 
networks is on analysis of vulnerabilities globally, finding exploits that are more critical, and 
preventing them to thwart an intruder. 
When evaluating the security of a network, it is rarely enough to consider the presence or 
absence of isolated vulnerabilities. This is because intruders often combine exploits against 
multiple vulnerabilities in order to reach their goals (Abadi & Jalili, 2005). For example, an 
intruder might exploit the vulnerability of a particular version of FTP to overwrite the 
.rhosts file on a victim host. In the next step, the intruder could remotely log in to the victim. 
In a subsequent step, the intruder could use the victim host as a base to launch another 
exploit on a new victim, and so on. 
(Phillips & Swiler, 1998) proposed the concept of attack graphs, where each node represents 
a possible attack state. Edges represent a change of state caused by a single action taken by 
the intruder. (Sheyner et al., 2002) used a modified version of the model checker NuSMV 
(NuSMV, 2010) to produce attack graphs. (Ammann et al., 2002) introduced a monotonicity 
assumption and used it to develop a polynomial algorithm to encode all of the edges in an 
attack graph without actually computing the graph itself. These attack graphs are essentially 
similar to (Phillips & Swiler, 1998), where any path in the graph from an initial node to a 
goal node shows a sequence of exploits that an intruder can launch to reach his goal. 
(Noel et al., 2005) presented a number of techniques for managing attack graph complexity 
through visualization. (Mehta et al., 2006) presented a ranking scheme for the nodes of an 
attack graph. Rank of a node shows its importance based on factors like the probability of an 
intruder reaching that node. Given a ranked attack graph, the system administrator can 
concentrate on relevant subgraphs to figure out how to start deploying security measures. 
(Ou et al., 2006) presented logical attack graphs, which directly illustrate logical dependencies 
among attack goals and configuration information. Their attack graph generation tool builds 
upon MulVAL (Ou et al., 2005), a network security analyzer based on logical programming. 
The aim of minimization analysis of network attack graphs is to find a minimum critical set 
of exploits that completely disconnect the initial nodes and the goal nodes of the graph. 
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(Sheyner et al., 2002) and (Jha et al., 2002) showed this problem is in fact NP-hard. They 
proposed an approximation algorithm, ApproxNAG, that can find an approximately-
optimal set of exploits, which must be prevented to thwart an intruder. (Abadi & Jalili, 2006) 
and (Abadi & Jalili, 2008) presented an ant colony optimization algorithm, AntNAG, and a 
genetic algorithm, GenNAG, for minimization analysis of network attack graphs. 
While it is currently possible to generate very large and complex network attack graphs, 
relatively little work has been done for analysis of them. 
Particle swarm optimization (PSO) (Kennedy & Eberhart, 1995) is a population based 
stochastic optimization algorithm that was inspired by social behaviour of flocks of birds 
when they are searching for food. 
It has been shown in many empirical studies that global optimization algorithms lack 
exploitation abilities in later stages of the optimization process. This is also true for the basic 
PSO as shown in (Shi & Eberhart, 1999); (Hendtlass & Randall, 2001); (Braendler & 
Hendtlass, 2002), however, it provides mechanisms to balance exploration and exploitation 
through proper settings of the inertia weight, acceleration coefficients and velocity 
clamping. Many variations of the basic PSO have been proposed to address this problem 
(Engelbrecht, 2005). Most of them first allow the algorithm to explore new regions, and 
when a good region is located, allow the algorithm to exploit the search space to refine 
solutions. This is a sequential approach to balancing exploration and exploitation 
(Engelbrecht, 2005). 
Another approach is to embed a local optimizer in between the iterations of the global 
search heuristics. By doing this, exploration and exploitation occur in parallel (Engelbrecht, 
2005). Such hybrids of local and global search heuristics have been studied elaborately in the 
evolutionary computation paradigm (Eiben & Smith, 2003), and are generally referred to as 
memetic algorithms (Krasnogor et al., 2006). While evolutionary algorithms take inspiration 
from biological evolution, memetic algorithms mimic cultural evolution. The term meme 
refers to a unit of cultural information that can be transmitted from one mind to another 
after reinterpretation and improvement that in the context of combinatorial optimization 
corresponds to local search. 
In this paper, we present a memetic PSO algorithm, called ParticleNAG, for minimization 
analysis of large-scale network attack graphs (NAGs). We also compare the performance of 
ParticleNAG with ApproxNAG (Sheyner et al., 2002); (Jha et al., 2002), AntNAG (Abadi & 
Jalili, 2006), and GenNAG (Abadi & Jalili, 2008) for minimization analysis of several large-
scale network attack graphs. 
The remainder of this paper is organized as follows: Section 2 provides an overview of PSO, 
Section 3 introduces our network security model, and Section 4 describes the process of 
minimization analysis of network attack graphs. Section 5 presents ParticleNAG. Section 6 
reports the experimental results and finally Section 7 draws some conclusions. 

2. Particle swarm optimization 
Particle swarm optimization (PSO) is a population based stochastic optimization. It was 
inspired by social behaviour of flocks of birds when they are searching for food. In PSO, the 
potential solutions, called particles, fly through the problem space exploring for better regions. 
The position of a particle is influenced by the best position visited by itself and the position of 
the best particle in its neighbourhood. When the neighbourhood of a particle is the entire 
swarm, the best position in the neighbourhood is referred to as the global best particle, and the 
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resulting algorithm is referred to as a gbest PSO. When smaller neighbourhoods are used, the 
algorithm is generally referred to as a lbest PSO (Kennedy et al., 2001). 
The performance of each particle is measured using a predefined fitness function, which is 
related to the problem to be solved. Each particle in the swarm has a current position, ix , a 
velocity (rate of position change), iv , and a personal best position, iy . The personal best 
position of particle i shows the best fitness reached by that particle at a given time. Let f be 
the objective function to be maximized. Then the personal best position of a particle at 
iteration or time step t is updated as 

 
( 1) if ( ( )) ( ( 1))

( )
( ) if ( ( )) ( ( 1))

i i i
i

i i i

y t f x t f y t
y t

x t f x t f y t
− ≤ −⎧

= ⎨ > −⎩
 (1) 

For the gbest model, the best particle is determined from the entire swarm by selecting the 
best personal best position. This position is denoted as ŷ. The equation that manipulates the 
velocity is called the velocity update equation and is stated as 

 1 1

2 2

( 1) ( ) ( )( ( ) ( ))
ˆ( )( ( ) ( ))

ij ij j ij ij

j j ij

v t v t c r t y t x t
c r t y t x t

+ = + − +

−
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where ( 1)ijv t +  is the velocity updated for the jth dimension, j = 1, 2, …, d. 1c  and 2c  are 
the acceleration constants, where the first moderates the maximum step size towards the 
best personal of the particle, while the second moderates the maximum step size towards 
the global best particle in just one iteration. 1 ( )jr t  and 2 ( )jr t  are two random values in the 
range [0,1] and give the PSO algorithm a stochastic search property. 
Velocity updates on each dimension can be clamped with a user defined maximum velocity 
Vmax, which would prevent them from exploding, thereby causing premature convergence 
(Eberhart et al., 1996); (Shi, 2004). Each particle updates its position using the following 
equation: 

 ( 1) ( ) ( 1)i i ix t x t v t+ = + +  (3) 

In swarm terminology, particle i is flying to its new position ( 1)ix t + . After the new position 
is calculated for each particle, the iteration counter increases and the new particle positions 
are evaluated. This process is repeated until some convergence criteria is satisfied. 
(Kennedy & Eberhart, 1997) have adapted PSO to search in binary spaces. For binary PSO, 
the elements of ix , iy  and ŷ can only take the values 0 and 1. The velocity iv  is interpreted 
as a probability to change a bit from 0 to 1, or from 1 to 0 when updating the position of 
particles. Therefore, the velocity vector remains continuous-valued. Since each ijv  is a real 
value, a mapping needs to be defined from ijv  to a probability in the range [0,1]. This is 
done by using a sigmoid function to squash velocities into a [0,1] range. The sigmoid 
function is defined as 

 1( )
1 vsig v

e−
=

+
 (4) 

The equation for updating positions is then replaced by the following probabilistic update 
equation: 
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where 3 ( )jr t  is a random value in the range [0,1]. 
In binary PSO, the meaning and behaviour of velocity clamping differ substantially from 
real-valued PSO. With the velocity interpreted as a probability of change, velocity clamping, 
Vmax, sets the minimal probability for a bit to change its value from 0 to 1, or from 1 to 0 
(Engelbrecht, 2005). 
In this paper, we use the gbest model of binary PSO for minimization analysis of network 
attack graphs. 

3. Network security model 
Our network security model is a tuple (S, H, C, T, E, M, R), where S is a set of services, H is a 
set of hosts connected to the network, C is a relation expressing connectivity between hosts, 
T is a relation expressing trust between hosts, E is a set of individual known exploits that 
intruder can use to construct attack scenarios, M is a set of countermeasures that must be 
implemented to prevent exploits, and R is a model of intruder. 

Services 

Each service s S∈  is a pair ( , )svn p , where svn  is the service name and p  is the port on 
which the service is listening. 
Hosts  

Each host h H∈  is a tuple ( , , , )id svcs plvl vuls , where id  is a unique host identifier, svcs  is a 
set of services running on the host, plvl  is the level of privilege that the intruder has on the 
host, and vuls  is a set of host-specific vulnerable components. For simplicity, we only 
consider three privilege levels: none, user, and root. 
Network Connectivity 

Network connectivity is modelled as a relation C H H P⊆ × × , where P  is a set of port 
numbers. Each network connectivity c C∈  is a triple ( sh , th , p ), where sh  is the source 
host, th  is the target host, and p  is the target port number. Note that the connectivity 
relation incorporates network elements such as firewalls that restrict the ability of one host 
to connect to another. 
Trust Relationships 

Trust relationships are modelled as a relation T H H⊆ × , where ( , )t sT h h  indicates that a 
user may log in from host sh  to host th  without authentication. 
Exploits 

Each exploit e E∈  is a tuple ( pre , sh , th , post ), where pre  is a list of conditions that must 
hold before launching the exploit, sh  is the host from which the exploit is launched, th  is 
the host targeted by the exploit, and post  specifies the effects of exploit on the network. An 
exploit e E∈  is inevitable if its prevention is not feasible or incurs high cost. The set of 
inevitable exploits is denoted by I . 
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Countermeasures 

To prevent an exploit e E∈ , the security analyst must implement a suitable countermeasure 
m M∈ , such as 
• changing the firewall configuration 
• patching the vulnerability that made this exploit possible 
• deploying a host-based or network-based intrusion detection and prevention system 
• modifying the configuration of network services and applications 
• deleting user accounts 
• changing access rights 
• setting up a virtual private network (VPN) 
Intruder 

The intruder has some knowledge about the target network, such as known vulnerabilities, 
user passwords, and information gathered with port scans. The intruder's knowledge is 
modelled as a relation R ID PW VUL INF⊆ × × × , where ID  is a set of host identifiers, PW  
is a set of user passwords, VUL  is a set of known vulnerabilities, and INF  is a set of 
information gathered through port scans and operating system identification techniques. 

4. Minimization analysis of network attack graphs 
Let { }1 2, ,..., nE e e e=  be the set of exploits, I E⊆  be the set of inevitable exploits, 

{ }1 2, ,..., pM m m m=  be the set of countermeasures, and \: 2E Iprv M →  be a function. An 
exploit ( )j ie prv m∈  if and only if implementing the countermeasure im  prevents the 
exploit je . 
A network attack graph is a tuple 0( , , , , )fG V A V V L= , where V  is the set of nodes, A  is the 
set of directed edges, 0V V⊆  is the set of initial nodes, fV V⊆  is the set of goal nodes, and 

:L A E→  is a labelling function, where ( ) jL a e=  if and only if an edge ( , )a v v′=  
corresponds to an exploit je E∈ . A path π  in G  is a sequence of nodes 1 2, ,..., mv v v , such 
that iv V∈  and 1( , )i iv v A+ ∈ , where 1 i m≤ < . The label of path π  is a subset of the set of 
exploits E . Each attack scenario corresponds to a complete path that starts from an initial 
node and ends in a goal node. 
Let { }1 2, , ..., lS S S S=  be the set of attack scenarios represented by the network attack graph 
G . The attack scenario kS S∈  is hit by the exploit je E∈  if j ke S∈ . 
Definition 1. Total Hit Value 

For each exploit je E∈ , the total hit value ( )t jhv e  is defined to be the number of attack scenarios that 
are hit by je . 

 { }( ) |t j k j khv e S S e S= ∈ ∈  (6) 

Definition 2. Redundant Exploit 

Let U E⊆  be a subset of exploits and ( )hs U  be the set of attack scenarios hit by the exploits in U . 

 { }( ) | for somek j k jhs U S S e S e U= ∈ ∈ ∈  (7) 

An exploit je  is redundant with respect to U if ( \{ }) ( )jhs U e hs U= . 
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Definition 3. Partial Hit Value 

Let U E⊆  be a subset of exploits. For each exploit je U∉ , the partial hit value ( , )p jhv e U  is defined 
to be the number of attack scenarios that are hit by je , but that are not hit by any exploit in U . 

 { }( , ) | ( )p j k j k khv e U S S e S S hs U= ∈ ∈ ∧ ∉  (8) 

Definition 4. Exclusive Hit Value 

Let U E⊆  be a subset of exploits. For each exploit je U∈ , the exclusive hit value ( , )x jhv e U  is 
defined to be the number of attack scenarios that are hit by je , but that are not hit by any exploit in 

\{ }jU e . 
Definition 5. Critical Set of Exploits 

A subset of exploits \CE E I⊆  is critical if and only if all attack scenarios are hit by the exploits in 
it. Equivalently, CE  is critical if and only if every complete path from an initial node to a goal node 
of the network attack graph G has at least one edge labelled with an exploit je CE∈ . 
Definition 6. Minimal Critical Set of Exploits 

A critical set of exploits CE  is minimal if it contains no redundant exploit. 
Definition 7. Minimum Critical Set of Exploits 

A critical set of exploits CE  is minimum if there is no critical set of exploits CE′  such that 
CE CE′ < . 

Definition 8. Critical Set of Countermeasures 

A subset of countermeasures CM M⊆  is critical if and only if all attack scenarios are prevented by 
implementing the countermeasures in it. Equivalently, CM  is critical if and only if every complete 
path from an initial node to a goal node of the network attack graph G has at least one edge labelled 
with an exploit ( )je es CM∈ , where ( )es CM  is the set of exploits prevented by implementing the 
countermeasures in CM . 

 ( ) ( )
i im CMes CM prv m∈=∪  (9) 

Definition 9. Minimal Critical Set of Countermeasures 

A critical set of countermeasures CM  is minimal if it contains no redundant countermeasure. 
Definition 10. Minimum Critical Set of Countermeasures 

A critical set of countermeasures CM  is minimum if there is no critical set of countermeasures CM′  
such that CM CM′ < . 
In general, there can be multiple minimum critical set of exploits/countermeasures. We can 
now state formally two problems: MCEP and MCCP (Sheyner et al., 2002); (Jha et al., 2002). 
Definition 11. Minimum Critical Set of Exploits Problem (MCEP)  

Given a network attack graph G  and a set of exploits E , find a minimum critical subset of exploits 
\CE E I⊆  for G . 

Definition 12. Minimum Critical Set of Countermeasures Problem (MCCP)  

Given a network attack graph G , a set of exploits E , and a set of countermeasures M , find a 
minimum critical subset of countermeasures CM M⊆  for G . 
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There is a trivial reduction from MCEP to MCCP, and vice versa. Given an instance ( , )G E  of 
MCEP, we can construct an instance ( , , )G E M  of MCCP where { }{ }|j jM e e E= ∈ . 
A typical process for solving MCEP or MCCP is shown in Fig. 1. First, vulnerability 
scanning tools, such as Nessus (Deraison, 2010), determine vulnerabilities of individual 
hosts. Using this vulnerability information along with exploit templates, intruder’s goals, 
and other information about the network, such as connectivity between hosts, a network 
attack graph is generated. In this directed graph, each complete path from an initial node to 
a goal node corresponds to an attack scenario. The minimization analysis of the network 
attack graph determines a minimum critical set of exploits/countermeasures that must be 
prevented/implemented to guarantee no attack scenario is possible. 
 

 
Fig. 1. Minimization analysis of network attack graphs 

4. ParticleNAG 
In this section, we present ParticleNAG, a memetic particle swarm optimization algorithm 
for minimization analysis of large-scale network attack graphs. The aim of minimization 
analysis of network attack graphs is to find a minimum critical set of exploits/ 
countermeasures. This problem is in fact a constrained optimization problem in which the 
objective is to find a solution with minimum cardinality and the constraint is that the 
solution must be critical (i.e., it must hit all attack scenarios). 
Fig. 2 shows the pseudo-code of ParticleNAG. The first step is to initialize the swarm and 
control parameters. Then repeated iterations of the algorithm are executed until some 
termination condition is met (e.g., a maximum number of iterations is reached). Within each 
iteration, if each particle’s current position xi does not represent a critical set of exploits, a 
greedy repair algorithm is applied to it. Then redundant exploits of xi are eliminated. After 
that, xi is improved by a local search heuristic procedure. Then the particle’s personal best 
position yi is updated using equation (1). The global best position ŷ is then determined from 
the entire swarm by selecting the best personal best position. Finally, the velocity and the 
position of each particle are updated using equations (2) and (5). 
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procedure ParticleNAG 
     Set parameters, create and initialize the swarm 
     while termination condition not met do 
          for each particle i do 
               if ix does not represent a critical set of exploits then 
                    Apply the greedy repair procedure to ix ; 
               end if 
               Eliminate redundant exploits of ix ; 
               Apply the local search heuristic to ix ; 
               Update the personal best position iy ; 
          end for 
          Update the global best position ŷ ; 
          for each particle i do 
               Update the velocity iv ; 
               Update the position ix ; 
          end for 
     end while 
end ParticleNAG 

Fig. 2. The ParticleNAG algorithm 

5.1 Problem representation 
Let { }1 2, , ..., nE e e e=  be the set of preventable exploits. Each particle position ix  

corresponds to an n-bit vector 1 2( , , ..., )i i inx x x  and represents a subset of exploits iE E⊆  in 
which the exploit j ie E∈  if and only if the element 1ijx = . 

 { }| 1i j ijE e E x= ∈ =  (10) 

Let { }1 2, , ..., lS S S S=  be the set of attack scenarios represented by the network attack graph 
G. The attack scenario kS S∈  is hit by the particle position ix  if k iS E ≠ ∅∩ . 
The particle position ix  represents a critical set of exploits if all attack scenarios are hit by it. 
The aim of minimization analysis of network attack graphs is to find a minimum critical  
set of exploits. So ParticleNAG uses the following fitness function to evaluate the quality of 

ix : 

 ( ) | | | |i if x E E= −  (11) 

5.2 Greedy repair 
The set of exploits represented by a particle position xi may not be critical. In other words, it 
may not hit all attack scenarios. 
Let iE  be the set of exploits represented by a particle position ix . As shown in Fig. 3, the 
greedy repair algorithm chooses at each step an exploit ke E∈  such that k ie E∉  and it 
maximizes the partial hit value ( , )p k ihv e E . It then adds ke  to iE  and changes its 
corresponding element ikx  to 1. This is repeated until a critical set of exploits is obtained. 
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procedure GreedyRepair ( ix ) 
     { }1| =∈= ijji xEeE ; 
     while ix  does not represent a critical set of exploits do 
          Choose an exploit Eek ∈  such that ik Ee ∉  and it maximizes  
          the partial hit value ),( ikp Eehv ; 
         }{ kii eEE ∪= ; 
         1=ikx ; 
         maxVvik = ; 
     end while 
     return ix ; 
end GreedyRepair 

Fig. 3. The greedy repair procedure 

5.3 Greedy elimination 
The critical set of exploits represented by a particle position ix  may contain redundant 
exploits, which must be eliminated. Let iE  be the critical set of exploits represented by ix . 
The exploit je  is called candidate redundant with respect to iE  if ( , ) 0x j ihv e E = . The set of 
candidate redundant exploits of iE  is denoted by iR . 

 { }| ( , ) 0i j i x j iR e E hv e E= ∈ =  (12) 

For each candidate redundant exploit j ie R∈ , the selection value ( , )j isv e E  is calculated as 

 
\{ }

( , ) ( , \{ })
k i j

j i x k i j
e E e

sv e E hv e E e
∈

= ∑  (13) 

The selection value is used to evaluate candidate redundant exploits of a critical set of 
exploits in order to choose a candidate redundant exploit to be removed from it. 
 

procedure GreedyElimination ( ix ) 
     { }| 1i j ijE e E x= ∈ = ; 
     { }| ( , ) 0i j i x j iR e E hv e E= ∈ = ; 
     while iR ≠ ∅  do 
          Choose an exploit k ie R∈  that maximizes the selection 
          value ( , )k isv e E ; 
         \{ }i i kE E e= ; 
         0ikx = ; 
         maxikv V= − ; 
         { }| ( , ) 0i j i x j iR e E hv e E= ∈ = ; 
     end while 
     return ix ; 
end GreedyElimination 

Fig. 4. The greedy elimination procedure 
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In Fig. 4 an algorithm is presented, which can be used to eliminate redundant exploits of ix . 
Let iE  be the critical set of exploits represented by ix . The algorithm is based on the idea 
that it is good to remove an exploit ke  from iE  if ke  is a candidate redundant exploit and 
hits attack scenarios that are hit by too many other exploits in iE . Hence, at each step, the 
algorithm chooses a candidate redundant exploit ke  from iR  that maximizes the selection 
value ( , )k isv e E . It then removes ke  from iE  and changes its corresponding element ikx  to 0. 
This is repeated until a minimal critical set of exploits is obtained. 

5.4 Local search heuristic 
Combining global and local search is a strategy used by many successful global 
optimization approaches.  
In ParticleNAG, a local search heuristic is applied to the current position of each particle to 
improve them before their personal best positions are updated. The local search heuristic is 
based on the following idea: given a particle position ix  and its corresponding critical set of 
exploits iE , suppose there is an exploit je E∈  such that j ie E∉  and { }i jE e∪  contains at 
least two exploits other than je , say 1 ,..., re e′ ′ , with 2r ≥  that are redundant. Then we 
conclude that 1( \{ ,..., }) { }i r jE e e e′ ′ ∪  is a better critical set of exploits than iE . The gain of  
the exploit je  with respect to iE  is ( , ) 1j ig e E l= − . In this case, we call je  a candidate 
dominant exploit.  
 
 

procedure LocalSearch( ix ) 
     { }| 1i j ijE e E x= ∈ = ; 
     while improvement is possible do 
          Choose an exploit ke E∈ such that k ie E∉  and ( , ) 0k ig e E > ; 
         { }i i kE E e= ∪ ; 
         1ikx = ; 
         maxikv V= ; 
          Eliminate redundant exploits of ix ; 
     end while 
     return ix ; 
end LocalSearch 

Fig. 5. The local search heuristic procedure 

As shown in Fig. 5, the local search heuristic first chooses a candidate dominant exploit ke  
and changes its corresponding element ikx  to 1. It then eliminates the redundant exploits of 
the new position using the algorithm already presented in Section 5.3 for eliminating 
redundant exploits. This process is repeated until no further improvement is possible. 

6. Experiments 

In order to evaluate the performance of ParticleNAG, we performed our experiments over a 
sample network attack graph and several randomly generated large-scale network attack 
graphs. 
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6.1 Sample network attack graph 
Consider the network shown in Fig. 6. There are three target hosts called RedHat, Windows 
and Fedora on an internal network, and a host called PublicServer on an isolated 
demilitarized zone (DMZ) network. One firewall separates the internal network from the 
DMZ and another firewall separates the DMZ from the rest of the Internet. A number of 
services are running on each of the hosts of RedHat, Windows, Fedora, and PublicServer. Also, 
each of the above hosts has a number of vulnerabilities. Vulnerability scanning tools such as 
Nessus (Deraison, 2010) can be used to find the vulnerabilities of each host. 
 

 
Fig. 6. An example network 
Different types of services and vulnerabilities available on the network hosts are introduced 
in Table 1. 
 

iis_bof(h) IIS web server has buffer overflow vulnerability on host h  

exchange_ivv(h) Exchange mail server has input validation vulnerability on host h  

squid_conf(h) Squid web proxy is misconfigured on host h  

licq_ivv(h) LICQ client has input validation vulnerability on host h  

sshd_bof(h) SSH server has buffer overflow vulnerability on host h  

scripting(h) HTML scripting is enabled on host h  

ftp(h) FTP service is running on host h  

wdir(h) FTP home directory is writable on host h  

fshell(h) FTP user has executable shell on  host h  

xterm_bof(h) xterm program has buffer overflow vulnerability on host h  

at_bof(h) at program has buffer overflow vulnerability on host h  

database(h) database service is running on  host h  

Table 1. Types of services and vulnerabilities running on the network hosts 
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The RedHat host on the internal network is running FTP and SSH services. The Fedora host is 
running several services: LICQ chat software, Squid web proxy, FTP and a database. The 
LICQ client lets Linux users exchange text messages over the Internet. The Squid web proxy 
is a full-featured web proxy cache. Web browsers can then use the local Squid cache as a 
proxy server, reducing access time as well as bandwidth consumption. The PublicServer host 
on the DMZ network is running IIS and Exchange services. 
The connectivity information among the network hosts is shown in Table 2. In this Table, 
each entry corresponds to a pair of (hs, ht) in which hs is the source host and ht is the target 
host. Every entry has five boolean values. These values are ‘T’ if host hs can connect to host 
ht on the ports of http, licq, ftp, ssh, and smtp, respectively. 
 

Host Intruder PublicServer RedHat Windows Fedora 

Intruder F,F,F,F,F T,F,F,F,T F,F,F,F,F F,F,F,F,F F,F,F,F,F 

PublicServer F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F 

RedHat F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F 

Windows F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F 

Fedora F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F 

Table 2. Network connectivity information 
The intruder launches his attack starting from a single host, Intruder, which lies on the 
outside network. His goal is to disrupt the database service on the host Fedora. To achieve 
this goal, the intruder should gain the root privilege on this host.  
There are wdir, fshell, and sshd_bof vulnerabilities on the RedHat host, scripting vulnerability 
on the Windows host, wdir, fshell, squid_conf, and licq_ivv vulnerabilities on the Fedora host, 
and iis_bof and exchange_ivv on the PublicServer host. Also, at and xterm programs on the 
RedHat and Fedora are vulnerable to buffer overflow. The intruder can use ten generic 
exploits, described as follows: 
• iis_r2r 

Buffer overflow vulnerability in the Microsoft IIS web server allows remote intruders to 
gain root shell on the target host. 

• exchange_r2u 
The OLE component in the Microsoft Exchange mail server does not properly validate 
the lengths of messages for certain OLE data, which allows remote intruders to execute 
arbitrary code. 

• squid_ps 
The intruder can use a misconfigured Squid web proxy to conduct unauthorized 
activities such as port scanning. 

• licq_r2u 
The intruder can send a specially crafted URL to the LICQ client to execute arbitrary 
commands on the target host. 

• script_r2u 
Microsoft Internet Explorer allows remote intruders to execute arbitrary code via 
malformed Content-Disposition and Content-Type header fields that cause the 
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application for the spoofed file type to pass the file back to the operating system for 
handling rather than raise an error message. 

• ssh_r2r 
Buffer overflow vulnerability in the SSH server allows remote intruders to gain root 
shell on the target host. 

• ftp_rhosts 
Using FTP vulnerability, the intruder creates a .rhosts file in the FTP home directory, 
creating a remote login trust relationship between his host and the target host. 

• rsh_r2u 
Using an existing remote login trust relationship between two hosts, the intruder logs in 
from one machine to another, getting a user shell without supplying a password. 

• xterm_u2r 
Buffer overflow vulnerability in the xterm program allows local users to gain root shell 
on the target host. 

• at_u2r 
Buffer overflow vulnerability in the at program allows local users to gain root shell on 
the target host. 

In Table 3, each generic exploit is represented by its preconditions and postconditions. More 
information about each of the exploits is available in (NVD, 2010). Before an exploit can be 
used, its preconditions must be met. Each exploit will increase the network vulnerability if it 
is successful. Among the ten generic exploits shown in Table 3, the first eight generic 
exploits require a pair of hosts and the last two generic exploits require only one host. 
Therefore, there are 8 * 5 * 4 + 2 * 4 = 168 exploits in total, which the intruder can try. Each 
attack scenario for the above network consists of a subset of these 168 exploits. For example, 
consider the following attack scenario: 
1. iis_r2r(Intruder, PublicServer)  
2. squid_ps(PublicServer, Fedora)  
3. licq_r2u(PublicServer, Fedora)  
4. xterm_u2r(Fedora, Fedora)  
The intruder first launches the iis_r2r exploit to gain root privilege on the PublicServer  
host. Then he uses the PublicServer host to launch a port scan via the vulnerable Squid web 
proxy running on the Fedora host. The scan discovers that it is possible to gain user privilege 
on the Fedora host with launching the licq_r2u exploit. After that, a simple local buffer 
overflow gives the intruder root privilege on the Fedora host. The attack graph for the above 
network consists of 164 attack scenarios. Each attack scenario consists of between 4 to 9 
exploits. 

Experimental Results 
We applied ParticleNAG for minimization analysis of the above network attack graph. To 
evaluate the performance of the algorithm, we performed several experiments. 
In the first experiment, we assumed that all exploits are preventable. Therefore, the aim was 
to find a minimum critical set of exploits among 168 exploits. Using ParticleNAG, the 
following minimum critical set of exploits was found: 

CE = { iis_r2r(Intruder, PublicServer), 
exchange_r2u(Intruder, PublicServer) } 
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Exploit Preconditions Postconditions 

iis_r2r(hs, ht) 

iis_bof(ht) 
C(hs, ht, http) 
plvl(hs) ≥ user 
plvl(ht) < root 

¬iis(ht) 
plvl(ht) := root 

exchange_r2u(hs, ht) 

exchange_ivv(ht) 
C(hs, ht, smtp) 
plvl(hs) ≥ user 
plvl(ht) = none 

plvl(ht) := user 

squid_ps(hs, ht) 

squid_conf(ht) 
¬scan 

C(hs, ht, http) 
plvl(hs) ≥ user 

scan 

licq_r2u(hs, ht) 

licq_ivv(ht) 
scan 

C(hs, ht, licq) 
plvl(hs) ≥ user 
plvl(ht) = none 

plvl(ht) := user 

script_r2u(hs, ht) 

scripting(ht) 
C(ht, hs, http) 
plvl(hs) ≥ user 
plvl(ht) = none 

plvl(ht) := user 

sshd_r2r(hs, ht) 

sshd_bof(ht) 
C(hs, ht, ssh) 

plvl(hs) ≥ user 
plvl(ht) < root 

¬ssh(ht) 
plvl(ht) := root 

ftp_rhosts(hs, ht) 

ftp(ht) 
wdir(ht) 
fshell(ht) 
¬T(ht, hs) 

C(hs, ht, ftp) 
plvl(hs) ≥ user 

T(ht, hs) 

rsh_r2u(hs, ht) 
T(ht, hs) 

plvl(hs) ≥ user 
plvl(ht) = none 

plvl(ht) := user 

xterm_u2r(ht, ht) 
xterm_bof(ht) 
plvl(ht) = user plvl(ht) := root 

at_u2r(ht, ht) 
at_bof(ht) 

plvl(ht) = user plvl(ht) := root 

Table 3. Exploit templates  

In the second experiment, we assumed that the generic exploits iis_r2r, exchange_r2u, and 
xterm_u2r are inevitable, i.e., the prevention of them is not feasible or incurs high cost. 
Therefore, the aim was to find a minimum critical set of exploits among 124 exploits. Using 
ParticleNAG, the following minimum critical set of exploits was found: 
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CE = { licq_r2u(PublicServer, Fedora),  
licq_r2u(RedHat, Fedora),  
script_r2u(PublicServer, Windows),  
ftp_rhosts(PublicServer, Fedora),  
ftp_rhosts(RedHat, Fedora) } 

It should be mentioned that the exact cardinality of the minimum critical set of exploits for 
this network attack graph is 5, so the above critical set of exploits found by ParticleNAG is 
minimum. While using ApproxNAG (Sheyner et al., 2002); (Jha et al., 2002), the following 
minimum critical set of exploits was found: 

CE = { script_r2u(PublicServer, Windows),  
at_u2r(Fedora, Fedora),  
sshd_r2u(PublicServer, RedHat),  
ftp_rhosts(PublicServer, RedHat),  
squid_ps(PublicServer, Fedora),  
ftp_rhosts(PublicServer, Fedora) }  

The second experiment shows ParticleNAG can find a critical set of exploits with less 
cardinality. 
In the experiments, the parameters were set to c1 = 2, c2 = 2, and Vmax = 4, which are values 
commonly used in the binary PSO literature. The swarm size was set to m = 10 and the 
maximum number of iterations was set to tmax = 50. 

6.2 Large-scale network attack graphs 
A large computer network builds upon multiple platforms, runs different software packages 
and supports several modes of connectivity. Despite the best efforts of software architects 
and developers, each network host inevitably contains a number of vulnerabilities. 
Several factors can make network attack graphs larger so that finding a minimum critical set 
of exploits/countermeasures becomes more difficult. An obvious factor is the size of the 
network under analysis. Our society has become increasingly dependent on networked 
computers and the trend towards larger networks will continue. For example, there are 
enterprises today consisting of tens of thousands of hosts. Also, less secure networks clearly 
have larger network attack graphs. Each network host might have several exploitable 
vulnerabilities. When considered across an enterprise, especially given global internet 
connectivity, network attack graphs become potentially large (Ammann et al., 2005). 
In order to further evaluate the performance of ParticleNAG, we randomly generated 14 
large-scale network attack graphs, denoted by 1NAG , 2NAG , ..., 14NAG . For each network 
attack graph, we considered different values for the cardinalities of E  and S , where E  is 
the set of preventable exploits and S  is the set of attack scenarios represented by the 
network attack graph. 
In 1NAG , ..., 7NAG , attack scenarios consists of between 3 to 9 exploits, while in 8NAG ,  
..., 14NAG , attack scenarios consists of between 3 to 12 exploits. Table 4 shows the 
cardinality of the set of preventable exploits, the cardinality of the set of attack scenarios, 
and the average cardinality of attack scenarios for each generated large-scale network attack 
graph. 
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Network 
Attack Graph 

Cardinality of the Set 
of Exploits (|E|) 

Cardinality of the Set of 
Attack Scenarios (|S|) 

Average Cardinality of 
Attack Scenarios 

1NAG  200 2000 6.01 

2NAG  400 4000 5.99 

3NAG  400 6000 5.99 

4NAG  600 6000 6.03 

5NAG  600 8000 5.95 

6NAG  800 8000 6.01 

7NAG  1000 10000 6.05 

8NAG  200 2000 7.55 

9NAG  400 4000 7.52 

10NAG  400 6000 7.48 

11NAG  600 6000 7.53 

12NAG  600 8000 7.55 

13NAG  800 8000 7.48 

14NAG  1000 10000 7.47 

Table 4. Large-scale network attack graphs 
Experimental results 
We applied ParticleNAG for minimization analysis of the above large-scale network attack 
graphs. We performed 10 runs of the algorithm with different random seeds and reported 
the best cardinality and the average cardinality of critical sets of exploits obtained from 
these 10 runs. We also applied ApproxNAG (Sheyner et al., 2002); (Jha et al., 2002), AntNAG 
(Abadi & Jalili, 2006), and GenNAG (Abadi & Jalili, 2008) for minimization analysis of the 
above network attack graphs. As shown in Table 5, ParticleNAG outperforms all the 
algorithms referenced above and finds a critical set of exploits with less cardinality. On 
average, the cardinalities of critical sets of exploits found by ParticleNAG, AntNAG, 
GenNAG are, respectively, 10.77, 9.21, and 8.95 percent less than the cardinality of critical 
set of exploits of exploits found by ApproxNAG. Accordingly, we conclude that 
ParticleNAG is more efficient than ApproxNAG, AntNAG, and GenNAG. 
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In ParticleNAG experiments, the parameters were set to c1 = 2, c2 = 2, and Vmax = 4, which 
are values commonly used in the binary PSO literature. The swarm size was set to m = 20 
and the maximum number of iterations was set to tmax = 100. 
 

ParticleNAG AntNAG GenNAG Network 
Attack 
Graph Best Average Best Average Best Average 

ApproxNAG 

1NAG  87 87.3 88 88.6 87 88.8 98 

2NAG  175 176.5 177 178.9 176 179.0 197 

3NAG  194 196.6 197 199.6 197 200.2 221 

4NAG  264 265.9 268 270.7 264 271.3 296 

5NAG  287 288.4 291 293.7 291 293.8 317 

6NAG  351 352.8 356 360.9 358 361.3 397 

7NAG  439 442.8 448 451.7 449 453.9 503 

8NAG  80 80.8 81 82.1 81 82.0 91 

9NAG  158 159.6 159 161.9 161 162.5 182 

10NAG  178 179.4 179 181.9 180 182.8 200 

11NAG  239 240.8 242 244.7 244 245.6 267 

12NAG  257 259 262 264.4 263 265.6 293 

13NAG  322 323.6 325 329.1 327 331.2 362 

14NAG  401 404 409 413.1 410 414.9 450 

Table 5. The cardinality of critical set of exploits found by ParticleNAG, AntNAG, GenNAG, 
and ApproxNAG 

Figures 7 to 10 show the progress of the average cardinality of the global best position  
of ParticleNAG, the global best solution of AntNAG, and the best chromosome of GenNAG 
in the experiments for minimization analysis of 4NAG , 7NAG , 12NAG , and 14NAG , 
respectively. As it can be seen in these figures, ParticleNAG is able to quickly converge to a 
good solution for large-scale network attack graphs and can maintain the balance  
between the exploration and exploitation reasonably well in comparison to AntNAG and 
GenNAG. 
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Fig. 7. Comparison of the performance of ParticleNAG, AntNAG, and GenNAG for 
minimization analysis of NAG4 
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Fig. 8. Comparison of the performance of ParticleNAG, AntNAG, and GenNAG for 
minimization analysis of NAG7 
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Fig. 9. Comparison of the performance of ParticleNAG, AntNAG, and GenNAG for 
minimization analysis of NAG12 
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Fig. 10. Comparison of the performance of ParticleNAG, AntNAG, and GenNAG for 
minimization analysis of NAG14 
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6.3 Algorithm parameters 
We performed experiments to analyze the effect of different settings of parameters on the 
performance of ParticleNAG.  
The effect of using the local search heuristic on the performance of ParticleNAG was 
analyzed by comparing the results of running the algorithm with and without the local 
search heuristic. Figures 11 and 12 show the progress of the average cardinality of the global  
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Fig. 11. Comparison of the performance of ParticleNAG and ParticleNAG without the local 
search heuristic for minimization analysis of NAG7 
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Fig. 12. Comparison of the performance of ParticleNAG and ParticleNAG without the local 
search heuristic for minimization analysis of NAG10 
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best position, obtained from 10 runs of ParticleNAG and 10 runs of ParticleNAG without the 
local search heuristic in the experiments for minimization analysis of 7NAG  and 10NAG , 
respectively. 
As the figures show, ParticleNAG significantly performs better than ParticleNAG without 
the local search heuristic and finds a critical set of exploits with less cardinality. This is 
because before updating the personal best position of a particle, its current position is 
improved by the local search heuristic. Hence, the personal best position of the particle 
shows a locally optimized solution.  
To analyze the effect of the swarm size on the performance of ParticleNAG, the algorithm 
was run with the parameter settings from Section 6.2 but this time with the swarm size, m, 
set to 2, 5, 15, and 20, respectively.  
As it can be seen in Table 6, when using a very small number of particles, ParticleNAG 
shows a poor performance. This is because the fewer the number of particles, the less the  
 

SwarmNAG Network 
Attack Graph 2m=  5m=  15m=  20m=  

1NAG  89.1 88.6 87.8 87.3 

2NAG  179.7 178.1 176.9 176.5 

3NAG  201.0 198.1 197.0 196.6 

4NAG  271.6 267.8 265.7 265.9 

5NAG  294.1 290.4 288.7 288.4 

6NAG  361.8 355.1 354.2 352.8 

7NAG  451.1 446.0 442.8 442.8 

8NAG  82.7 81.8 81.5 80.8 

9NAG  163.2 160.6 160.4 159.6 

10NAG  184.2 181.2 179.1 179.4 

11NAG  245.0 242.2 241.3 240.8 

12NAG  263.8 261.6 259.9 259.0 

13NAG  330.5 326.9 323.8 323.6 

14NAG  413.1 408.1 404.7 404.0 

Table 6. Effect of the swarm size on the performance of ParticleNAG 
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exploration ability of the algorithm, and consequently the less information about the search 
space is available to all particles. 

7. Conclusions 
Each attack scenario is a sequence of exploits launched by an intruder for a particular goal. 
To prevent an exploit, the security analyst must implement a suitable countermeasure such 
as the firewall configuration or patch the vulnerabilities that made this exploit possible. The 
collection of possible attack scenarios in a computer network can be represented by a 
directed graph, called network attack graph. In this directed graph, each path from an initial 
node to a goal node corresponds to an attack scenario.  
The aim of minimization analysis of network attack graphs is to find a minimum critical set 
of exploits/countermeasures so that by preventing/implementing them the intruder cannot 
reach his goal using any attack scenarios. This problem is in fact a constrained optimization 
problem in which the objective is to find a solution with minimum cardinality and the 
constraint is that the solution must be critical. 
Several factors can make network attack graphs larger so that finding a minimum critical set 
of exploits/countermeasures becomes more difficult. An obvious factor is the size of the 
network under analysis. Our society has become increasingly dependent on networked 
computers and the trend towards larger networks will continue. Also, less secure networks 
clearly have larger network attack graphs. Each network host might have several exploitable 
vulnerabilities. When considered across an enterprise, especially given global internet 
connectivity, network attack graphs become potentially large. 
Particle swarm optimization (PSO) is a population based stochastic optimization algorithm 
that was inspired by social behaviour of flocks of birds when they are searching for food.  
While evolutionary algorithms take inspiration from biological evolution, memetic 
algorithms mimic cultural evolution. The term meme refers to a unit of cultural information 
that can be transmitted from one mind to another after reinterpretation and improvement 
that in the context of combinatorial optimization corresponds to local search. 
In this paper, we presented a memetic particle swarm optimization algorithm, called 
ParticleNAG, for minimization analysis of network attack graphs. A greedy repair method 
was used to convert the constrained optimization problem into an unconstrained one. We 
reported the results of applying ParticleNAG for minimization analysis of 14 large-scale 
network attack graphs. We also applied an approximation algorithm, ApproxNAG (Sheyner 
et al., 2002); (Jha et al., 2002), an ant colony optimization algorithm, AntNAG (Abadi & Jalili, 
2006), and a genetic algorithm, GenNAG (Abadi & Jalili, 2008), for minimization analysis of 
the above large-scale network attack graphs.  
On average, the cardinality of critical sets of exploits found by ParticleNAG was 10.77 
percent less than the cardinality of critical sets of exploits found by ApproxNAG. Also, 
ParticleNAG performed better than AntNAG and GenNAG in terms of convergence speed 
and accuracy. 
We performed experiments to analyze the effect of swarm size and local search heuristic on 
the performance of ParticleNAG. The results of experiments showed that ParticleNAG 
significantly performs better than ParticleNAG without the local search heuristic. 
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1. Introduction 
In the world of combinatorial optimization, a wide range of combinatorial problems exist for 
which the solution is permutative, such as knapsack problem, traveling salesman problem 
(TSP), vehicle routine problem (VRP), quadratic assignment problem (QAP), dynamic pick-
and-place (DPP) model of placement sequence and magazine assignment in robots and 
various types of scheduling problems. The objectives for these problems are usually to find 
the best sequence to realize the optimal, for example, to minimize the maximum completion 
time of jobs on machines or to find the shortest routing between several cities. These 
problems are very different from the continuous space problem because we are interested in 
sequence such as [1 2 3 4 5] which is permutative in nature. The solutions include a 
permutation-based sequence as well as the fitness. It is not feasible to solve this kind of 
problem using the approaches that solve only continuous problems. 
As an important part of the permutation-based combinatorial optimization problems, the 
permutative scheduling problems (PSP) account for a large proportion of the production 
scheduling which is the core content of advanced manufacturing system. Among them, the 
flow shop scheduling problem (FSP) and job shop scheduling problem (JSP) may be the best 
known permutation-based scheduling problems. Both of FSP and JSP have earned a 
reputation for being a typical strongly NP-complete combinatorial optimization problem 
(Garey, et al., 1976) and have been studied by many workers due to their importance both in 
academic and engineering fields.   
By now, the meta-heuristic algorithms achieve global or sub-optimal optima within acceptable 
time range are most popular for dealing with the permutation-based scheduling optimization 
problem like flow shop and job shop scheduling. These approaches are initiated from a set of 
solutions and try to improve these solutions by using some strategies or rules. The meta-
heuristics for PSP include genetic algorithm (GA) (Reeves & Yamada, 1998; Goncalves, et al., 
2005), immune algorithm (IA) (Doyen, et al., 2003; Xu & Li, 2007), tabu search (TS) (Nowicki & 
Smutnicki, 1996; Pezzella & Merelli, 2000), simulated annealing (SA) (Hisao, et al., 1995), ant 
colony optimization (ACO) (Ying & Liao, 2004; Zhang, et al., 2006), particle swarm 
optimization (PSO) (Tasgetiren, et al., 2004; Liao, et al., 2007; Xia & Wu, 2006), local search 
(Stützle, 1998), iterated greedy algorithm (Rubén & Stützle, 2007), differential evolution (Pan, 
et al., 2008), and other hybrid approaches (Zheng & Wang, 2003; Qian, et al., 2008; Hasan, et al., 
2009). We should notice that these meta-heuristics can obtain satisfactory solutions, while 
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require more computation time and vary dramatically according to their structure and 
parameters. Recently, Han and Kim (2000, 2002, 2004) proposed some quantum-inspired 
evolutionary algorithms (QEAs) for the knapsack problem. However, due to its encoding and 
decoding scheme, the QEA can’t directly be applied to permutation-based scheduling 
problems and the research of production scheduling problems based on QEA is just at 
beginning. Research of PFSP for minimizing the makespan of jobs based on QEA is first 
proposed by Wang, et al. (2005a, 2005b) and he made the simulations and proved that the QEA 
has better performance than NEH algorithm. Quite recently, Gu, et al. (2008) proposed a 
quantum genetic based scheduling algorithm for stochastic flow shop scheduling problem 
with the random breakdown and Niu, et al. (2009) put forward a quantum-inspired immune 
algorithm for hybrid flow shop with makespan criterion.  
In our study, a novel quantum-inspired evolutionary algorithm called quantum-inspired 
differential evolutionary algorithm (QDEA) is applied to deal with the FSP and JSP. This 
chapter is divided into the following sections: section 2 presents the two different shop 
scheduling problems; in section 3, the basic quantum-inspired evolutionary algorithm is 
introduced and we put forward the algorithm framework based on QEA for solving the 
permutation-based scheduling problem. Then, each part of proposed algorithm framework 
is implemented by developing the novel QDEA which will be presented in section 4. In 
section 5, we make the simulation and comparisons of proposed QDEA with other 
algorithms for FSP and JSP. Finally, section 5 concludes the research. 

2. Permutative scheduling problems 
A flow shop is characterized by continuous and uninterrupted flow of jobs through multiple 
machines in series and the solution for FSP is the processing sequence of jobs. A FSP 
containing the same processing sequence of jobs for all machines is called as permutation 
FSP (PFSP). In the permutation FSP with J jobs and M machines, each job is to be 
sequentially processed on machine j = 1,2,…,n. At any time, each machine can process at 
most one job and each job can be processed on at most one machine. The sequence in which 
the jobs are to be processed is the same for each machine. Here we suppose π = {J1, J2,…,Jn} to 
be any a processing sequence of all jobs and suppose c(Ji, k) and t(Ji, k) to be the completion 
time and the processing time of job Ji on machine k, respectively. After initializing c(J1, 1) = 
t(J1, 1), the mathematical formulae for the permutation FSP can be described as follows: 

 c(J1, k) = c(J1, k - 1) + t(J1, k), k=2,…,m  (1) 

 c(Ji, 1) = c(Ji-1, 1) + t(J1, 1), i=2,…,n  (2) 

 c(Ji, k) = max{c(Ji-1, k), c(Ji, k-1)} + t(Ji, k), i=2,…,n, k=2,…,m  (3) 

so the scheduling objective such as minimizing the maximum completion time (makespan) 
which is most widely adopted can be described as: 

 Cmax = c(Jn, m)  (4) 

The PFSP with the makespan criterion is to find the permutation π* in the set of all 
permutations ∏ satisfies the following criterion:  

 Cmax (π*) ≤ Cmax (π) ∀  π ∈∏  (5) 
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For a deterministic n×m JSP, the n job J = {J1, J2, …Jn} must be processed exactly once on each 
of m machines M={M1, M2, …Mn}. The processing of a job Ji on one machine Mj is called an 
operation Oi,j, and each opeation mush have an integral processing time pi,j (pi,j > 0). There 
are two important constraints make the JSP different from other scheduing problems like 
PFSP: the operation precedence constraint and the machine processing constraint. The 
operation constraint means that once order of operations of job is fixed then the processing 
of an operation cannot be interrupted and concurrent; and the machine constraint is that 
only a single job can be processed at the same time on the same machine. We denote Ci,j as 
the completion time for operation of job Ji on machine Mj, so the value Ci,j = Ci,k + pi,j  is a 
completion time of Oi,j in relation of which Oi,k precedes to Oi,j in processing order. For 
deterministic JSP, the pi,j is pre-set and the goal of scheduling in this study is to find the 
completion time Ci,j for all Oi,j to minimize the value of Cmax = Max(Ci,k + pi,j), in which the Oi,k 
precedes to Oi,j and Cmax stands for the time used in completing all operations required. 

3. Quantum-inspired evolutionary framework for permutative optimization 
3.1 The basic quantum-inspired evolutionary algorithm 
The quantum-inspired evolutionary algorithm (QEA) is based on the concept and principles 
of quantum computing, such as the quantum bit and the superposition of states. QEA can 
explore the search space with a smaller number of individuals and exploit the search space 
for a global solution within a short span of time. However, QEA is not a quantum algorithm, 
but a novel evolutionary algorithm (EA). Like any other EAs, QEA is also characterized by 
the representation of the individual, the evaluation function, and the population diversity. 
Inspired by the concept of quantum computing, QEA is designed with a novel Q-bit 
representation, a Q-gate as a variation operator, and an observation process based on Q-bits. 
QEA uses a novel Q-bit representation which is a kind of probabilistic representation. A Q-
bit may be in the “1” state, in the “0” state, or in a linear superposition of two states. A Q-bit 
individual as a string of Q-bits is defined as: 

 1 2

1 2

m

m
q

α α α
β β β
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (6) 

where|αi|+|βi|=1, i=1,2,…,m (Han & Kim, 2000, 2002, 2004). If there is, for instance, a two 
Q-bits system with two pairs of amplitudes such as 

 
1 / 2 1 / 2

1 / 2 3 / 2
q

⎡ ⎤−
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
 (7) 

then the states of the system can be represented as 

 1 3 1 300 01 10 11
2 2 2 2 2 2 2 2

− + + −  (8) 

The above result means that the probabilities to represent the states 00 , 01 , 10 , 11 are 
1/8, 3/8, 1/8, 3/8 respectively. By consequence, the two Q-bits system contains the 
information of four states. Evolutionary computing with Q-bit representation can provide a 
better characteristic of population diversity than other representations, since it can represent 
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linear superposition of states probabilistically. Only one Q-bit individual is enough to 
represent four states, but in binary representation at least four strings (00), (01), (10), (11) are 
needed. By observing the states of Q-bit, the Q-bit will collapse into 0 or 1 . Then, a 
quantum chromosome with a length of 2 will become a binary string by a certain 
measurement method and we can use the binary string to solve the problem required. 
The basic QEA includes 4 main steps (Han & Kim, 2000, 2002): initialization, observation, 
evaluation and updating. The procedure of basic QEA is described in the Figure 1: 
 

procedure of QEA{ 
 t ← 0 
 initialize Q(t) 
 observe Q(t) and produce P(t) 
 evaluate P(t) 
 store the best solution b among P(t) 
 do{ 
        t ← t + 1 
         observe Q(t -1) and produce P(t) 
         evaluate P(t) 
        update Q(t) 
        store the best solution b among P(t) 
 }while(t< MAX_GEN)) 
} 

Fig. 1. The pseudo code of basic QEA  
When we adopt the QEA to deal with some problems, we firstly initialize the quantum 
population Q0 = [q0,1, q0,2,...,q0,n], where n is population size and the individual q0,i = 
[q0,i,1, q0,i,2,...,q0,i,m] is the quantum chromosome represented by two-state Q-bits, where 
m is the dimension of the problem. Then the step of observation makes binary solutions in 
P(t) by observing the states of Q(t), where P(t) = [xt,1, xt,2,...,xt,n]. One binary solution xt,j, 
j=1,2,…,n is a binary string of length, which is formed by selecting either 0 or 1 for each bit 
using the probability amplitudes. The procedure of evaluation is similar to other EAs by 
which each binary solution xt,j is evaluated to give a measure of its fitness and the optimum 
individual b will be stored. In this step of updating, Q-bit individuals in Q(t) are updated by 
applying quantum rotating gate defined as a variation operator of QEA, the following 
rotation gate is usually used as a basic Q-gate in QEA: 
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( ) ( )

'

'

cos sin

sin cos
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 (9) 

θi = s(αi, βi)Δθi, where Δθi is the value of the rotation angle and s(αi, βi) is the rotation 
direction. 
As a conclusion, we can see in the basic QEA, the population provides plenty of diversity 
even in the small population and it can be easily mixed with other algorithms. In the QEA, 
the observation and updating are the core of the evolution. The observation operation 
determines the solution for the specific problem and updating leads the search towards the 
optimal. In this chapter, we propose a common algorithm framework for the permutative 
scheduling based on QEA and give an implement to this algorithm framework for solving 
FSP and JSP in the next section. 
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3.2 Quantum-inspired evolutionary framework for permutative scheduling problem 
This study adopts the QEA to solve the permutative scheduling problem. As for the 
evolution-based algorithm like QEA, the population of individuals needs to be initialized 
according to the mechanism of QEA firstly, and effective updating operator also should be 
adopted to perform the evolution. Then, since the quantum chromosomes can not be used to 
represent the job permutations directly, a conversion rule is necessary to determine the 
representation of solutions which is permutative. At last, in order to improve the solution 
obtained through global search performed by QEA, some neighborhood based search can be 
performed on the permutative solution to get satisfactory results. The algorithm framework 
for permutation-based scheduling problems is shown in Figure 2. We will make a brief 
discussion about the four important parts shown in Figure 2 before implement the 
algorithm. 
 

 
Fig. 2. The algorithm framework for permutation-based scheduling problems 

1. The encoding scheme for Q-bits based population 
About how to encode the chromosome composed of several Q-bit, the equation 6 is 
most widely adopted for solving the scheduling problems (Wang, et al., 2005a, 2005b; 
Gu, et al., 2008; Niu, et al., 2009). In these researches, only one string of the probability 
amplitude is used to make the solution and the opposite one is just ignored. While, 
when we update the quantum individual, according to the normalization condition, 
these two probability amplitude strings should both be operated. If we just consider one 
string of probability amplitudes, the other one is a kind of waste. This study will 
introduce an encoding scheme by which we can make full use of quantum probability 
information and meet the normalization condition without any unnecessary operation. 

2. The updating strategy for quantum evolution  
The updating strategy is the core of the QEA, and Han and Kim (2000, 2002, 2004) use the 
lookup table to perform the updating of quantum gate. In the lookup table, the value and 
direction of the rotating angle are determined by making the comparisons between the 
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current solution and the global best solution. We notice the change of rotating angle is a 
constant for all the problems, so it is easy to fall into local optimal since different problems 
has different characteristic. Also, the lookup operation costs excessive search time on the 
lookup table. The lookup table and its variants are also adopted by the researches (Wang, 
et al., 2005a, 2005b; Gu, et al., 2008; Niu, et al., 2009). This study adopts a new updating 
strategy which is more effective to replace the lookup table. 

3. The conversion rule for representation of solution  
The decoding scheme is based on the encoding scheme and the specific problem. In the 
researches (Wang, et al., 2005a, 2005b; Gu, et al., 2008), the quantum chromosome is 
converted to job sequence for FSP by using the random key representation proposed by 
Bean (1994). In their approaches, the quantum chromosome is converted to the binary 
chromosome firstly, then to the decimal chromosome, and to the job order at last. 
Although this approach can convert the representation of quantum chromosome into 
job order, however, with the increasing of the problem scale, the length of 
corresponding quantum chromosome and the binary chromosome increases rapidly. In 
this study, we will introduce a simple but efficient way for conversion. 

4. The neighbourhood based search for exploitation on job sequence 
Two schedules are neighbours if one can be obtained through a well-defined modification 
of the other. Neighbourhood search methods provide good solutions and offer 
possibilities to be enhanced when combined with other heuristics. These techniques 
continue to add small changes (perturbations) and evaluate schedules until there is no 
improvement in the objective function. Popular techniques that belong to this family 
include the tabu search (TS), simulated annealing (SA), genetic algorithm (GA), and so on. 
At each iteration, these procedures perform search within the neighbourhood and 
evaluate the various neighbouring solutions. The procedure accepts or rejects a solution as 
the next schedule based on a given acceptance-rejection criterion. This study will also 
adopt the neighbourhood based search to improve the solution quality. 

Through this algorithm framework, the quantum chromosomes are converted into the job 
sequence and the algorithm can be designed for dealing with various types of permutation-
based scheduling problem. The parts 2 and 4 can be easily replaced since we can use different 
updating strategies and neighbourhood based search for evolution. Also, the part 3 is 
problem-dependent and should be adjusted according to different scheduling problems. In the 
following section, we will propose a novel approach called QDEA by implementing each part 
of this algorithm framework for the PFSP and JSP both of which are the typical permutation-
based production scheduling problem, and give the main procedure of proposed algorithm. 

4. Proposed QDEA for permutative scheduling problem 
In this section, based on the algorithm framework proposed above, we will implement each 
part shown in Figure 2 and give the description of proposed QDEA in detail. 

4.1 The implement of the QDEA 
4.1.1 The initialization of the population 
According to the principles of the basic QEA, each Q-bit has two probability amplitudes, so 
the quantum chromosome consists of two strings of probability amplitude shown in 
equation 6. In this study, we suppose the quantum chromosome to be represented as: 
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 q = [θ1    θ2   …   θn] (10) 

where θi is the quantum rotating angle with the range of [0, π / 2]. We operate on the rotating 
angle and update it with the updating operation. In the decoding process, the solutions are 
converted according to the observation method proposed below. 
Equation 6 has been adopted to solve the PFSP by Wang, et al. (2005a, 2005b), the stochastic 
FSP by Gu, et al. (2008) and hybrid FSP by Niu, et al. (2009). Although it is easy to 
understand and has been widely adopted for dealing with other problems, however, this 
kind of encoding scheme is not quite effective for the updating operation practiced by the 
quantum gate. Since the updating operation is the key of the QEA and the essence of the 
updating procedure is to influence the probability amplitude by changing the value of 
rotating angle, so we can directly practice on the quantum chromosomes represented in 
rotating angle. This provides a more effective way to deal with the Q-bits. Also, we can 
simplify the operations performed on the quantum chromosomes by using only one 
variable. Therefore, we consider that using the rotation angle to encode the quantum 
chromosome outperforms that of probability amplitude. 

4.1.2 Differential evolution for updating 
The differential evolution (DE) is a kind of population based stochastic optimization 
algorithm proposed by Storn and Price (1997, 1999), and also it’s a kind of evolutionary 
algorithm which is similar to genetic algorithm. The DE adopts the real number encoding 
scheme, mutation, crossover and selection operation based on differential vectors and has 
excellent ability of overall search ability.  
As with all other evolution based optimization algorithms, DE works with a population of 
solutions, not with a single solution for the optimization problem. Population x of 
generation g contains n solution vectors called individuals of the population and each vector 
represents potential solution for the problem. The population is often initialized by seeding 
it with random values within the given boundary constraints. 
Suppose the population Qg = [q1,g, q2,g,…, qn,g] (n is the population scale, g is the current 
evolutionary generation), individual qi,g = [θi,1,g, θi,2,g,…, θi,m,g] (m is the dimension of the 
problem, i∈[1, n]). Suppose vi,g+1 is the corresponding individual obtained by practicing the 
mutation operator on individual qi,g, and one type of mutation operators works as: 

 vi,g+1 = qr1,g + F(qr2,g − qr3,g) (11) 

where 1r , 2r , 3r ∈[1, n] and 1r ≠ 2r ≠ 3r ≠ i; qr1,g is called father basic vector, (qr2,g − qr3,g) is 
called father differential vector; F is a real number and constant factor which controls the 
amplification of the differential variation.  
In order to increase the diversity of the parameter vectors, we also use the ui,j,g+1 (j∈[1, m]) 
vector which is obtained by practicing kinds of crossover operation between qi,g and 
mutative individual vi,g+1 obtained by equation 11. The bin crossover we will use in this 
study is showed in equation 12: 

 , , 1
, , 1

, ,

i j g
i j g

i j g

v for rand CR or j Jrnd
u

otherwiseθ
+

+

< =⎧⎪
⎨
⎪⎩

 (12) 

where CR is the crossover factor and Jrnd is chosen randomly from the interval [1, m]. 
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We adopt the differential operation to perform the updating of the quantum chromosomes 
which is an innovation in this study. Since the quantum chromosomes are encoded in 
quantum angle, so the differential operations are directly practiced on the quantum angle 
and can provide the updating with excellent overall search ability and diversity. 

4.1.3 The representation of permutation-based solution 
For the decoding process of the quantum chromosome, since the solution to permutative 
scheduling problems is the order of all the elements (jobs for FSP, operations for JSP), 
therefore, we should convert the quantum chromosome encoded in rotating angle to job or 
operation sequences. In the decoding scheme adopted by Wang, et al. (2005a, 2005b) and Gu, 
et al. (2008), the representation needs several conversions (Q-bit chromosome → binary 
chromosome → decimal chromosome → job order) and the computation is complicated 
when the problem scale becomes larger. We put forward a simple but efficient strategy for 
conversion, which is also an innovation in this study.  
 

• Initialization 
1.   Obtain quantum chromosome qi = [θi,1, θi,2,…,θi,n] from the Q-bit based 
population; Calculate tempi = [cosθi,1, cosθi,2,…,cosθi, n] and initiate two arrays first() 
and last(). 

• Convertion 
2.  Generate a random number η between [0,1] and compare it with cosθi,e where e 
∈ [1, n]. If cosθi,e > η, put e into first() , else put e into last(). Repeat until all Q-bits in qi 
are operated. 
3.   Combine these two arrays first() and last() to one array permutation(), the element 
in permutation() is the permutative sequence for solution. 

• FSP representation 
4.   For PFSP, permutation() is the final solution. 

• JSP representation 
5.   For JSP, get a element p from permutation() and perform the code(i) = mod(p, m) + 1, 
where the "mod" is an operator of calculating the reminder p being divided by m and m is 
the machine number. Repeat until all p in permutation() are operated. The code() is the 
solution for JSP. 

Fig. 3. The procedure of converting mechanism for solution representation 
For the solution reprentation of permutative problems, we define the rotating angles of 
element 1,2,…n are [θ1, θ2,…,θn], that the probability amplitude of element i is [cosθi, sinθi], 
then determine the permutative sequence according to the steps shown in Figure 3.  
An example of JSP (suppose machine constrains to be [2-1; 1-2; 2-1] for 3 jobs) for converting 
mechanism is shown in Figure 4. For example, we have qi = [0.87, 0.68, 0.15, 0.42, 1.38, 1.09], 
so the tempi = [0.64, 0.77, 0.98, 0.91, 0.18, 0.46]. Then generate η as 0.76 which is larger than 
cosθi,1, so we put ‘1’ into last(). We continue generate η as 0.37 which is smaller than cosθi,2, 
so we put ‘2’ into first(). After we operated on all 6 Q-bits, we have first() = [2 3 6] and last() = 
[1 4 5]. By combining these two arrays, we have permutation() = [2 3 6 1 4 5]. By applying the 
mod(p, m) + 1 operation, the JSP code becomes [3 1 1 2 3 2]. So each job number occurs m 
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times in the chromosome, and by reading the array code() from 1 to n×m, the i-th occurrence 
of a job number refers to the i-th operation in the technological sequence of this job. Through 
the operation-based representation, any permutation can be decoded to a feasible schedule 
for JSP. In Figure 4, by scanning the elements in the job shop code, we can get the final 
schedule of {O312, O112 , O121, O211, O321, O221}, where Oijk  means the j-th operation of job i is 
processed on the machine k.    
 

      Q-bits      |  0.87  |  0.69  |  0.16  |  0.42  |  1.39  |  1.09  

 Permutation |     2    |     3    |     6    |     1    |     5    |     4

   JSP Code    |    3    |     1    |     1    |     2    |     3    |     2

   Schedule     |  O312 |  O112 |  O121 |  O211 |  O321 |  O221
 

Fig. 4. The example of converting mechanism for JSP 
Here, suppose we have a scheduling problem with the scale of 30 jobs and 10 machines and 
we can make a comparison like this way: for PFSP, since 24 < 30 < 25, so the length of the 
quantum chromosome should be 30×5 = 150 at least by the method proposed by Wang, et al. 
(2005a, 2005b) and Gu, et al. (2008), and three conversions are needed to get the final 
solution. While, by our method, we just need a quantum chromosome with length of 30 and 
practice the conversion only once; for JSP, since the solution is the operation sequence, so 
the length of the quantum chromosome should be 30×10×5 = 1500 for these approaches, and 
five conversions are needed to get the operation. While, by our method, we just need a 
quantum chromosome with length of 300 and practice the conversion only three times. 
Thus, the representation of the solution we proposed simplifies the decoding procedure for 
the quantum chromsomes greatly and can provide a more effective way to deal with 
permutative scheduling problems. 

4.1.4 Hybrid QDEA with local search scheme 
By adopting the proposed converting mechanism, the Q-bits based population can be 
converted to permutative-based solution for scheduling effectively, so various types of 
neighborhood based search can be easily embedded to develop effective hybrid algorithms. 
For the permutative-based optimization problems, the Insert, Interchange, Swap, 2-opt and Or-
opt neighborhoods are often adopted. According to the analysis from Schiavinotto and 
Stützle (2007), for the permutative-based search landscape, using Insert at most n-1 times, 
one solution can transit to any other solution. Compared with other commonly used 
neighborhoods, the diameter of Insert is one of the shortest ones, so here we adopt the 
following local search scheme based on Insert neighborhood to perform thorough 
exploitation in the promising permutation-based solutions. 
We obtain the global best chromosome Best_g and suppose n to be the element (job for PFSP 
and operation for JSP) number for a special problem. The pseudo code of the local search 
adopted is given as follows: 
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• Initialization 
1.   Initialize counter t = 0, calculating makespan of Best_g as M(Best_g). 

• Perform the search 
2.  Remove. Generate i randomly and remove i-th job in Best_g and obtain a partial 
sequence temp. 
3.  Insert. Insert the removed job into the best position j(j ≠ i) in temp and calculate 
M(Best_g). 

• Stopping condition check 
4.   If M(temp) > M(Best_g) and t < n1/2，then t ← t + 1 and go to step 2. 

• Update 
5.   If M(temp) < M(Best_g), update Best_g = temp. 

Fig. 5. The procedure of local search 

Through the local search by using Insert neighborhood, we can obtain two job sequences 
stand for the one before the operation and the one after the operation, the better one is saved 
for the next generation iteration. It is should be noticed that the local search is directly 
applied on the job permutation, not on the quantum chromosomes. So after the whole local 
search completes, the corresponding Q-bit chromosome should be repaired since this 
quantum chromosome will be used to perform the next updating by DE and should match 
the permutation results obtained by the local search. The repair operation is simple since we 
just need to exchange the corresponding position of the Q-bits.  
 

element 1 2 3 4 5 6 

qi 0.87 0.69 0.16 0.42 1.39 1.09 

pi 2 3 6 1 4 5 

qi, 0.87 1.09 0.16 0.42 1.39 0.69 

pi, 2 5 6 1 4 3 

Table 1. An example of repair for local search 

For example, before the local search, the Q-bit chromosome qi and corresponding element 
permutation pi obtained by conversion are shown in Table 1. After the local search, the 
element permutation pi, becomes [2 5 6 1 4 3] in which the ‘3’ and ‘5’ change the 2-th and 6-th 
position according to the Insert neighborhood, so we make the repair by changing the 
corresponding 2-th and 6-th Q-bits in qi and obtain the qi,= [0.87, 1.09, 0.16, 0.42, 1.39, 0.69]. 
The qi, will be adopted to perform the updating by DE strategy in the next iteration.  

4.2 The main procedure of QDEA 
To implement the common algorithm framework introduced in section 3.2, we adopt the DE 
strategy to perform the updating of quantum gate and introduce an effective converting 
mechanism for representing the permutative solution. In this way, we propose the QDEA 
for PFSP and JSP. Also, we develop the hybrid QDEA (HQDEA) by embedding the local 
search scheme to perform the neighborhood based search. The main procedure of QDEA 
(along with HQDEA) is as follows: 
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• Initialize control parameters 
1.   Set the value of control parameters for DE and the lower and upper of angle for 
the       QEA. Set maximum evolution generation iter and initialize iteration counter t 
= 0. 

• Initialize the population 
2.  Determine initial population Pop0 = [chrom0,1, chrom0,2,..., chrom0,n], where chrom 0,i = 
[θ0,1, θ0,2,..., θ0,m], n is the population scale, m is the number of jobs and θ0,j∈ [0, π / 2]. 
In this step, the initial quantum chromosomes are generated randomly. 

• Make the solution 
3. Adopt the converting mechanism to make the solution for permutation-based 
problem from the Q-bits based population. 

• Evaluate the population 
4.  Obtain objective values by evaluating Pop0, store the best one into Best0; store the 
best individual into Best_θ and best element sequence into Best_g. In this step, we 
perform the evaluation operation based on element sequence and get the objective 
values by calculating the permutative solution. 

• Perform the evolution 
5.  Update the Popt-1  to Popt by using PSO strategy. In order to provide the search 
with excellent diversity and guarantees the normalization of Q-bits, we need to make 
sure that the individuals in Popt should be in the range between the lower(0) and 
upper(0.5π), so if any individual is out of this range, it should be revised by using θt = 
lower + rand × (upper − lower). 
6. Adopt the converting mechanism to make the solution for permutation-based 
problem from the Q-bits based population. 
7.   Evaluate Popt and get objective values, compare with the corresponding solution 
in Bestt-1  and store the better one to Bestt. Update the Best_θ and Best_g. 
8.  Practice the local search operations on Best_g by using the Insert operator and 
make the repair of the Q-bit chromosomes. 

• Stopping condition check 
9.  If the stopping condition t > iter is met or the optimum is found, output the 
optimum; else t ← t + 1 and go to step 5. 

Fig. 6. The main procedure of proposed QDEA 

When perform the evolution, the updating of PSO is practiced on the quantum chromosome 
encoded in rotating angle and the local search is practiced on permutative element 
sequence, respectively. It should be noticed that for the updating performed by the PSO, we 
first need to save the Best_θ as θ_gbest along with the vt and θ_pbestt for each Q-bit before we 
perform the updating next time. 

5. Simulations and comparisons 
The validation of proposed QDEA and HQDEA is conducted on the two demanding 
problems of PFSP and JSP which both are the typical permutative scheduling problems. 
Each experiment is conducted in two phases. The first phase is to introduce the benchmark 
and measure adopted in the simulations and to experimentally obtain the operating 
parameters for QDEA. The second phase is the comparison of the QDEA and HQDEA with 
other established approaches reported in the literature. 
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5.1 Simulations and comparisons on PFSP 
5.1.1 Preparations for simulation 
To test the performance of the proposed QDEA and HQDEA for PFSP, computational 
simulation is carried out with some well-studied benchmarks. In this study, four problem 
sets are selected. The first eight problems are called car1, car2 through car8 by Carlier (1978). 
The second 21 problems are called rec01, rec03 through rec41 by Reeves (1995). The third 
110 problems are from Taillard (1993) and the last problem sets are called DMU problems 
from Demirkol, et al. (1998). Thus far these problems have been used as benchmarks for 
study with different methods by many researchers. 
In order to make comparisons by using different methods, we adopt the following measures 
widely used in other literatures:  
1. RE: the Relative Error of the average solution after we run the algorithm n times. The 

BRE and ARE stand for the best and average relative percentage error to the Opt, where 
Opt denotes the optimal solution value known thus far. The BRE and ARE can be 
calculated as equation 13 (the S is short for solution): 
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2. APRD: the percentage relative deviation (PRD) of a best solution value Pbest found by an 
algorithm from the optimal solution Popt can be calculated as: 

 PRD = (Pbest − Popt) / Popt ×100% (14) 

and APRD is the average PRD values for a set of instances.  
3. ARPI: the relative percentage increase (PRI) is defined as: suppose the best solution 

value found by an algorithm A denoted as PA, and the best solution value found by n 
algorithms (include algorithm A) denoted as Pk, k = 1,2,...,n, then the PRI can be 
calculated as:  

 PRI = (PA − min(Pk, k = 1,2,...,n)) / min(Pk, k = 1,2,...,n) ×100% (15) 

and APRI is the average PRI values for a set of instances. 
Parameter selection may influence the quality of the results. For the differential evolutionary 
strategy, two parameters should be set properly, one is the crossover factor CR and the other 
is the weight factor F. In this study, we will make a comparison between the 25 combination 
of CR∈ {0.1,0.3,0.5,0.7,0.9} and F∈ {0.1,0.3,0.5,0.7,0.9}. In order to determine the appropriate 
values of parameters, a preliminary simulation is performed on 8 selected instances from the 
Rec benchmark problem set. For the 25 group data, we run 20 times for each group and 
calculate the average solution. We find that with the different group of parameters, the 
results vary dramatically and what we want to do is to choose a group of F/CR with the 
good and stable performance for all of 8 problems. The computational results indicate that 
the best solution is obtained at values F = 0.1 and CR = 0.9, so these values are adopted for 
all further experiments in this study. 
At the same time, the different evolutionary strategy leads to different performance. For the 
PFSP, we make the simulation by comparing the performance of different evolutionary 
strategies proposed by Storn and Price (1999) in the form of DE/x/y/z, where x determine 
the vector to be operated is randomly generated or the best one, i.e. rand/best; y means the 
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number of the differential variables, i.e. 1/2 and here z stands for the exp or bin crossover. In 
this preliminary simulation, we want to make comparisons by using 10 evolutionary 
strategies: DE1,2→DE/best/1/z; DE3,4→DE/rand/1/z; DE5,6→DE/rand−to−best/1/z; 
DE7,8→DE/rand/2/z and DE9,10→ DE/best/2/z, where z has two values for crossover. 
After we made the simulation, we notice that for the F/CR = 0.1/0.9, the DE7 strategy with 
the bin crossover provides the best performance for different benchmark problems, so we 
choose the DE7 strategy to perform the updating of the quantum chromosomes.  
In the following QDEA algorithm, we set F = 0.1 and CR = 0.9, differential evolutionary 
strategy by DE7 and maximum iterative time Imax = 500. Based on the preliminary 
simulations, these values will give high probability to obtain better solutions. To test the 
performance of the proposed QDEA and HQDEA, computational simulation is carried out 
with the selected benchmark problems. The Visual C++ 6.0 is used to program the algorithm 
and all the computations are conducted on a Celeron 1.59 GHZ with 512 MB memory. We 
run the algorithm 20 times for each problem and use the statistical results for discussion. 
Since many meta-heuristics and hybrid meta-heuristics have been adopted for solving the 
PFSP in literature, we want to make some comparisons to demonstrate the superiority of our 
QDEA. In this section, two types of recent and effective particle swarm optimization 
algorithm will be compared with QDEA firstly. Then we make a comparison between 
QDEA and quantum-inspired genetic algorithm (QGA) for both single objective and multi-
objective PFSP to show the effectiveness of the proposed encoding scheme, converting 
mechanism and updating operation. And we also want to show our hybrid QDEA can 
obtain better optimization results than other hybrid algorithms.  

5.1.2 Comparison of QDEA with CPSO and DPSO 
Particle swarm optimization has two versions: continuous PSO (CPSO) and discrete PSO 
(DPSO). In this section, continuous PSO proposed by Tasgetiren, et al. (2004), discrete PSO 
proposed by Liao, et al. (2007) are compared with QDEA. In the CPSO proposed by 
Tasgetiren, et al., they proposed a SPV rule for solution representation and adopted the local 
search and mutation operation to avoid the premature convergence; in DPSO, the evolution 
is performed by defining the discrete particle and velocity trail, and the construction of a 
particle sequence is proposed for the PFSP. The experiments are conducted on the DMU 
problems from Demirkol, et al. (1998) (available from http://cobweb.ecn.purdue.edu/ 
~uzsoy2/benchmark/fcmax.txt) in accordance with these two algorithms. In these 40 
benchmark instances, eight combinations with number of machines m = 15, 20 and number 
of jobs n = 20, 30, 40, 50 are randomly generated and the best upper bounds for these 
instances are also provided by authors. We use the QDEA to minimize the makespan of jobs 
and the simulation results are given in Table 2. 
In Table 2, the results are shown in the form of APRD. To be fair, the APRD of CPSO, DPSO 
and QDEA are calculated within the same running time for each problem sets (Liao, et al. 
2007): [1.25s, 1.55s, 3.30, 3.95s, 6.40s, 7.60s, 11.00s, 12.90s] by setting the population size Np 
and number of iterations iter. From the results, we can see that DPSO is superior to CPSO for 
most of problem sets both in average (Avg) and minimum (Min) APRD, and our QDEA is 
much better than DPSO by comparing the APRD. Especially for Min APRD, the proposed 
QDEA has overwhelming superiority than DPSO which means our algorithm can obtain 
minimal makespan than DPSO. This simulation clearly demonstrates the excellent 
population diversity and unique optimization performance of Q-bits based search. 
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CPSO by Tasgetiren, et al DPSO by Liao, et al Proposed QDEA 
n×m 

Np×iter Avg Min Np×iter Avg Min Np×iter Avg Min 

20×15 40×2,500 −6.54 −7.68 100×1,000 −6.47 −7.93 20×2,000 −7.37 −11.65 
20×20  −4.93 −6.20 −4.92 −6.20 −6.25 −8.11 
30×15 60×2,500 −7.22 −8.75 150×1,000 −7.37 −9.05 30×2,000 −7.96 −11.06 
30×20  −5.67 −7.44 −5.79 −7.56 −6.52 −11.18 
40×15 80×2,500 −7.80 −9.31 200×1,000 −8.06 −9.74 40×1,000 −8.16 −11.26 
40×20  −5.60 −7.39 −5.61 −6.87 −5.43 −7.97 
50×15 100×2,500 −6.47 −7.70 250×1,000 −6.71 −7.92 50×1,500 −6.68 −8.95 
50×20  −7.23 −8.81 −7.18 −8.43 −7.20 −9.43 

Average  −6.40 −7.86 −6.44 −7.86 −6.94 −9.95 

Table 2. Results of testing two PSOs and QDEA 

5.1.3 Comparison of QDEA with QGA for single objective PFSP 
To show the effectiveness of the coding scheme and the updating strategy proposed in this 
study, we want to compare the QDEA with the quantum-inspired genetic algorithm (QGA) 
developed by Wang, et al. (2005a) based on the Car and Rec benchmark problems (available 
from http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/flowshop1.txt). The QGA adopts 
the random key to represent the solution and the lookup table to perform the updating 
which are all discussed in section 3.2. We firstly make the comparison on the single objective 
of minimizing the makespan and the results are shown in Table 3. 
From Table 3, we can see the QDEA is overwhelming over the QGA for all the Car and Rec 
problems and even the AREs of QDEA are better than the BREs of QGA for most of 
instances. Since we do not perform the local search on the permutative solutions and the 
differences between QDEA and QGA are the coding scheme and the updating strategy only, 
so we can conclude the coding scheme and the updating strategy proposed in this study is 
more suitable for dealing with the permutation-based scheduling problems like the PFSP. 
The allowed running times (in second) of QDEA are also listed in the Table 3 for reference. 

5.1.4 Comparison of QDEA with QGA for multi-objective PFSP 
In the real world manufacturing environment, practical problems often involve multiple 
objectives that need to be considered concurrently, both from a process planning and a 
scheduling perspective. To apply the proposed QDEA to multi-objective PFSP and compare 
the performance with QGA (Wang, et al., 2005a), we conduct an experiment inspired from 
the research made by Sridhar and Rajendran (1996). They developed a genetic algorithm for 
the PFSP with triple objectives—makespan, total flow time, and total machine idle time. A 
DELTA operator is used to determine whether the parents should be replaced by the 
children and a single solution with equal weights for the three objectives is finally produced. 
Based on equation 1 to equation 3, the total flow time Csum and total machine idle time Isum 
can be obtained by calculating the Csum = ∑c(Ji, m) and Isum = { c(J1, k−1) + ∑{max{ c(Ji, k−1) − 
c(Ji-1, k) , 0}}|k = 2,...,m} for i from 1 to n. Both evaluation operation and the updating 
operation of QDEA and QGA should be modified for dealing with the multi-objective 
problems. To establish a measure for these triple objectives, we include a modified version  
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QGA QDEAP N,M Cmax* 
BRE ARE BRE ARE Time 

Car1 11,5 7,038 0.00 0.00 0.00 0.00 0.41 
Car2 13,4 7,166 0.00 1.90 0.00 0.00 0.47 
Car3 12,5 7,312 1.09 1.65 0.00 0.07 0.44 
Car4 14,4 8,003 0.00 0.06 0.00 0.00 0.50 
Car5 10,6 7,720 0.00 0.11 0.00 0.10 0.38 
Car6 8,9 8,505 0.00 0.19 0.00 0.15 0.34 
Car7 7,7 6,590 0.00 0.00 0.00 0.00 0.28 
Car8 8,8 8,366 0.00 0.03 0.00 0.00 0.33 
Rec01 20,5 1,247 2.81 6.79 0.00 0.47 0.87 
Rec03 20,5 1,109 0.45 3.87 0.00 0.46 0.89 
Rec05 20,5 1,242 2.25 3.00 0.24 0.45 0.88 
Rec07 20,10 1,566 1.05 4.67 0.00 1.20 1.25 
Rec09 20,10 1,537 4.03 6.40 0.65 2.70 1.23 
Rec11 20,10 1,431 6.08 8.79 0.42 2.24 1.22 
Rec13 20,15 1,930 5.08 7.98 1.64 3.17 1.55 
Rec15 20,15 1,950 3.49 5.93 1.17 3.11 1.56 
Rec17 20,15 1,902 6.51 9.10 2.35 4.20 1.55 
Rec19 30,10 2,093 7.98 9.80 2.79 5.28 2.39 
Rec21 30,10 2,017 6.94 10.05 2.01 4.19 2.38 
Rec23 30,10 2,011 9.10 10.55 3.67 4.99 2.39 
Rec25 30,15 2,513 7.16 10.06 3.18 5.10 3.13 
Rec27 30,15 2,373 7.63 11.05 3.33 4.65 3.14 
Rec29 30,15 2,287 12.42 14.06 2.61 6.01 3.15 
Rec31 50,10 3,045 9.82 12.68 5.21 7.10 5.90 
Rec33 50,10 3,114 6.20 9.54 1.10 3.48 5.81 
Rec35 50,10 3,277 4.21 6.52 0.89 3.18 5.91 
Rec37 75,20 4,951 15.54 17.49 8.15 9.10 7.80 
Rec39 75,20 5,087 13.50 15.49 5.90 7.43 7.79 
Rec41 75,20 4,960 16.92 18.84 8.10 9.02 7.79 
AVE 5.18 7.12 1.84 3.03 2.47 

Table 3. The comparisons between QDEA and QGA for minimizing makespan 

of evaluation operation by assigning suitable weights to the three objectives in order to 
obtain a single solution. In this study, the weights are determined in accordance with 
Franminan, et al. (2002) to balance the effect of magnitude and the single solution is 
calculated as 1/3×Cmax×n/2+1/3×Csum+1/3×Imax×n/10. When to update the quantum 
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chromosome, the DELTA (Sridhar and Rajendran 1996) operator is used to make the 
comparison between the current solution (denoted as CSt) and the previous best solution 
(denoted as PSt-1) for t-th iteration of evolution. By evaluating CSt and PSt-1, the values of 
two makespans of Ct,max and Ct-1,max, total flow times of Ct,sum and Ct-1,sum, and total idle times 
of It,sum and It-1,sum can be obtained and the DELTA is defined as follows:  

DELTA = w1(Ct,max − Ct-1,max) / min(Ct,max, Ct-1,max) + w2(Ct,sum − Ct-1,sum) / min(Ct,sum,  
Ct-1,sum) + w3(It,sum − It-1,sum) / min(It,sum, It-1,sum) (16) 

where w1 = w2 = w3 = 1/3. So if DELTA>0, it indicates CSt is better than PSt-1 and we update 
the corresponding Q-bits; otherwise, we keep PSt-1 as the best solution for this iteration.    
We program both of the QDEA and QGA by using above evaluation and updating strategy. 
To have a fair comparison, we run these two algorithms in the same computer by using the 
same soft of Visual C++ 6.0 and within the same running time. The 90 Taillard's problems 
(Taillard, 1993) are adopted to perform the simulation and the PRI shown in equation 15 is 
used for the performance measure. The comparison results of the proposed QDEA and QGA 
along with the computation time for each problem set are summarized in Table 4. 
 

QDEA QGAn×m 
Cmax Csum Isum Cmax Csum Isum

computation 
time (s) 

20×5 0.00 0.00 0.00 1.39 1.56 3.12 0.81 
20×10 0.00 0.00 0.00 1.32 1.73 2.45 1.25 
20×20 0.00 0.41 0.00 0.87 0.00 0.56 1.80 
50×5 0.00 0.00 0.00 3.14 1.96 4.01 3.25 

50×10 0.00 0.00 0.00 2.56 1.21 2.16 4.85 
50×20 0.00 0.23 0.32 1.78 0.00 0.00 5.70 
100×5 0.00 0.00 0.00 2.16 2.13 5.34 6.16 
100×10 0.00 0.00 0.00 3.18 1.56 4.24 7.79 
100×20 0.00 0.00 0.00 3.23 2.15 6.12 9.18 

Average 0.00 0.07 0.04 2.18 1.37 3.11 4.53 

Table 4. Results of testing two algorithms for multi-objective PFSP 

We give the average value of PRI (APRI) for the three objectives. From the Table 4, it can be 
observed that for the multi-objective FSP, the proposed QDEA performes as well as the 
single one. Compared to the QGA, the QDEA can obtain the best value in general. Although 
for the criterion of total flowtime and total idle time, the QDEA is slightly inferior to QGA 
for several problem sets, the QDEA performs best among most of problems for these two 
criterions and all of problems for minimizing the makespan, which also demonstrates that 
the proposed QDEA has the prospects in the real world production scheduling applications. 

5.1.5 Comparison of HQDEA with HGA, HQGA and HDE 
To show the effectiveness of proposed hybrid QDEA embedded with the local search, we 
carry on comparisons with some popular hybrid algorithms. In this section, we make the 
comparisons between HQDEA and the hybrid genetic algorithm (HGA) proposed by Zheng 
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& Wang (2003), the hybrid quantum-inspired evolutionary algorithm (HQGA) proposed by 
Wang, et al. (2005b) and the hybrid differential evolution (HDE) algorithm proposed by 
Qian, et al. (2008) based on Car and Rec problems. HGA uses multi-crossover operators  
 
 

HGA HQGAa HDE HQDEA P N,M Cmax* 
BRE ARE BRE ARE BRE ARE BRE ARE 

Car1 11,5 7,038 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Car2 13,4 7,166 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Car3 12,5 7,312 0.000 1.504 0.000 0.000 0.000 0.000 0.000 0.000 
Car4 14,4 8,003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Car5 10,6 7,720 0.000 0.938 0.000 0.000 0.000 0.000 0.000 0.000 
Car6 8,9 8,505 0.000 2.132 0.000 0.000 0.000 0.000 0.000 0.000 
Car7 7,7 6,590 0.000 1.003 0.000 0.000 0.000 0.000 0.000 0.000 
Car8 8,8 8,366 0.000 1.281 0.000 0.000 0.000 0.000 0.000 0.000 
Rec01 20,5 1,247 0.160 0.192 0.000 0.140 0.000 0.144 0.000 0.112 
Rec03 20,5 1,109 0.000 0.271 0.000 0.170 0.000 0.000 0.000 0.009 
Rec05 20,5 1,242 0.242 0.628 0.240 0.340 0.242 0.242 0.242 0.242 
Rec07 20,1 1,566 0.115 1.149 0.000 1.020 0.000 0.230 0.000 0.000 
Rec09 20,1 1,537 0.605 1.627 0.000 0.640 0.000 0.000 0.000 0.000 
Rec11 20,1 1,431 0.000 1.532 0.000 0.670 0.000 0.000 0.000 0.000 
Rec13 20,1 1,930 0.415 1.974 0.160 1.070 0.104 0.301 0.104 0.225 
Rec15 20,1 1,950 0.615 2.385 0.050 0.970 0.000 0.308 0.000 0.158 
Rec17 20,1 1,902 1.840 2.482 0.630 1.680 0.000 1.178 0.000 0.126 
Rec19 30,1 2,093 1.113 2.676 0.290 1.430 0.287 0.559 0.287 0.435 
Rec21 30,1 2,017 1.522 1.636 1.440 1.630 0.198 1.413 0.149 1.041 
Rec23 30,1 2,011 0.497 2.188 0.500 1.200 0.448 0.482 0.348 0.597 
Rec25 30,1 2,513 1.922 2.706 0.770 1.870 0.478 1.492 0.119 0.995 
Rec27 301, 2,373 1.551 2.318 0.970 1.830 0.843 1.285 0.253 0.954 
Rec29 30,1 2,287 2.610 3.629 0.350 1.970 0.306 0.791 0.000 0.824 
Rec31 50,1 3,045 1.156 2.759 1.050 2.500 0.296 0.824 0.263 0.565 
Rec33 50,1 3,114 0.450 1.188 0.830 0.910 0.000 0.434 0.000 0.297 
Rec35 50,1 3,277 0.000 0.131 0.000 0.150 0.000 0.000 0.000 0.000 
Rec37 75,2 4,951 4.312 5.096 2.520 4.330 1.818 2.727 1.717 2.771 
Rec39 75,2 5,087 2.597 3.205 1.630 2.710 0.983 1.541 0.845 1.485 
Rec41 75,2 4,960 4.133 5.599 3.130 4.150 1.673 2.649 1.190 1.965 
AVE  0.892 1.801 0.502 1.082 0.265 0.572 0.175 0.428 

Table 5. Results of testing three hybrid algorithms and HQDEA 
a In HQGA, the results are accurate to the second decimal place. 
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acting on the divided subpopulations and replaces the classical mutation by SA; in HQGA, 
the Q-bit representation is converted to random key representation which genetic operation 
are practiced on, and a permutation-based genetic algorithm is also applied after the 
solutions are constructed; as for the HDE, it not only applies the parallel evolution 
mechanism of DE to perform effective exploration, but also adopts problem-dependent local 
search to perform exploitation. The statistic performances of the four algorithms for the 
criterion of minimizing makespan are given in Table 5. 
From the Table 5, we can see that for the Car problems with small scale, the HGA, HQGA, 
HDE and HQDEA all can find the optimum; for the Rec problems with relatively large scale, 
HQDEA also provide us with better performance which means the BREs and AREs are 
much smaller than that of the HGA and better than or equal to HQGA and HDE for all the 
problems. Also, we can notice that for the problem Rec01, Rec03, Rec07, Rec09, Rec11, Rec15, 
Rec17, Rec29, Rec33 and Rec35, the HQDEA has found the best solution known up to now. 
So the proposed HQDEA is a novel and effective approach for the PFSP. 

5.2 Simulations and comparisons on JSP 
5.2.1 Preparations for simulation 
To test the performance of the proposed HQDEA for JSP, computational simulation is 
carried out with some well-studied benchmarks. In this study, 43 benchmarks (available 
from http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html) are selected. The 
first 3 problems are called FT06, FT10 and FT20. The other 40 problems are called LA01, 
LA02 through LA40.  
In order to evaluate the performance of different algorithms for JSP, the following four 
measures will be introduced: 
1. Minimum makespan (MS): it is used for evaluating quality of solution. For the JSP, the 

minimum makespan a certain algorithm can achieve is usually adopted to prove the 
search ability of this algorithm.  

2. Average convergence generation (CG): at each running of HQDEA, the optimal or the 
sub-optimal solution will be found after a number of generations. For several 
simulation replications, the number may be different, so this metric also reflects the 
average convergence speed of an algorithm.  

3. Average compulation time (CT): the average computation time (in second) for an 
algorithm to find the optimal (or sub-optimal). Since different approaches run in 
different machines, the comparisons based on the CPU times might not seem to be 
meaningful. While, when make the comparison on the same PC, this metric can be used 
to show the effectiveness of an algorithm. 

4. Relative error (RE):  same to the definition of equation 13 in section 5.1.1 
The parameters are set same to the preliminary simulation results given in section 5.1.1. 

5.2.2 Comparison of QDEA with QGA 
Firstly, we want to compare the proposed QDEA (without the local search operation) with 
the QGA developed by Wang, et al. (2005a) based on the three FT benchmark problems to 
show the effectiveness of the coding scheme and the updating strategy for JSP. We program 
both of these two algorithms with the same decoding procedure proposed in this study and 
run them on the same PC, we set the population size to be the number of job for each 
problem and the iteration time Imax to be 300 for both two algorithms, each instance runs 20 
times and the results are shown in Table 6. 
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FT06 FT10 FT20 
 

QDEA QGA QDEA QGA QDEA QGA 

CG 187 204 192 178 217 254 

MS 55 55 980 1125 1276 1465 

RE 1.455 2.909 13.694 23.226 18.318 29.528 

CT 0.480 1.208 4.518 19.888 4.478 19.795 

Table 6. The results of QDEA and QGA on FT problems 

From Table 6, we can see the QDEA is overwhelming over the QGA for all the three 
problems, especially for the FT10 and FT20, QDEA obtained much better makespan within 
about only 1/4 of the running time of QGA. Since we do not perform the local search on the 
permutative solutions and the differences between QDEA and QGA are the coding scheme 
and updating strategy only, so we can conclude that the coding scheme and updating 
strategy proposed in this study is also suitable for dealing with the JSP. 

5.2.3 Comparison of HQDEA with HQGA 
In order to check the effectiveness of proposed HQDEA with local search for JSP, we run the 
algorithm by combining the QDEA and local search and make the comparison with the 
HQGA proposed by Wang, et al. (2005b). The results are shown in Table 7. From Table 7, we 
notice the HQDEA can find all the optimums for three FT problems within 200 generations, 
while the HQGA can not achieve the optimum of FT10 and FT20 even spend more time and 
run more generations. The comparisons of relative error also shows the effectiveness of the 
propose HQDEA.  
 

FT06 FT10 FT20  
HQDEA HQGA HQDEA HQGA HQDEA HQGA 

CG 1.1 9 132 221 148 276 
MS 55 55 930 937 1165 1178 
RE 0 0 1.785 4.430 0.961 3.867 
CT 0.220 0.356 140.344 193.061 170.993 190.728 

Table 7. The results of HQDEA and HQGA on FT problems 

5.2.4 Comparisons between HQDEA with other approaches 
To further show the effectiveness of HQDEA, we carry on some comparisons with other 
popular algorithms include the hybrid genetic algorithm (HGA) proposed by Goncalves, et 
al. (2005), memetic algorithm (MA) by Hasan, et al. (2009), tabu search (TSSB) by Pezzella & 
Merelli (2000), hybrid particle swarm optimization (HPSO) by Xia & Wu (2006) based on 40 
LA benchmarks. We run the HQDEA using the same settings in section 5.2.2, and the results 
are shown in Table 8. In Table 8, the 'BKS' refers to the best solution found by now for each 
LA problems, 'average gap' is calculated as: (MS−BKS)/BKS×100% and 'No. of BKS 
obtained' means how many BKS can be found by an algorithm. 
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HQDEA P N,M BKS HGA MA TSSB HPSO MS RE CG 
LA01 10,5 666 666 666 666 666 666 0.000 2 
LA02 10,5 655 655 655 655 655 655 0.217 15 
LA03 10,5 597 597 597 597 597 597 0.271 21 
LA04 10,5 590 590 590 590 590 590 0.119 10 
LA05 10,5 593 593 593 593 593 593 0.000 1 
LA06 15,5 926 926 926 926 926 926 0.000 1 
LA07 15,5 890 890 890 890 890 890 0.000 1 
LA08 15,5 863 863 863 863 863 863 0.000 1 
LA09 15,5 951 951 951 951 951 951 0.000 1 
LA10 15,5 958 958 958 958 958 958 0.000 1 
LA11 20,5 1222 1222 1222 1222 1222 1222 0.000 1 
LA12 20,5 1039 1039 1039 1039 1039 1039 0.000 1 
LA13 20,5 1150 1150 1150 1150 1150 1150 0.000 1 
LA14 20,5 1292 1292 1292 1292 1292 1292 0.000 1 
LA15 20,5 1207 1207 1207 1207 1207 1207 0.000 1 
LA16 10,10 945 945 945 945 945 945 0.836 88 
LA17 10,10 784 784 784 784 784 784 0.045 51 
LA18 10,10 848 848 848 848 848 848 0.259 85 
LA19 10,10 842 842 842 842 842 842 0.481 104 
LA20 10,10 902 907 907 902 902 902 0.527 117 
LA21 15,10 1046 1046 1079 1046 1047 1046 0.738 112 
LA22 15,10 927 935 960 927 927 927 0.912 121 
LA23 15,10 1032 1032 1032 1032 1032 1032 0.000 3 
LA24 15,10 935 953 959 938 938 935 0.892 212 
LA25 15,10 977 986 991 979 977 977 1.111 241 
LA26 20,10 1218 1218 1218 1218 1218 1218 0.000 6 
LA27 20,10 1235 1256 1286 1235 1236 1235 1.109 243 
LA28 20,10 1216 1232 1286 1216 1216 1216 0.354 113 
LA29 20,10 1157 1196 1221 1168 1164 1161 1.256 221 
LA30 20,10 1355 1355 1355 1355 1355 1355 0.000 2 
LA31 30,10 1784 1784 1784 1784 1784 1784 0.000 1 
LA32 30,10 1850 1850 1850 1850 1850 1850 0.000 1 
LA33 30,10 1719 1719 1719 1719 1719 1719 0.000 1 
LA34 30,10 1721 1721 1721 1721 1721 1721 0.000 1 
LA35 30,10 1888 1888 1888 1888 1888 1888 0.000 1 
LA36 15,15 1268 1278 1307 1268 1269 1268 1.086 212 
LA37 15,15 1397 1408 1442 1411 1401 1401 1.611 265 
LA38 15,15 1196 1219 1266 1201 1208 1201 1.896 216 
LA39 15,15 1233 1246 1252 1240 1240 1238 1.123 234 
LA40 15,15 1222 1241 1252 1233 1226 1224 1.011 247 

Average gap (%) 0.4190 1.0708 0.1091 0.0842 0.0404   
No. of BKS obtained 28 27 33 31 35   

 
Table 8. The comparisons between HQDEA and other algorithms 
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From Table 8, we can see for the LA01 to LA20, these 5 algorithms all can find optimum, 
especially for most problems, the HQDEA just needs to run the algorithm once for searching 
the optimization space. For the difficult problems with the middle and large scale, some 
problems remain to be unsolved in the provided evolution iteration. While, the HQDEA has 
obtained the 35 optimum out of 40 problems and achieved the minimum average gap of 
0.0404 among these 5 algorithms. All these demonstrate that the HQDEA we proposed is a 
novel, effective and robust approach for JSP. The relative errorｓ for HQDEA are also list in 
Table 8 for reference. 

6. Conclusions and future research 
In this study, we proposed an improved quantum-inspired evolutionary algorithm called 
quantum-inspired differential evolutionary algorithm (QDEA) for solving the flow shop 
scheduling and job shop scheduling problems with permutation-based solutions. Based on 
the QEA, we proposed a simple converting mechanism to determine permutative sequence 
based on quantum chromosome encoded in the form of rotating angle. Then we studied the 
applications of the QDEA by adopting the differential evolution strategy to perform the 
updating of quantum gate and local search to perform thorough exploitation in the 
promising permutative solutions. We adopt this novel QDEA to deal with the single 
objective and the multi-objective permutation FSP and to minimize the makespan of JSP. 
Compared to other algorithms, the simulation results demonstrated the effectiveness of our 
algorithm. For the PFSP, the QDEA performed better than two PSO based algorithms 
(Tasgetiren, et al., 2004; Liao, et al., 2007) and the QGA (Wang, et al., 2005a) for both of single 
objective and multi-objective problem; the proposed hybrid QDEA also provides better 
results than the hybrid algorithms include HGA (Zheng & Wang, 2003), HQGA (Wang, et 
al., 2005b) and HDE (Qian, et al., 2008); for the JSP, we also obtained satisfactory results by 
comparing QDEA with QGA and HQDEA with other state-of-the-art approaches 
(Goncalves, et al., 2005, Hasan, et al., 2009, Pezzella & Merelli, 2000, Xia & Wu, 2006). All 
these show the excellent diversity of the Q-bits based search and the effectiveness of the 
local search.  
This study has made a step towards establishing an efficient heuristic for the permutation-
based scheduling problems based on the quantum-inspired evolutionary algorithm. In this 
study, we propose a common algorithm framework for permutation-based scheduling 
problems, and the QDEA is in fact one implementation to this algorithm framework. As for 
the future research work, we can extend this study in the following ways. For the part 2 of 
algorithm framework, the parameter settings for the differential evolution strategy are 
worth examining in detail firstly. Then, developing new hybrid strategy by combining Q-bit 
based search and other evolution based methods to improve the performance also makes a 
great sense. For the part 4 of algorithm framework, we can use other strategies like variable 
neighbourhood search (VNS) to perform the neighbourhood based search and check the 
performance. At last, for the application of this research, the proposed QDEA approach can 
be extended to deal with flow and job shop scheduling problems with different constraints 
and performance criteria; also we can apply this new method to other permutation-based 
shop scheduling problems such as open shop scheduling problem (OSP) and make 
comparisons with other algorithms. 



Evolutionary Algorithms 

 

130 

7. References 
Bean J C. (1994) Genetics and random keys for sequencing and optimization. ORSA Journal 

of computing, 6(2), 154-160. 
Bin Qian, Ling Wang, Rong Hu, Wan-Liang Wang, De-Xian Huang and Xiong Wang. (2008). 

A hybrid differential evolution method for permutation flow-shop scheduling. The 
International Journal of Advanced Manufacturing Technology, 38(5-6), 757-777. 

Carlier J (1978) Ordonnancements a Contraintes Disjonctives. Recherche Operationelle 
/Operations Research, 12(4), 333-350. 

Ching-Jong Liao,Chao-Tang Tseng and Pin Luarn. 2007. A discrete version of particle 
swarm optimization for flowshop scheduling problems. Computers & Operations 
Research, 34(10), 3099-3111. 

D. Zheng and L.Wang (2003). An Effective Hybrid Heuristic for Flow Shop Scheduling. The 
International Journal of Advanced Manufacturing Technology. 21(1), 38-44. 

Demirkol E, Mehta S, Uzsoy R (1998) Benchmarks for shop scheduling problems. Eur J Oper 
Res 109:137–141. 

Doyen A, Engin O, Ozkan C (2003). A new artificial immune system approach to solve 
permutation flow shop scheduling problems. Tukish Symposium on Artificial Immune 
System and Neural Networks TAINN’03. 

Framinan JM, Leisten R, Ruiz-Usano R. (2002) Efficient heuristics for flowshop sequencing 
with the objectives of makespan and flowtime minimisation. European Journal of 
Operational Research, 141, 559–69. 

Garey M, Johnson D and Sethi R (1976) The complexity of flowshop and jobshop scheduling. 
Mathematics of Operations Research, 24(1), 117-129. 

Goncalves, J. F., Mendes, J. J. M., and Resende, M. G. C. (2005). A hybrid genetic algorithm 
for the job shop scheduling problem. European Journal of Operational Research, 167(1), 
77–95. 

Han K-H. (2000) Genetic Quantum Algorithm and its Application to Combinatorial 
Optimization Problem. In: IEEE Proc. Of the 2000 Congress on Evolutionary 
Computation，San Diego，USA IEEE Press, July 2000. 

Han K-H，Kim J-H. Quantum-inspired Evolutionary Algorithm for a class of Combinatorial 
Optimization. IEEE Trans on Evolutionary Computation, 2002. 

Han K-H，Kim J-H. Quantum-inspired Evolutionary Algorithms with a New Termination 
Criterion H,Gate and Two-Phase Scheme. IEEE Trans on Evolutionary Computation 
2004. 

Hisao Ishibuchi, Shinta Misaki and Hideo Tanaka (1995) Modified simulated annealing 
algorithms for the flow shop sequencing problem. European Journal of Operational 
Research. 81(2), 388-398. 

Jinwei Gu, Xingsheng Gu, Bin Jiao. (2008). A Quantum Genetic Based Scheduling Algorithm 
for stochastic flow shop scheduling problem with random breakdown. Proceedings 
of the 17th World Congress. The International Federation of Automatic Control Seoul, 
Korea, July 6-11, 63-68. 

Jun Zhang, Xiaomin Hu, X. Tan, J.H. Zhong and Q. Huang. (2006). Implementation of an 
Ant Colony Optimization technique for job shop scheduling problem. Transactions 
of the Institute of Measurement and Control, 28(1), 93-108. 

Kuo-Ching Ying and Ching-Jong Liao (2004) An ant colony system for permutation flow-
shop sequencing. Computers & Operations Research. 31(5), 791-801. 



Quantum-Inspired Differential Evolutionary Algorithm for Permutative Scheduling Problems 

 

131 

Nowicki E, Smutnicki C (1996) A fast tabu search algorithm for the permutation flow-shop 
problem. Eur J Oper Res 91,160–175. 

Pezzella, F., & Merelli, E. (2000). A tabu search method guided by shifting bottleneck for the 
job shop scheduling problem. European Journal of Operational Research, 120(2), 297–
310. 

QK Pan, MF Tasgetiren, YC Liang (2008) A discrete differential evolution algorithm for the 
permutation flowshop scheduling problem. Computers & Industrial Engineering, 
55(4), 795-816. 

Qun Niu, Taijin Zhou, Shiwei Ma. (2009). A Quantum-Inspired Immune Algorithm for 
Hybrid Flow Shop with Makespan Criterion. Journal of Universal Computer Science, 
15(4), 765-785. 

Reeves, C R (1995) A genetic Algorithm for Flowshop Sequencing. Computers and Operations 
Research, 22(1), 5-13. 

Reeves CR, Yamada T (1998) Genetic algorithms, path relinking and the flowshop 
sequencing problem. Evol Comput 6, 45–60. 

Rubén Ruiz, and Thomas Stützle (2007) A simple and effective iterated greedy algorithm for 
the permutation flowshop scheduling problem. European Journal of Operational 
Research. 177(3), 2033-2049. 

S. M. Kamrul Hasan, Ruhul Sarker, Daryl Essam and David Cornforth. (2009). Memetic 
Algorithms for Solving Job-Shop Scheduling Problems. Memetic Computing, 1(1), 69-
83. 

Schiavinotto T, Stützle T. (2007). A review of metrics on permutations for search landscape 
analysis. Computers Operations & Research, 34(10), 3143–53. 

Sridhar J, Rajendran C. (1996). Scheduling in flowshop and cellular manufacturing systems 
with multiple objectives—a genetic algorithmic approach. Production Planning and 
Control, 7, 374–82. 

Storn R, Price K (1997) Differential evolution—a simple evolution strategy for fast 
optimization. Dr. Dobb’s Journal, 78, 18–24. 

Storn R, Price K. (1999). Differential Evolution - A simple and efficient adaptive scheme for 
global optimization over continuous spaces. Technical Report, TR-95-012, ICSI. 

Stützle, T (1998) Applying iterated local search to the permutation flow shop problem. 
Technical report, AIDA-98-04, FG Intellektik, TU Darmstadt. 

Taillard, E (1993) Benchmarks for basic scheduling problems. European journal of operational 
research, 64(2), 278-285. 

Tasgetiren MF, Liang YC, Sevkli M, Gencyilmaz G. (2004) Particle swarm optimization 
algorithm for makespan and maximum lateness minimization in permutation 
flowshop sequencing problem. In: Proceedings of the fourth international symposium on 
intelligent manufacturing systems, urkey: Sakarya; 431–41. 

Xiao-dong Xu & Cong-xin Li. (2007). Research on immune genetic algorithm for solving the 
job-shop scheduling problem. The International Journal of Advanced Manufacturing 
Technology. 34, 783–789. 

Wang Ling, Wu Hao, and Zheng Da-Zhong (2005a) A quantum-inspired genetic algorithm 
for scheduling problems. Lecture Notes in Computer Science, v 3612, n PART III, 
Advances in Natural Computation: First International Conference, ICNC 2005. 
Proceedings, 417-423. 



Evolutionary Algorithms 

 

132 

Wang L, Wu H, Tang F and Zheng DZ (2005b) A hybrid quantum-inspired genetic 
algorithm for flow shop scheduling. Lecture Notes in Computer Science, 3645, 636-644. 

Wei-jun Xia, Zhi-ming Wu. (2006). A hybrid particle swarm optimization approach for the 
job-shop scheduling problem. The International Journal of Advanced Manufacturing 
Technology. 29, 360–366. 



8 

Quantum-Inspired Particle Swarm 
Optimization for Feature Selection and 

Parameter Optimization in Evolving Spiking 
Neural Networks for Classification Tasks 

Haza Nuzly Abdull Hamed1,2, Nikola K. Kasabov1 and  
Siti Mariyam Shamsuddin2 

1Auckland University of Technology 
2Universiti Teknologi Malaysia 

1New Zealand 
2Malaysia 

1. Introduction 
Particle Swarm Optimization (PSO) was introduced in 1995 by Russell Eberhart and James 
Kennedy (Eberhart & Kennedy, 1995). PSO is a biologically-inspired technique based 
around the study of collective behaviour in decentralized and self-organized animal society 
systems. The systems are typically made up from a population of candidates (particles) 
interacting with one another within their environment (swarm) to solve a given problem. 
Because of its efficiency and simplicity, PSO has been successfully applied as an optimizer in 
many applications such as function optimization, artificial neural network training, fuzzy 
system control.  However, despite recent research and development, there is an opportunity 
to find the most effective methods for parameter optimization and feature selection tasks. 
This chapter deals with the problem of feature (variable) and parameter optimization for 
neural network models, utilising a proposed Quantum–inspired PSO (QiPSO) method. In this 
method the features of the model are represented probabilistically as a quantum bit (qubit) 
vector and the model parameter values as real numbers. The principles of quantum 
superposition and quantum probability are used to accelerate the search for an optimal set of 
features, that combined through co-evolution with a set of optimised parameter values, will 
result in a more accurate computational neural network model. The method has been applied 
to the problem of feature and parameter optimization in Evolving Spiking Neural Network 
(ESNN) for classification. A swarm of particles is used to find the most accurate classification 
model for a given classification task. The QiPSO will be integrated within ESNN where 
features and parameters are simultaneously and more efficiently optimized. A hybrid particle 
structure is required for the qubit and real number data types. In addition, an improved search 
strategy has been introduced to find the most relevant and eliminate the irrelevant features on 
a synthetic dataset. The method is tested on a benchmark classification problem. The proposed 
method results in the design of faster and more accurate neural network classification models 
than the ones optimised through the use of standard evolutionary optimization algorithms. 
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This chapter is organized as follows. Section 2 introduces PSO with quantum information 
principles and an improved feature search strategy used later in the developed method. 
Section 3 is an overview of ESNN, while Section 4 gives details of the integrated structure 
and the experimental results. Finally, Section 5 concludes this chapter. 

2. Particle swarm optimization 
PSO is a population-based stochastic optimization technique. In common classifiers, PSO is 
a global optimization technique that is often used to seek a good set of weights. Similar to 
other evolutionary algorithms, PSO is initialized with a random population and searches for 
optimal solutions by updating the particles. Unlike Genetic Algorithms (GA), PSO has no 
evolution operators such as crossover and mutation. In PSO, the potential solutions, called 
particles, fly through the problem space by following the current optimum particles.  
To create a swarm of 1,...,i N=  particles, at all points in time, each particle i has 
1. A current position Xi or ( ),...,1X x xn i iD= , 
2. A record of the direction it follows to get to that position Vi or ( ,..., )1V v vn i iD= ,  
3. A record of its own best previous position ( ,..., )1pbest pbest pbestD= , 
4. A record of the best previous position of any member in its group 

( ,..., )1gbest gbest gbestD= . 
Given the current position of each particle, as well as the other information, the problem is 
to determine the change in direction of the particles. As mentioned above, this is done by 
reference to each particle’s own experience and its companions. Its own experience includes 
the direction it comes from Vi  and its own best previous position. The experience of others 
is represented by the best previous position of any member in its group. This suggests that 
each particle might move in 
1. The same direction that it comes from Vi , 
2. The direction of its best previous position pbest Xi− , 
3. The direction of the best previous position of any member in its group gbest Xi− . 
The algorithm supposes that the actual direction of change for particle i will be a weighted 
combination of (Shi & Eberhart, 1998); 

 * * ( ) * * ( )1 1 2 2, ,V W V C r G X C r P Xn x n n nbest n best n= + − + −  (1) 

where 

1r  and 2r  are uniform random numbers between [0,1] ,  
  01C 〉 and  02C 〉 are constants called the cognitive and social parameters, and  

  0w 〉  is a constant called the inertia parameter. 
For successive index periods (generations), n and 1n + , the direction of change, i.e., the 
new position of the particle will simply be: 

 X X Vn n n= +  (2) 

Given the initial values of Xi , Vi , pbest and gbest , Equation (1) and Equation (2) will 
determine the subsequent path that each particle in the swarm will follow. To avoid 
particles flying beyond the boundary, the velocities of each dimension are clamped to a 
maximum velocity, maxV . If the sum of accelerations causes the velocity of that dimension 
to exceed maxV ,  which is a pre-defined parameter, then the velocity is limited to maxV . 
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Obviously, from the above procedure, it seems that PSO shares many common features with 
GA. Both algorithms start with a randomly generated population, and have a fitness 
function to evaluate the population. Both methods update the population and search for the 
optimum solutions with random techniques. However, PSO does not have genetic operators 
like crossover and mutation. Particles update themselves with the internal velocity, and 
have memory as storage of history. In PSO, only gbest gives the information to others in the 
population, and it is a one -way information sharing mechanism. The evolution only looks 
for the best solution, and, in most cases, all the particles tend to converge to the best solution 
quickly.   

2.1 Application in parameter optimization 
In neural network models, an optimal combination of parameters can influence their 
performance. It is not feasible to manually adjust the parameters, particularly when dealing 
with different combinations for different datasets. Consequently, parameter optimization is 
vital and much research has been conducted on it (Bäck & Schwefel, 1993). Parameter 
optimization using PSO works when each particle in the swarm holds the parameter value. 
This value is considered a particle’s position. Updating the particle’s position means 
updating the parameter value. The process begins by initializing the population and all 
particles with random parameter values. Then, in every iteration, all particles’ position are 
updated based on two factors; the gbest  and pbest . Updating the parameter value based on 
these two values normally results in a better solution. This updating process is repeated in 
every iteration until stopping criteria is met, for example a desired fitness value or a 
maximum number of iterations. 

2.2 Quantum inspired probability concept for feature selection 
Feature optimization is considered as a crucial pre-processing phase in a classification task. 
This is because using a higher number of features does not necessarily translate into better 
classification accuracy. In some cases, having fewer significant features could help reduce 
the processing time and produce good classification results. Blum and Langley have 
classified the feature selection techniques into three basic approaches (Blum & Langley, 
1997):  Embedded approach adds or removes features in response to prediction error on 
new instances; Filter approach first selects features and then uses them in a classification 
model; Wrapper approach uses classification accuracy to evaluate features. However, the 
conventional PSO is inadequate for solving problems that require probability computation 
such as in the feature selection tasks. Therefore, the quantum information principle is 
embedded with principles of evolutionary computation in the PSO as a mechanism for 
feature probability calculation and consequent selection based on these probabilities. 
Referring to (Narayanan, 1999; Kasabov, 2007), quantum computing principles have been 
seen as a source of inspiration for novel computational methods. Two famous quantum 
applications are factorisation problem (Shor, 1994) and Grover's database search algorithm 
(Grover, 1996).   
According to the normal or classical computing concept, information is represented in bits 
where each bit must hold a value of either 0 or 1. However, in quantum computing, 
information is instead represented by a qubit in which a value of a single qubit could be 0, 1, 
or a superposition of both.  Superposition allows the possible states to represent both 0 and 
1 simultaneously based on its probability. The quantum state is modelled by the Hilbert 
space of wave functions and is defined as: 
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 0 1ψ α β= +  (3) 

where α and β  are complex numbers defining probabilities at which the corresponding 
state is likely to appear when a qubit collapses, for instance, when reading or measuring. 

Probability fundamentals stated that 2 2 1α β+ = , where 2α gives the probability that a 

qubit is in the OFF (0) state and 2β gives the probability that a qubit is in the ON (1) state. 

The probability of  
α
β
⎡ ⎤
⎢ ⎥
⎣ ⎦

 can be represented as quantum angle θ , where 
cos( )
sin( )

θ
θ

⎡ ⎤
⎢ ⎥
⎣ ⎦

 satisfies 

the probability fundamental of 2 2sin( ) cos( ) 1θ θ+ = . The θ  parameter is normally been 
used in quantum inspired Evolutionary Algorithms (EA) to calculate and update 
probability. There are several studies where quantum computation acts as probability 
computation in EA.  The Quantum Evolutionary Algorithm (QEA) was popularized by Han 
and Kim (Han & Kim, 2000). Since then, a lot of attention has been given by researchers 
around the world to this technique. Descended from the basic EA concept, QEA is a 
population-based search method which simulates a biological evolutionary process and 
mechanism, such as selection, recombination, mutation and reproduction. Each individual 
in a population is a possible solution candidate and is evaluated by a fitness function to 
solve a given task. However, instead of using normal real value values, information in QEA 
is represented in qubits.  This probability presentation has a better characteristic of diversity 
than classical approaches. QEA have been reported to successfully solve complex 
benchmark problems such as numerical (da Cruz et al., 2006), multiobjective optimization 
(Talbi et al., 2006) and real world problems (Jang et al., 2004).  
The quantum computation also has been extended to PSO and this is known as Quantum-
inspired Particle Swarm Optimization (QiPSO) (Sun et al., 2004). The main idea of QiPSO is 
to update the particle position represented as a quantum angleθ . The common velocity 
update equation in conventional PSO is modified to get a new quantum angle which is 
translated to the new probability of the qubit by using the following formula: 

 * * () * ( ) * () * ( )1 21
w c rand c randn n n ngbest pbestn nt

θ θ θ θ θ θΔ = Δ + − + −
−

 (4) 

Based on the new θ velocity, the new probability of α and β  is calculated using a rotation 
gate as follows: 

 
cos( ) sin( ) 1
sin( ) cos( ) 1

t
t

αα θ θ
β θ θ β

⎡ ⎤Δ − Δ⎡ ⎤ ⎡ ⎤ −= ⎢ ⎥⎢ ⎥ ⎢ ⎥Δ Δ ⎢ ⎥⎣ ⎦ ⎣ ⎦ −⎣ ⎦
 (5) 

In a feature selection task, each qubit denoted as quantum angleθ , represents one feature. 
In this case, the collapse qubit value 1 represents features selected while value 0 represents 
those not selected. 

2.3 Enhancement for parameter optimization and feature selection 
There are some problems when using QiPSO algorithms for parameter optimization and 
feature selection. Therefore, this chapter proposes an improved QiPSO algorithm called 
Dynamic Quantum-inspired Particle Swarm Optimization (DQiPSO). The problems include 
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a possibility of missing the optimal parameter value when using only binary QiPSO.  As the 
information is represented in a binary structure, the conversion from binary to real value 
will lead to such problems, especially if the selected number of qubits representing the 
parameter value is insufficient. To overcome this problem, a combination of QiPSO and 
conventional PSO is proposed. The DQiPSO particle is divided into two parts: the first part 
uses quantum probability computation for feature selection and another part holds the real 
value for parameters as shown in Figure 1. This method not only effectively solves this 
problem, but also eliminates one parameter which holds number of qubits representing the 
parameter value. 
 

 
Fig. 1. The proposed hybrid particle structure in DQiPSO  

In addition, the search strategy of QiPSO is based on random selection at the beginning of 
the process. Each particle will update itself based on the best solution subsequently found. A 
major problem with this approach is the possibility of not selecting the relevant features at 
the beginning; other particles in the entire process are thus affected. This is due to each 
particle updating its information without relevant features. Therefore, a new strategy is 
proposed in which five types of particles in the DQiPSO are considered. Apart from the 
normal particle, referred to as the Update Particle, which renews itself based on pbest and 
gbest  information, four new types of particles are added to the swarm. The first type is the 

Random Particle, which will randomly generate new sets of features and parameters in 
every iteration to increase the robustness of the search. The second type is the Filter Particle, 
which selects one feature at a time and feeds it to the network and calculates the fitness 
value. This process is repeated for each feature. Any features with above average fitness will 
be considered as relevant. This method is targeted at linear separation problems. The third 
particle type is the Embed In Particle in which input features are added to the network one 
by one. If a newly added feature improves fitness, it will be considered a relevant feature. 
Otherwise, the feature will be removed. The final particle type is the Embed Out Particle 
which starts the identification process with all features fed to the network to get the initial 
fitness value. These features are gradually removed one by one. If removing a feature causes 
decrement of the fitness value, then this feature will be considered relevant and hence will 
be kept. Otherwise, the feature will be considered irrelevant and removed. 
The main idea behind Filter, Embed In and Embed Out particles is to identify the relevance 
of each feature and to reduce the number of candidates until a small subset remains. For 
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subsequent iterations, features considered relevant will be selected randomly to find the 
best combination of significant features. This strategy helps to solve unevaluated relevant 
features, while reducing the search space and facilitating the optimizer in finding relevant 
features faster.  Similar to the standard PSO in updating the particles, if a new particle is 
found to be the best solution, then it will be stored as a gbest .  In this scenario, some 
improvements have also been proposed for the update strategy. This includes replacing the 
gbest particle with a new particle if the fitness value is higher or equivalent, but with a 

lower number of selected features.  Due to the robust search space provided by DQiPSO, 
fewer particles are needed to perform the optimization tasks; hence, less processing time can 
be achieved. The structure of this strategy is illustrated in Figure 2. 
 

 
Fig. 2. DQiPSO feature selection strategy 

3. Evolving spiking Neural Networks 
Many successful Artificial Neural Network (ANN) models have been developed and 
applied for learning from data and for generalization to new data (Arbib, 2003). 
Applications include: classification, time series prediction, associative storage and retrieval 
of information, robot and process control, medical and business decision support, and many 
others (Arbib, 2003). Most of these ANN use simple and deterministic models of artificial 
neurons, such as the McCulloch and Pitts model (McCulloch & Pitts, 1943). They also use 
rate coded information representation, where average activity of a neuron or an ANN is 
represented as a scalar value. Despite the large structural diversity of existing ANN, the 
limited functionality of the neurons and connections between them has constrained the 
scope of applications of ANN and their efficiency when modelling large scale, noisy, 
dynamic and stochastic processes such as ecological, environmental, physical, biological, 
cognitive, and others. 
Recently new knowledge about neuronal, genetic and quantum levels of information 
processing in biological neural networks has been discovered. For example, whether a 
neuron spikes or not at any given time could depend not only on input signals but also on 
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gene and protein expression (Kojima & Katsumata, 2009), physical properties of connections 
(Huguenard, 2000), probabilities of spikes being received at the synapses, emitted neuro-
transmitters, open ion channels and others. Many of these properties have been 
mathematically modelled and used to study biological neurons (Gerstner & Kistler, 2002), 
but have not been properly utilised for more efficient ANN for complex AI problems. 
Spiking Neural Networks (SNN) models are made up of artificial neurons that use trains of 
spikes to represent and process pulse coded information. In biological neural networks, 
neurons are connected at synapses and electrical signals (spikes) pass information from one 
neuron to another. SNN are biologically plausible and offer some means for representing 
time, frequency, phase and other features of the information being processed. A simplified 
diagram of a spiking neuron model is shown in Figure 3a. Figure 3b shows the mode of 
operation of a spiking neuron, which emits an output spike when the total spiking input – 
Post Synaptic Potential (PSP), is larger than a spiking threshold.  
 

 
(a) 

 

 
(b) 

Fig. 3. (a) A simplified diagram of a spiking neuron model. (b) A spiking neuron emits an 
output spike when the total spiking input – Post Synaptic Potential (PSP), is larger than a 
spiking threshold. 
Based on the SNN, Evolving SNN (ESNN) was introduced (Wysoski et al., 2006) where SNN 
evolve their structure through fast one-pass learning from data and have the potential for 
solving complex problems. ESNN have been applied for classification tasks, such as face 
recognition, person authentication based on audiovisual information, taste recognition. They 
achieved better results than previously published models. The ESNN architecture consists of 
an encoding method for real value data to spike time, neuron model and learning method.  
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3.1 Information encoding methods 
The information in ESNN is represented as spikes; therefore, input information must be 
encoded in spike pulses. The well-known encoding technique for ESNN is the Population 
Encoding (Bohte et al., 2002). Population Encoding distributes a single input value to 
multiple pre-synaptic neurons. Each pre-synaptic neuron generates a spike at firing 
time.The firing time is calculated using the intersection of Gaussian function. The centre of 
the Gaussian function is calculated using Equation (6) and the width is computed using 
Equation (7) with the variable interval of , maxminI I⎡ ⎤⎣ ⎦ . The parameter β  controls the 
width of each Gaussian receptive field. 

 (2 * 3) / 2 * ( ) /( 2)maxmin minI i I I Mμ = + − − −  (6) 

 1 / ( ) /( 2) 1 2max minI I M whereσ β β= − − ≤ ≤  (7) 

The illustration of this encoding process is shown in following figure. 
 

 
Fig. 4. Population Encoding Method.   

3.2 Neuron models 
Most of the SNN models have been well explained by Gerstner and Kistler (Gerstner & 
Kistler, 2002). For the ESNN, Thorpe’s neuron model (Thorpe, 1997) has been selected 
because of its effectiveness and simplicity. The fundamental concept of this model is that the 
earlier spikes received by a neuron have a stronger weight compared with later spikes. Once 
the neuron reaches a certain amount of spikes and the Post-Synaptic Potential (PSP) exceeds 
the threshold value, it fires and becomes disabled. The neuron in this model can only fire 
once. The computation of the PSP of neuron i  is presented in Equation (8). 

 

0
( )*

if fired
PSP order ji elsew Modji i

⎧⎪= ⎨
∑⎪⎩

 (8) 

where wji  being the weight of pre-synaptic neuron j . Modi  being a parameter called 
modulation factor with an interval of [0,1]and ( )jorder  representing the rank of the spike 
emitted by the neuron. The ( )jorder  starts with 0 if it spikes first amongst all pre-synaptic 
neurons and increases according to firing time. 
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3.3 Learning method 
Learning in ESNN is a complex process since information is represented in spikes, which is 
time dependence. Spike Time Dependent Plasticity (STDP) is a form of Hebbian Learning 
where spike time and transmission are used in order to calculate the change in the synaptic 
weight of a neuron. If a pre-synaptic spike arrives at the synapse before the postsynaptic 
action potential, the synapse is potentiated; if the timing is reversed, the synapse is 
depressed (Markram et al., 1997).  
The One-Pass Algorithm is the learning algorithm for ESNN which follows both the SDTP 
learning rule and the time-to-first spike learning rule (Thorpe,1997). In this algorithm, each 
training sample creates a new output neuron. The trained threshold values and the weight 
pattern for that particular sample are stored in the neuron repository. However, if the 
weight pattern of the trained neuron greatly resembles a neuron in the repository, it will 
merge into the most similar one. The merging process involves modifying the weight 
pattern and the threshold of the merged neurons to the average value. Otherwise, it will be 
added to the repository as a newly trained neuron. The major advantage of this learning 
algorithm is the ability of the trained network to learn incrementally new samples without 
retraining. 

3.4 ESNN structure 
 

 
Fig. 5. A simplified ESNN structure 

In general, each input neuron in the ESNN (black neuron in Figure 5) is connected to 
multiple pre-synaptic neurons (blue neurons). This process will transform the input values 
into a highly dimensional structure where each pre-synaptic neuron generates a certain 
spike at a firing time. The firing time is calculated using the intersection of the Gaussian 
function with the input value. Based on the firing time, a weight for each connection to the 
output neuron (red neuron) is generated. In the training process, the output neuron stores 
the computed weight of all pre-synaptic neurons, a threshold value to determine when the 
output neuron will spike and the class label the input sample belongs to. In the testing 
process, similar to the training process, each testing sample is encoded to spikes by the 
multiple pre-synaptic neurons. Then, the Post-Synaptic Potential (PSP) of the output class 
neurons is calculated. Once the neuron reaches a certain amount of spikes and the PSP 
exceeds the threshold value, it fires an output spike and becomes disabled. The testing 
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sample belongs to an output class of the output neuron which fires first among all output 
neurons. A detailed ESNN training algorithm follows. 
 

Algorithm 1 ESNN Training Algorithm 
1: Initialize neuron repository { }R =  

2: Set ESNN parameters [0,1]Mod = , [0,1]C = and [0,1]Sim =  

3: for every input sample i  that belongs to the same output class do 
4:  Encode input samples into firing time of pre-synaptic neurons j  

Create a new output neuron for this class and calculate the connection weights 

as follows:
 

( )( )order jw Modj =  
5:  Calculate ( )*max( )

order jPSP w Modji = ∑  

6:  Get PSP threshold value *max( )PSP Ci iχ =  

7:  if the new neuron weight vector <= Sim of trained output neuron weight 
vector in R  then 

8:   Merge the weights and the threshold of the new neuron with the most 
similar neuron in  the same class output group 

9:   *
1

w w Nneww
N
+

=
+

 

10:   *
1

Nnew
N

χ χχ +
=

+
 

11:   where N  is the number of all previous merges of the merged neuron  
12:  Else 
13:   Add the new neuron to the output neuron repository R  
14:  end if 
15: end for (Repeat  to all input samples for other output classes) 

4. Integrated structure for parameter optimization and feature selection  
An integrated structure is presented in which the features and parameters are optimized 
simultaneously, and this leads to better optimization. This experiment further tests the 
efficiency of DQiPSO in selecting the most relevant features and also optimizing the ESNN 
parameters. Here the  DQiPSO optimizes the ESNN parameters: Modulation Factor ( Mod ), 
Proportion Factor ( C ) and Similarity ( Sim ), as well as identifies  the relevant features. All 
particles are initialized with random value and subsequently interact with each other based 
on classification accuracy. Since there are two components to be optimized, each particle is 
divided into two parts. The first part of each hybrid particle holds the feature mask where 
information is stored in a string of qubits. Another part holds parameters of ESNN. The 
proposed integrated framework is shown in Figure 6. 
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Fig. 6. An integrated ESNN-DQiPSO framework for feature selection and parameter 
optimization. 

4.1 Setup 
The proposed integrated ESNN-DQiPSO method was tested on a Uniform Hypercube 
dataset (Estavest et al., 2009). Thirty features were created where only 10 are the relevant 
features, where a sample belongs to class 1 when 1 *iri γ α−<  for i = 1 till 10. Parameters 
chosen were 0.8γ =  and 0.5α = . The features which are not relevant to determining the 
output class consist of 10 random features with the random value of [0,1] , and 10 redundant 
features copied from relevant features with an addition of Gaussian noise of 0.3. The 
features were arranged randomly to simulate the real world problem where relevant 
features are scattered in the dataset as follows: 
 

Features Arrangement 

Relevant 02, 04, 09, 10, 11, 15, 19, 20, 26, 30 

Redundant 03, 07, 12, 14, 17, 18, 21, 25, 27, 28 

Random 01, 05, 06, 08, 13, 16, 22, 23, 24, 29 

Table 1. Feature arrangement 

The problem consists of 500 samples, equally distributed into two classes. It was applied to 
the proposed framework and compared with the QiPSO method and ESNN with standard 
PSO. However, because standard PSO is inadequate for feature selection, it only optimizes 
the ESNN parameters. Based on the preliminary experiment, 20 ESNN’s pre-synaptic 
neurons were chosen. For the DQiPSO, 18 particles were used, consisting of six Update, 
three Filter, three Random, three Embed In and three Embed Out. For the QiPSO, 20 
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particles were used. 1C  and 2C  were set to 0.05 to balance the exploration between 
gbest and pbest with the inertia weight w  = 2.0.  Ten-fold cross validations were used and 

the average result was computed in 500 iterations.  

4.2 Results 
Figure 7 illustrates the comparison of selected features from DQiPSO and QiPSO during the 
learning process. The lighter colour means more frequent corresponding features are  
 

 
Fig. 7. Evolution of feature selection 
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selected and darker means otherwise. All the features have been ranked based on the 
number of selected features from 10 runs to determine their relevancy. From the figure, 10 
relevant features which contained the most information can be clearly identified and are 
constantly being selected by DQiPSO. In contrast, the redundant and random features are 
completely rejected during the optimization process. DQiPSO takes less than 100 iterations 
to identify the relevant and irrelevant features. Based on the feature ranking, the most 
relevant features found are: Feature 9 and Feature 20, followed by Feature 10, Feature 11, 
Feature 26, Feature 2, Feature 15, Feature 19, Feature 30 and Feature 4. In contrast, the ability 
of the QiPSO to reject the irrelevant features is unsatisfactory.  Most of the irrelevant 
features are still being selected, which contributes to the low classification accuracy and 
increased computation time. The most relevant features found by QiPSO are Feature 10 and 
15, followed by Feature 4, Feature 25, Feature 2, Feature 9, Feature 11, Feature 18, Feature 19 
and Feature 20. Other features are occasionally selected and can be considered as irrelevant 
features by QiPSO. Some relevant features are also being regarded as irrelevant due to the 
number of selected is low, while some irrelevant features which contain no information are 
considered as relevant by QiPSO. This situation has affected the results and overall 
classification performance of the ESNN-QiPSO. 
Figure 8 shows the results of parameter optimization. All parameters evolve steadily 
towards a certain optimal value, where the correct combination together with the selected 
relevant features leads to a better classification accuracy. In terms of the classification result, 
the average accuracy for ESNN-DQiPSO is 99.25% with the result of every single run 
consistently above 98%. For the ESNN-QiPSO algorithm, the average accuracy is 96.57%. 
The proposed DQiPSO and QiPSO methods are able to select relevant features with few or 
occasionally no irrelevant features, while simultaneously providing nearly optimal 
parameter combinations in the early stage of learning. This situation leads to acceptably  
 

 
Fig. 8. a) Classification accuracy and b) Parameter optimization result 



Evolutionary Algorithms 

 

146 

high average accuracy at the beginning of the learning process. For the ESNN-PSO 
algorithm, although the classification accuracy is 94.43%, this algorithm is entirely 
dependent on the parameter optimization which has affected the results, giving the lowest 
accuracy. The testing results for ESNN-DQiPSO, ESNN-QiPSO and ESNN-PSO are 95.99%, 
91.58% and 83.93% respectively. 

5. Conclusion and future research 
This chapter has introduced a new PSO model and has shown how this optimizer can be 
implemented for parameter optimization and feature selection. Since feature selection is a 
unique task involving probability, quantum computation has been embedded into PSO and 
has been applied to an ESNN for classification. The new method results in a more efficient 
classification ESNN model with optimal features selected and parameters optimised. 
Future work is planned to improve the proposed optimization method and to apply it to the 
Probabilistic Spiking Neural Networks (PSNN) (Kasabov, 2010). In this PSNN, not only 
features will be represented by a quantum bit vector, but also all connections between the 
neurons. A neuronal connection is either existent (1) or nonexistent (0), or in another 
interpretation – either propagating a spike or not propagating it. A quantum bit vector 
would be a suitable representation of all connections that can be optimized using the 
modified PSO. Each particle will be divided into three parts; the first two parts use quantum 
probability computation for feature and connection selection and the last part holds the real 
value for the parameters. It is to be believed that the proposed method will be able to 
optimize the given problem in a far more efficient way. 
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1. Introduction

This chapter discusses an alternative approach for symbolic structures and solutions synthesis
and demonstrates a comparison with other methods, for example Genetic Programming (GP)
or Grammatical Evolution (GE). Generally, there are two well known methods, which can
be used for symbolic structures synthesis by means of computers. The first one is called
GP and the other is GE. Another interesting research was carried out by Artificial Immune
Systems (AIS) or/and systems, which do not use tree structures like linear GP and other
similar algorithm like Multi Expression Programming (MEP), etc. In this chapter, a different
method called Analytic Programming (AP), is presented. AP is a grammar free algorithmic
superstructure, which can be used by any programming language and also by any arbitrary
Evolutionary Algorithm (EA) or another class of numerical optimization method. This chapter
describes not only theoretical principles of AP, but also its comparative study with selected
well known case examples from GP as well as applications on synthesis of: controller,
systems of deterministic chaos, electronics circuits, etc. For simulation purposes, AP has been
co-joined with EA’s like Differential Evolution (DE), Self-Organising Migrating Algorithm
(SOMA), Genetic Algorithms (GA) and Simulated Annealing (SA). All case studies has been
carefully prepared and repeated in order to get valid statistical data for proper conclusions.
The term symbolic regression represents a process during which measured data sets are fitted,
thereby a corresponding mathematical formula is obtained in an analytical way. An output

of the symbolic expression could be, for example, N
√
x2 +

y3

k , and the like. For a long time,
symbolic regression was a domain of human calculations but in the last few decades it
involves computers for symbolic computation as well.
The initial idea of symbolic regression by means of a computer program was proposed in
GP (Koza, 1990; 1998). The other approach of GE was developed in Ryan et al. (1998) and
AP in Zelinka et al. (2005a). Another interesting investigation using symbolic regression
were carried out in Johnson (2004) on AIS and Probabilistic Incremental Program Evolution
(PIPE), which generates functional programs from an adaptive probability distribution over
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all possible programs. Yet another new technique is the so called Transplant Evolution, see
Weisser & Osmera (2010b), Weisser & Osmera (2010a) and Weisser et al. (2010) which is closely
associated with the conceptual paradigm of AP, and modified for GE. GE was also extended
to include DE by O’Neill & Brabazon (2006). Symbolic regression is schematically depicted
in Figure 1. Generally speaking, it is a process which combines, evaluates and creates more
complex structures based on some elementary and noncomplex objects, in an evolutionary
way. Such elementary objects are usually simple mathematical operators (+,−,×, ...), simple
functions (sin, cos, And, Not, ...), user-defined functions (simple commands for robots –
MoveLeft, TurnRight, ...), etc. An output of symbolic regression is a more complex “object”
(formula, function, command,...), solving a given problem like data fitting of the so-called
Sextic and Quintic problem described by Equation (1) (Koza et al., 1999; Zelinka & Oplatkova,
2003a), randomly synthesized function by Equation (2) (Zelinka & Oplatkova, 2003a), Boolean
problems of parity and symmetry solution (basically logical circuits synthesis) by Equation (3)
(Koza et al., 2003; Zelinka et al., 2005a), or synthesis of quite complex robot control command
by Equation (4) (Koza, 1998; Oplatkova & Zelinka, 2006). Equations (1)–(4) mentioned here
are just a few samples from numerous repeated experiments done by AP, which are used to
demonstrate how complex structures can be produced by symbolic regression in general for
different problems.

Fig. 1. Symbolic regression - schematic view
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)
K4 (K5 + K6)
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∗ (−1 + K2 + 2x (−x− K7)) (1)
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)sec−1(1.28)
logsec−1(1.28) (sinh (sec (cos (1)))) (2)

Nor[(Nand[Nand[B||B, B&&A], B])&&C&&A&&B,
Nor[(!C&&B&&A||!A&&C&&B||!C&&!B&&!A)&&
(!C&&B&&A||!A&&C&&B||!C&&!B&&!A)||
A&&(!C&&B&&A||!A&&C&&B||!C&&!B&&!A),
(C||!C&&B&&A||!A&&C&&B||!C&&!B&&!A)&&A]]

(3)

Prog2[Prog3[Move, Right, IfFoodAhead[Left, Right]],
IfFoodAhead[IfFoodAhead[Left, Right], Prog2[IfFoodAhead[
IfFoodAhead[IfFoodAhead[Left, Right], Right], Right],
IfFoodAhead[Prog2[Move, Move], Right]]]]

(4)
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1.1 Genetic programming
GP was the first tool for symbolic regression carried out by means of computers instead of
humans. The main idea comes from GA, which was used in GP (Koza, 1990; 1998). Its ability
to solve very difficult problems is well proven; for example, GP performs so well that it can
be applied to synthesize highly sophisticated electronic circuits (Koza et al., 2003).
The main principle of GP is based on GA, which is working with populations of individuals
represented in the LISP programming language. Individuals in a canonical form of GP
are not binary strings, different from GA, but consist of LISP symbolic objects (commands,
functions, ...), etc. These objects come from LISP, or they are simply user-defined functions.
Symbolic objects are usually divided into two classes: functions and terminals. Functions
were previously explained and terminals represent a set of independent variables like x, y,
and constants like π , 3.56, etc.
The main principle of GP is usually demonstrated by means of the so-called trees (basically
graphs with nodes and edges, as shown in Figure 2 and Figure 3, representing individuals in
LISP symbolic syntax). Individuals in the shape of a tree, or formula like 0.234Z+ X − 0.789,
are called programs. Because GP is based on GA, evolutionary steps (mutation, crossover, ...)
in GP are in principle the same as GA. As an example, GP can serve two artificial parents –
trees on Figure 2 and Figure 3, representing programs 0.234Z+X− 0.789 and ZY(Y+ 0.314Z).
When crossover is applied, for example, subsets of trees are exchanged. Resulting offsprings
of this example are shown on Figure 3.

Fig. 2. Parental trees

Subsequently, the offspring fitness is calculated, such that the behavior of the just-synthesized
and evaluated individual-tree should be as similar as possible to the desired behavior. The
desired behavior can be regarded as a measured data set from some process (a program that
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Fig. 3. Offsprings

should fit them as well as possible) or like an optimal robot trajectory, i.e., when the program
is evaluating a sequence of robot commands (TurnLeft, Stop, MoveForward,...) leading as
close as possible to the final position. This is basically the same for GE.
For detailed description of GP, see Koza (1998), Koza et al. (1999).

1.2 Grammatical evolution
GE is another program developed in O’Neill & Ryan (2003), which performs a similar task
to that of GP. GE has one advantage over GP, and this is the ability to use any arbitrary
programming language, not only LISP as in the case of the canonical version of GP. In contrast
to other EA’s, GE was used only with a few search strategies, and with a binary representation
of the populations (O’Neill & Ryan, 2003). The last successful experiment with DE applied on
GE was reported in O’Neill & Brabazon (2006). GE in its canonical form is based on GA,
thanks to a few important changes it has in comparison with GP. The main difference is in the
individual coding.
While GP manipulates in LISP symbolic expressions, GE uses individuals based on binary
strings. These are transformed into integer sequences and then mapped into a final program
in the Backus-Naur Form (BNF) (O’Neill & Ryan, 2003), as explained by the following artificial
example. Let T = {+,−,×, /, x, y} be a set of operators and terminals and let F = {epr, op,
var} be the so-called nonterminals. In this case, the grammar used for final program synthesis
is given in Table 1. The rule used for individuals transforming into a program is based on
Equation (5) below. GE is based on binary chromosome with a variable length, divided into
the so-called codons (range of integer values, 0-255), which is then transformed into an integer
domain according to Table 2.
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Nonterminals Unfolding Index
expr ::= op expr expr 0

var 1
op ::= + 0’

- 1’
* 2’
/ 3’

var :: X 0”
Y (1”)

Table 1. Grammatical evolution - rules

Chromozone Binary Integer BNF index
Codon 1 101000 40 0
Codon 2 11000011 162 2’
Codon 3 1100 67 1
Codon 4 10100010 12 0”
Codon 5 1111101 125 1
Codon 6 11100111 231 1”
Codon 7 10010010 146 Unused
Codon 8 10001011 139 Unused

Table 2. Grammatical evolution - codon

unfolding = codon mod rules
where rules is number of rules for given nonterminal

(5)

Synthesis of an actual program can be described by the following. Start with a nonterminal
object expr. Because the integer value of Codon 1 (see Table 2) is 40, according to Equation
(5), one has an unfolding of expr = op expr expr (40 mod 2, 2 rules for expr, i.e., 0 and
1). Consequently, Codon 2 is used for the unfolding of op by * (162 mod 4), which is the
terminal and thus the unfolding for this part of program is closed. Then, it continues in
unfolding of the remaining nonterminals (expr expr) till the final program is fully closed
by terminals. If the program is closed before the end of the chromosome is reached, then
the remaining codons are ignored; otherwise, it continues again from the beginning of the
chromosome. The final program based on the just-described example is in this case x · y (see
Figure 4). For a fully detailed description of GE principles, see O’Neill & Ryan (2003) or
consult [http://www.grammaticalevolution.org/].

1.3 Analytic programming
The final method described here and used for experiments in this chapter is called AP, which
has been compared to GP with very good results (see, for example, Zelinka & Oplatkova
(2003a), Oplatkova (2005), Zelinka et al. (2005a), Oplatkova & Zelinka (2006), Zelinka et al.
(2008)) or visit website www.ivanzelinka.eu.
The basic principles of AP were developed in 2001 and first published in Zelinka (2001) and
Zelinka (2002a). AP is also based on the set of functions, operators and terminals, which are
usually constants or independent variables alike, for example:

• functions: sin, tan, tanh, And, Or,...
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Fig. 4. Final program by GE

• operators: +, -, ×, /, dt,...

• terminals: 2.73, 3.14, t,...

All these objects create a set, from which AP tries to synthesize an appropriate solution.
Because of the variability of the content of this set, it is called a general functional set (GFS).
The structure of GFS is nested, i.e., it is created by subsets of functions according to the
number of their arguments (Figure 5). The content of GFS is dependent only on the user.
Various functions and terminals can be mixed together. For example, GFSall is a set of all
functions, operators and terminals, GFS3arg is a subset containing functions with maximally
three arguments, GFS0arg represents only terminals, etc. (Figure 5).
AP, as further described later, is a mapping from a set of individuals into a set of
possible programs. Individuals in population and used by AP consist of non-numerical
expressions (operators, functions,...), as described above, which are in the evolutionary
process represented by their integer position indexes (Figure 6, Figure 7, see also Chapter
2). This index then serves as a pointer into the set of expressions and AP uses it to synthesize
the resulting function-program for cost function evaluation.
Figure 7 demonstrates an artificial example as to how a final function is created from an integer
individual via Discrete Set Handling (DSH). Number 1 in the position of the first parameter
means that the operator + from GFSall is used (the end of the individual is far enough).
Because the operator + must have at least two arguments, the next two index pointers 6
(sin from GFS) and 7 (cos from GFS) are dedicated to this operator as its arguments. The two
functions, sin and cos, are one-argument functions, so the next unused pointers 8 (tan from
GFS) and 9 (t from GFS) are dedicated to the sin and cos functions. As an argument of cos,
the variable t is used, so this part of the resulting function is closed (t is zero-argument) in its
AP development. The one-argument function tan remains, and because there is one unused
pointer 9, tan is mapped on t which is on the 9th position in GFS.
To avoid synthesis of pathological functions, a few security tricks are used in AP. The first
one is that GFS consists of subsets containing functions with the same or a smaller number of
arguments. The nested structure (see also Figure 5) is used in the special security subroutine,
which measures how far the end of an individual is and, according to this, mathematical
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Fig. 5. Hierarchy in GFS

Fig. 6. DSH-Integer index
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Fig. 7. Principle of mapping from GFS to programs

elements from different subsets are selected to avoid pathological functions synthesis. More
precisely, if more arguments are desired then a possible function (the end of the individual is
near) will be replaced by another function with the same index pointer from the subset with
a smaller number of arguments. For example, it may happen that the last argument for one
function will not be a terminal (zero-argument function). If the pointer is longer than the
length of subset, e.g., a pointer is 5 and is used GFS0, then the element is selected according
to the rule: element = pointer_value mod number_of_elements_in_GFS0. In this example, the
selected element would be the variable t (see GFS0 in Figure 5).
GFS need not be constructed only from clear mathematical functions as demonstrated
above, but may also be constructed from other user-defined functions, e.g., logical functions,
functions which represent elements of electrical circuits or robot movement commands,
linguistic terms, etc.

1.3.1 Versions
AP was evaluated in three versions. All three versions utilize the same set of functions for
program synthesis, terminals, etc., as in GP (Koza, 1998; Koza et al., 1999)). The second version
labelled as APmeta (the first version, APbasic) is modified in the sense of constant estimation.
For example, the so-called sextic problem was used in Koza (1998) to randomly generate
constants, whereas AP uses only one, called K, which is inserted into the formula (6) below
at various places by the evolutionary process. When a program is synthesized, all K’s are
indexed as K1, K2, ..., Kn to obtain (7) the formula, and then all Kn are estimated by using a
second EA, the result of which can be, for example, (8). Because EA (slave) "works under” EA
(master), i.e., EAmaster → program → K indexing → EAslave → estimation of Kn, this version
is called AP with metaevolution, denoted as APmeta.

x2 + K
πK (6)
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x2 + K1
πK2

(7)

x2 + 3.56
π−229 (8)

Due to this version being quite time-consuming, APmeta was further modified to the third
version, which differs from the second one in the estimation of K. This is accomplished by
using a suitable method for nonlinear fitting (denoted APn f ). This method has shown the most
promising performance when unknown constants are present. Results of some comparative
simulations can be found in Zelinka & Oplatkova (2003b), Zelinka et al. (2005b) and Oplatkova
et al. (2008). APn f was the method chosen for the simulations described in this chapter.

1.3.2 Data set structure and mapping method
The subset structure presence in GFS is vitally important for AP. It is used to avoid synthesis
of pathological programs, i.e. programs containing functions without arguments, etc.
Performance of AP is, of course, improved if functions of GFS are expertly chosen based on
experiences with solved problem.
An important part of AP is a sequence of mathematical operations which are used for program
synthesis. These operations are used to transform an individual of a population into a suitable
program. Mathematically stated, it is mapping from an individual domain into a program
domain. This mapping consists of two main parts. The first part is DHS and the second
one are security procedures which do not allow synthesizing of pathological programs. DHS
proposed in Lampinen & Zelinka (1999), Zelinka (2004) is used to create an integer index,
which is used in the evolutionary process like an alternate individual handled in EA by the
method of integer handling. The method of DSH, when used, allows to handle arbitrary
objects including nonnumerical objects like linguistic terms hot, cold, dark, ..., logic terms
(True, False) or other user defined functions. In the AP, DSH is used to map an individual into
GFS and together with Security Procedures (SP) creates the above mentioned mapping, which
transforms the arbitrary individual into a program. Individuals in the population consist of
integer parameters, i.e. an individual is an integer index pointing into GFS.
AP is basically a series of function mapping. In Figure 7, an artificial example is given as to
how a final function is created from an integer individual. Number 1 in the position of the
first parameter means that the operator + from GFSall is used (the end of the individual is
far enough). Because the operator + has to have at least two arguments, the next two index
pointers 6 (sin from GFS) and 7 (cos from GFS) are dedicated to this operator as its arguments.
Both functions, sin and cos, are one-argument functions so the next unused pointers 8 (tan
from GFS) and 9 (t from GFS) are assigned to sin and cos function. Because cos has used
variable t as an argument, this part of resulting function is closed (t is zero-argument) in its
AP development. Only one-argument function remains and since there is one unused pointer
9 tan, it is mapped on t which is on the 9th position in GFS.
To avoid synthesis of pathological functions, a few security tricks are used in AP. The first
one is that GFS consists subsets containing functions with the same number of arguments.
Existence of this nested structure is used in the special security subroutine, which is measuring
how far the end of individual is and according to this objects from different subsets are
selected to avoid pathological function synthesis. Precisely, if more arguments are desired
than the possible (the end of the individual is near) function will be replaced by another
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function with the same index pointer from subset with lower number of arguments. For
example, it may happen if the last argument for one argument function will not be a terminal
(zero-argument function) as demonstrated in Figure 7.
GFS doesn’t need to be constructed from only clear mathematical functions as is
demonstrated, but also from other user-defined functions, which can be used, e.g. logical
functions, functions which represent elements of electrical circuits or robot movement
commands.

1.3.3 Crossover, mutations and other evolutionary operations
During evolution of a population, a number of different operators are used, such as crossover
and mutation. In comparison with GP or GE, evolutionary operators like mutation, crossover,
tournament, selection are fully in the competence of used EA. AP does not contain them in
any point of view of its internal structure. AP is created like a superstructure of EAs for
symbolic regression independent on their algorithmical structure. Operations used in EA’s
are not influenced by AP and vice versa. For example if DE is used for symbolic regression in
AP then all evolutionary operations are done according to the DE rules. AP just transforms
individuals into formulas.

1.3.4 Reinforced evolution
During evolution, more or less appropriate individuals are synthesized. Some of these
individuals are used to reinforce the evolution towards a better solution synthesis. The main
idea of reinforcement is based on the addition of the just-synthesized and partly successful
program into an initial set of terminals. Reinforcement is based on a user-defined criterion
used in decision as to which individual will be used as an addition into the initial set of
terminals. A criterion for the decision is in fact a threshold, i.e., by a user-defined cost value,
under which conditions are synthesized solutions being added into GFS.
For example, if the threshold is set to 5, and if the fitness of all individuals (programs in the
population) is bigger than 5, then evolution is running on the basic, i.e., initially defined, GFS.
When the best individual in the actual population is less than 5, then it is entirely added into
the initial GFS and is marked as a terminal. Since this moment, evolution is running on the
enriched GFS containing a partially successful program. Thanks to this advantage, evolution
is able to synthesize the final solutions much faster than the AP without reinforcement. This
fact has been repeatedly verified by simulations on different problems. When the program is
added into GFS, the threshold is also set to its fitness. If furthermore, an individual with better
fitness than the just-reset threshold is synthesized, then the old one is rewritten by the better
one, and the threshold is rewritten by a new fitness value.
It is quite similar to Automatically Defined Functions (ADF) for GP; however, the set of
functions and terminals in GP can contain more than one ADF, (which of course at least
theoretically increases the complexity of the search space to the order of n!), including properly
defined arguments of these ADF and critical situation checking (selfcalling,...). This is not a
problem of AP reinforcement, because adding a program into the initial GFS is regarded as a
terminal (or a terminal structure), i.e., no function, no arguments, no selfcalling, etc., and the
cardinality of the initial GFS set increases only by one.
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Start of simulation No. 5 Time: 22:7 :54.351481

Appended suboptimal solution with CV � 4 Time: 22:7 :54.547317

Appended suboptimal solution with CV � 3 Time: 22:7 :54.577788

Appended suboptimal solution with CV � 2 Time: 22:8 :41.529214

Appended suboptimal solution with CV � 1 Time: 22:10 :14.346728

Number of cost function evaluations: 36270
Cost value: 0
The best individual:
�8, 5, 8, 3, 1, 9, 4, 2, 3, 9, 7, 4, 4, 10, 1, 10, 5, 8, 5, 7, 10, 6, 5, 10, 9, 9, 7, 2, 6, 3�
Solution: ���B � ���A � C � � B� � �B � C � � A� � �� A � � B � � C�� � C�� � �B � �C � A��� �

A � ��A � ��A � C � � B� � �B � C � � A� � �� A � � B � � C��� �
��A � C � � B� � �B � C � � A� � �� A � � B � � C���� �

�A � ��A � ��A � C � � B� � �B � C � � A� � �� A � � B � � C��� �
���A � C � � B� � �B � C � � A� � �� A � � B � � C�� � ��A � C � � B� � �B � C � � A� � �� A � � B � � C�����

�2005, 11, 28, 22, 14, 45.450393�

Fig. 8. Effect of reinforced evolution

1.3.5 Security procedures
Security Procedures (SP) are in AP as well as in GP, used to avoid various critical situations.
In the case of AP, security procedures were not developed for AP purposes after all, but they
are mostly an integrated part of AP. However, sometimes they have to be defined as a part
of cost function, based on specific situations (for example situation 2, 3 and 4, shown below).
Critical situations are like:

1. pathological function (without arguments, self-looped...)

2. functions with imaginary or real part (if not expected))

3. infinity in functions (dividing by 0, ...)

4. frozen functions (an extremely long time to get a cost value - hrs...)

5. etc.

Put simply, an SP can be regarded as a mapping from an integer individual to the program,
which is checked as to how far the end of the individual is and based on this information,
a sequence of mapping is redirected into a subset with a lower number of arguments. This
satisfies the constraint that no pathological function will be generated. Other activities of SP
are integrated as part of the cost function to satisfy items 2-4, etc.

1.3.6 Similarities and differences
Similarities and Differences Because AP was partly inspired by GP, then between AP, GP and
GE some differences as well as some similarities logically exist. A few of these are:

1. Synthesized programs (similarity): AP as well as GP and GE is able to do symbolic
regression in a general point of view. It means that the output of AP is according to
simulations (Zelinka, 2002b;c; Zelinka & Oplatkova, 2004; Zelinka et al., 2004), similar to
programs from GP and GE.

2. Functional set (similarity): APbasic operates in principle on the same set of terminals and
functions as GP or GE, while APmeta or APn f use a universal constant K (difference), which
is indexed after program synthesis.
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(a) Subfigure 1 (b) Subfigure 2

Fig. 9. Security

3. Individual coding (difference): coding of an individual is different. AP uses an integer
index instead of direct representation as in canonical GP. GE uses the binary representation
of an individual, which is consequently converted into integers for mapping into programs
by means of BNF (O’Neill & Ryan, 2003).

4. Individual mapping (difference): AP uses DSH, while GP in its canonical form uses direct
representation in LISP (Koza, 1998) and GE uses BNF.

5. Constant handling (difference): GP uses a randomly generated subset of numbers -
constants (Koza, 1998), GE utilizes user determined constants and AP uses only one
constant K for APmeta and APn f , which is estimated by another EA or by nonlinear fitting.

6. Security procedures (difference): to guarantee synthesis of non-pathological functions,
procedures are used in AP which redirect the flow of mapping into subsets of a whole
set of functions and terminals according to the distance to the end of the individual. If
pathological function is synthesized in GP, then synthesis is repeated. In the case of GE,
when the end of an individual is reached, the mapping continues from the individual
beginning, which is not the case in AP. It is designed so that a non-pathological program
is synthesized before the end of the individual is reached (maximally when the end is
reached).
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2. Selected applications

This section briefly describes some selected applications of AP, which has been conducted
during the past few years and cover a comparative study with GP techniques published by
J. R. Koza as well as other different applications. In each subsection, the main idea of the AP
application is described, results alongside references to publications, cumulating in the full
report of proposed application.

2.1 Randomly generated solutions
This part discuss the first and very simple experiment (see Zelinka (2002b)) which has been
done with AP. It was focused on the verification as to whether AP as it was programmed,
is able to produce reasonable structures (programs, formulas, etc...) which are complete, i.e.
there are not missing arguments, division by 0 etc. In this simulation, randomly selected
functions from GFS were selected, i.e. randomly generated individuals has been transformed
to programs by AP - no evolution has been taken into consideration in this experiment. The
terminal set contains only one variable t and a few constants. The nonterminal set consisted
of various and just randomly (by user) collected mathematical functions. Final solutions were
synthesized from both sets. A few examples of synthesized formulas are represented by
Equations (9) - (13). Selected formulas were also visualized to show interesting behavior of the
synthesized programs. They are depicted in Figure 10 - 15. It is important to remember that
there was no another deeper mathematical reason to synthesize such, on the first look wild,
functions. There was only one aim - to check whether AP is able to synthesize structurally
acceptable solutions. Instead of used mathematical functions, user defined functions can also
be used. There was 1000 randomly generated individuals, converted into programs (formulas)
and verified. No pathology in their structures has been observed.
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Fig. 10. Visualization of randomly synthesized individuals - functions
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Fig. 11. Another view of the function from Figure 10b
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Fig. 12. Visualization of randomly synthesized individuals - functions
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Fig. 13. Visualization of randomly synthesized individuals - functions, b) detailed view
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Fig. 14. a) More detailed view of Figure 13b and b) behavior of different function
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Fig. 15. Another interesting function
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2.2 Comparison with selected GP examples
To verify more properly the functionality of AP, a set of comparative simulations based on
selected examples from Koza’s GP, have been done. Two algorithms were used for comparison
of AP with GP - DE and SOMA. Simulations were focused on selected examples from Koza
(1998) and Koza et al. (1999), especially:

• Sextic problem - x6 − x4 + x2

• Quintic problem - x5 − 2x3 + x

• Boolean even-k-parity problem - synthesis of logical function in a few versions containing
3, 4, 5 and 6 input variables

• Boolean symmetry problem - synthesis of logical function in a few versions containing 3,
4, 5 and 6 input variables

Based on the studies in Koza (1998) andKoza et al. (1999), the above mentioned problems
have been selected for comparative study. The first two are focused on data fitting. Data
are generated by means of polynomials x6 − x4 + x2 and x5 − 2x3 + x. Equations 14 - 17
are typical example of synthesized solutions, especially Equations 14 and 16 are solutions
with general constants K and Equations 15 and 17 are their fitted versions. In Figure 16,
fitted data-dots and fitting by synthesized programs (black lines) is depicted. Another study -
Booleans even-3-parity and symmetry problems were selected for comparative study and are
fully reported in Zelinka et al. (2004) and Zelinka & Oplatkova (2004). In general, Boolean
even-k-parity problems means that if the number of logical inputs of value True is even, then
the output is True. If number of logical inputs of value True is not even, then the output
is False. Number of all possible inputs (combinations) from 23 = 8 for 3-parity problem
to 26 = 64 for a 6-parity problem. Truth table for 3-parity problem is given in Table 3.
Symmetry problem has been investigated in the same way. Output of this logical function
is True whenever True and False values are symmetrically distributed on inputs, see Koza
(1998) andKoza et al. (1999). A typical example of synthesized solution is Equation 18. The
full report of this comparative study is in Zelinka et al. (2004) and Zelinka & Oplatkova (2004).

xK[[5]]K[[6]](x(−K[[18]])−K[[19]]+2x)
K[[23]](K[[24]]+x)

x2 + x(x−K[[20]])
K[[21]]+K[[22]]

+
(
K[[9]](xK[[10]]+x)(K[[25]]+x)

K[[7]]K[[8]] + K[[2]]− x
)

(xK[[11]]− K[[12]] + x)− xK[[4]]
(
−K[[13]]+K[[14]]+K[[17]]+ K[[15]]

K[[16]]−x
)

−K[[3]]−x − K[[1]]
(14)

0.00621529x(0.793939−1.x)
−1.x−0.934705 + (0.465773(x+ 2.82445)x− 1.x− 7.45208)(0.181218 − 0.749217x)+

2.9596(0.432881x−3.70673)x
0.21213(x+13.054)

x2 +0.456758(x−0.562963)x
+ 1.27265

(15)

x(x2(x(K[[7]] + x)− K[[2]]) + x(K[[4]]− K[[5]]) + xK[[6]] + K[[1]]− K[[3]]− 1) (16)

x
(
1. − 2.193908007555499−16x+ x2(−2. + x(4.66960974116765−16 + x))

)
(17)
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Fig. 16. Quintic (a) and Sinus 3 (b), all 50 successful simulations (black lines) very well fit the
measured data (red dots)

Input 1 Input 2 Input 3 Output
True True True False
True True False True
True False True True
False True True True
True False False False
False True False False
False False True False
False False False True

Table 3. Truth table for Boolean even-3-parity problem according to Koza (1998)

((A ∧ (((((B ∧ A) ∨ (C ∧ A) ∨ (¬C ∧ B) ∨ (¬C ∧ ¬A)) � ((B ∧ A) ∨ (C ∧ A)
∨(¬C ∧ B) ∨ (¬C ∧ ¬A))) ∨ (B∨̄A)) � ((A ∨ (B ∧ A) ∨ (C ∧ A)
∨(¬C ∧ B) ∨ (¬C ∧ ¬A)) ∧ B ∧ ((B ∧ A) ∨ (C ∧ A) ∨ (¬C ∧ B) ∨ (¬C ∧ ¬A)))))
�C) � (C ∨ (C∨̄(A � (C � ((B ∧ A) ∨ (C ∧ A) ∨ (¬C ∧ B)
∨(¬C ∧ ¬A))))))

(18)

2.3 Santa Fe trail and Artificial ant
Another test of AP has been done on the setting of an optimal trajectory of an artificial ant
on the so-called SantaFe Trail. In this experiment, SOMA (Zelinka, 2004) and DE (Price, 1999)
were selected as the two EA’s for simulation. In space and other comparative industries, the
number of robots used for specific tasks are increasing daily. Subsequently, precise tasks such
as optimal trajectory setting of the robot is a very desirable attribute. The problem description
for this preliminary study is taken from Koza (1998). The aim of this experiment is that a
robot, in this case, an artificial ant, should go through a defined trail and eat all food which is
there. One of the possible ways for the ant to transverse is the so-called SantaFe trail, which
is demonstrated in Figure 19. The SantaFe trail is defined as a 32 x 31 field, where food is set
out. In Figure 19, a black field is food for the ant. The grey one is basically the same as a white
field but for clarity, the grey color was used. The grey fields represent obstacles (fields without
food on the road) for the ant. If obstacles do not exist, the ant would have a clear run. Ideally,
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it would be the best to precede the ant and ascertain if any food is present in the current path.
If food is present, then the ant would follow and eat it. If no food is found, the ant would
change trajectory. This cycle would repeat till all the food is devoured.
However, in the real world, robots face obstacles during their movement. Therefore, this
analogy is also applied in this research. The first obstacle which the ant has to overcome is
the simple hole (position [8,27] in Figure 19. The second obstacle are the two holes in the line
(positions [13,16] and [13,17]), or three holes ([17,15], [17,16], [17,17]). Next obstacle are the
holes in the corners - one (position [13,8]], two ([1,8],[2,8]) and three holes ([17,15], [17,16],
[17,17]). In the case of AP’s application, all simulations (i.e. DE as well as SOMA) have shown
very good performances and results were fully comparable with techniques like GP. For full
report see Oplatkova & Zelinka (2006).

I f FoodAhead[Move, Prog3[I f FoodAhead[Move,Right], Prog2[Right,
Prog2[Le f t,Right]], Prog2[I f FoodAhead[Move, Le f t], Move]]] (19)

(a)

IfFoodAhead

Move Prog3

IfFoodAhead

Move Right

Prog2

Right Prog2

Left Right

Prog2

IfFoodAhead

Move Left

Move

(b) Tree representation of the solution from the
Equation 19

Fig. 17. SantaFe trail (a) and its solution (b)

2.4 Deterministic chaos synthesis
Zelinka et al. (2008) introduces the notion of chaos synthesis by means of EA’s and develops
a new method for chaotic systems synthesis. This method is similar to GP and GE and is
applied with three EA’s: DE, SOMA, and GA. The aim of this research is to synthesize new
and “simple” chaotic systems based on some elements contained in a pre-chosen existing
chaotic system and a properly defined cost function. The research consists of 11 case studies:
the aforementioned three EA’s in 11 versions. For all algorithms, 100 simulations of chaos
synthesis were repeated and then averaged to guarantee the reliability and robustness of the
proposed method. The most significant results are carefully selected, visualized and reported
in this section.
Methods used in generating new chaotic systems from physical systems or from
“manipulations” (e.g., control and parameter estimation (Grebogi & Lai, 1999; Hu et al., 1999)
are based on deterministic mathematical analysis. Along with these classical methods, there
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Fig. 18. Another more complex solution of the SanteFe Trail

are also numerical methods based partly on deterministic and partly on stochastic methods,
called EA’s (Back et al., 1997). EA’s were used in searching solutions in many computationally
hard problems including classes of P and NP problems (Garey & Johnson, 1979). In chaos
studies, they were also used for chaos control as in Zelinka (2005), Richter (2002) or Zelinka
(2006), amongst others.
The aim of the this research is to show that EA-based on GP-like techniques is capable
of synthesizing chaotic behavior in the sense that the mathematical descriptions of chaotic
systems are synthesized symbolically by means of EA’s. The ability of EAs to successfully
solve this kind of black-box problems has a proven track record (see, for example, Zelinka &
Nolle (2005)), and is reinforced in this chapter.
Based on statistically robust simulations, a lot of interesting chaotic systems has been
synthesized. In Zelinka et al. (2008), a number of chaotic systems in mathematical description
as well as its bifurcation diagrams were reported. As an example Equation21 and Figure 19
can be used. The extended case study (for more EAs and continuous systems) is reported in
the book chapter (Zelinka et al., 2010) where the synthesis of the continuous systems are taken
into consideration.

Ax− A− x
A
2x − A(A−x)

Ax+2A−x+1 + A+ x
(20)
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Fig. 19. Bifurcation diagram of the synthesized system (a) and solution (see Equation 21) in
the tree representation (b)

2.5 Control law synthesis
Another application of AP (Oplatkova, Senkerik, Belaskova & Zelinka, 2010; Oplatkova,
Senkerik, Zelinka & Holoska, 2010a;b) is focused on the synthesis of control law for discrete
chaotic system. The interest in the control of chaotic systems has been an active area of
research during the past decade. One of the first and important initial studies, of EA for
control use was reported in Zelinka, Senkerik & Navratil (2009), Zelinka et al. (2006b) and
Zelinka et al. (2006a), where the control law was based on the Pyragas method: Extended
delay feedback control - ETDAS (Pyragas, 1995). Those papers were focused on the tuning
of several parameters inside the control technique for a chaotic system. Compared to that,
a presented paper Oplatkova, Senkerik, Belaskova & Zelinka (2010); Oplatkova, Senkerik,
Zelinka & Holoska (2010a;b) shows a possibility as to how to generate the whole control law
(not only to optimize several parameters) for the purpose of stabilization of a chaotic system.
The synthesis of control is inspired by the PyragasâĂŹs delayed feedback control technique
(Just, 1999; Pyragas, 1990). Unlike the original OGY control method (Ott et al., 1990), it can be
simply considered as a targeting and stabilizing algorithm together in one package. Another
big advantage of the Pyragas method is the amount of accessible control parameters. Instead
of EA utilization, AP was used. Control law from the proposed system can be viewed as a
symbolic structure, which can be created according the requirements for the stabilization of
chaotic system. The advantage is that it is not necessary to have some “preliminary” control
law and only to estimate its parameters. This system will generate the structure of the law
also with suitable parameter values. The articles Oplatkova, Senkerik, Zelinka & Holoska
(2010a), Oplatkova, Senkerik, Belaskova & Zelinka (2010) and Oplatkova, Senkerik, Zelinka
& Holoska (2010b) contain 12 simulations with selected EAs applied with AP in order to
synthesize suitable control law. Interested readers are recommended to read these articles.

2.6 Algorithm synthesis
Our personal experiences have led to the hypothesis that a new algorithm (in this case
evolutionary) can be created by AP. The main idea was that subroutines (operators) of selected
EAs has been taken into consideration as symbolic objects (functions, ...), i.e. like members
of the nonterminal set. Terminal set consisted of individuals (i.e. integer vector). The aim
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of this simulation was to use EA’s in such a way that with AP and a defined nonterminal
and terminal sets, other versions of EA’s were created. In Oplatkova (2009), the progress
from the first study of the synthesis of a new EA to the simulations with more operators
and higher dimensional systems is described. At the onset, DE was taken and its operators
were separated into modules which were able to work independently. These operators were
set up as simple functions for successful evaluations of AP. During the repeated simulations
of AP, successful solutions as well as the original DE and other successful solutions (DE
synthesis) were found. The next step continued with more operators from other evolutionary
and stochastic algorithms such as SOMA, Hill Climbing and SA (Oplatkova, 2009). In this
case, a new design of the cost function was utilized. With respect to the order of obtained cost
values, the measurement was changed to minimize the difference between found extreme and
the global. Penalization concerned to cost function evaluations was also applied. Simulations
were performed in 2 dimensional space. This led to the third step, to use high dimensional
benchmark functions as criterion in AP. The obtained results from higher dimensional test
functions were then applied on 16 benchmark function in 2, 20 and 100 dimensional space
for 4 found algorithms. Altogether, 192 simulations were carried out in 100 times repetition,
equating to nearly 4 × 109 cost function evaluations. Results are depicted in tables and
graphs in the Appendix of Oplatkova (2009). From results obtained, it can be stated that AP
synthesized algorithms are able to optimize multimodal functions. Future research is open
to add more operators, to tune parameters of found algorithms or to try to synthesize a new
evolutionary operator itself.

2.7 Electronic circuits synthesis
In the diploma thesis of Strakos (2005), three electronic circuits were experimentally
synthesized. The main point of this AP application was to confirm, that EA’s with AP are
possible to successfully design electronics circuits. In the first part of Strakos (2005) the general
theory (GP, GE and AP) is outlined, while in the experimental part the synthesis of three
electronic circuits (traffic light control, heat control and train station control) is described.
All three control systems has been successfully designed by AP. Each winning solution was
visualized as a circuit and hardware implementation (see for example Figure 20). In all three
experiments (50 times repeated) AP had been observed to be capable of electronic circuit
synthesis.

(a) Logical circuit designed by AP (b) HW reprezentation

Fig. 20. Circuit designed by AP (a) and its hardware implementation (b)
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2.8 Nonlinear dynamical system identification
Synthesis, identification and control of complex dynamical systems are usually extremely
complicated. When classics methods are used, some simplifications are required, which tends
to lead to idealized solutions that are far from reality. In contrast, the class of methods based
on evolutionary principles is successfully used to solve this kind of problems with a high
level of precision. In this section, an alternative method of EA’s, which has been successfully
proven in many experiments like chaotic systems synthesis, neural network synthesis or
electrical circuit synthesis. Zelinka, Senkerik, Oplatkova & Davendra (2009) discusses the
possibility of using EA’s for the identification of chaotic systems. The main aim of this work
is to show that EA’s are capable of the identification of chaotic systems without any partial
knowledge of it’s internal structure, i.e. based only on measured data. Two different EA’s are
presented and tested in a total of 10 versions. Systems selected for numerical experiments is
the well-known logistic equation. For each algorithm and its version, repeated simulations
were done, amounting to 50 simulations. Typical example of evolutionary identification is
in Equation (21), (22) and visualization in Figure 21. According to obtained results, it can
be stated that evolutionary identification is an alternative and promising way as to how to
identify chaotic systems. Extended case study is also reported in Zelinka et al. (2010).

x

⎛
⎝A+

(
−1 − A+ x− Ax+ x2 − −A+x

A

)
(A+ A(x+ Ax))

2A2

⎞
⎠ (21)

(1 − x)x2(3A+ x− 3Ax+ Ax2) (22)

2.9 Neural network synthesis
Based on the case studies in Zelinka (2002c), Zelinka & Oplatkova (2003b), Zelinka &
Oplatkova (2004) and Zelinka & Volna (2005), synthesis of Neural Networks (NN) was
used for this study. Two problems, solved by AP were chosen : linearly and nonlinearly
separable (XOR) problems. Concerning to previous simulations (Maniezzo, 1993), in this
case of NN synthesis, simple elementary objects like +,−, /, ∗, Exp, x1, x2,K were used.
During evolution, more complicated structures from these simple objects of NN nature were
created. As a learning algorithm, evolutionary fitting of weights was used, because the use
of algorithms like back-propagation would be complicated on final neural structures. Figure
22 can be used as an example, where two examples of AP synthesized Artificial NN (ANN) is
depicted. AP has been successfully used for different kind of problems. Positive results has
shoved that AP can be used in this way. In the future more complex study on NN synthesis
are going to be done by means of other EA’s.

2.10 PDE solution synthesis
Zelinka (2001) outlines the use of AP on mathematical problems of civil engineering and
problems of mathematical physics. In this paper, a few evolutionary simulations with AP has
been done in order to get solutions of selected problems. This set of simulations was focused
on ODE solving (see Figure 23 and Equation (23)). In Rektorys (1999), it is solved by the means
of Ritz and Galerkin method on apriori selected functional base, which was orthogonal. Here
it was solved with AP without any apriori demand.
This simulation was focused on finding the solution of a quite complicated ODE problem
originating from mechanical engineering. Original solution obtained by means of Ritz
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Fig. 21. Original (black fat points) and identified (red thin points) behavior

(a) ANN for linear separable problem (b) ANN for XOR problem

Fig. 22. Synthesized ANN by AP a) for linearly separable problems, b) for XOR problem
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and Galerkin method (Rektorys, 1999) is depicted in Figure 23. Base in Hilbert space
consisted of sinus functions and final solution of unknown u(x) was u(x) = 1.243 sin(πx) +
0.0116 sin(2πx) + 0.00154 sin(3πx).
The original solution obtained by means of Ritz and Galerkin method and AP embedded with
SOMA was used in two ways. In the first one, SOMA was used to estimate only parameters
a, b, c of founded u(x) , i.e. u(x) = a sin(πx) + b sin(2πx) + c sin(3πx).. In the original
solution all three coefficients were calculated by means of quite complicated Ritz and Galerkin
methods. SOMA was able to find all three coefficients as is depicted in Figure 23. This problem
was basically a classical optimization because functions were a priori known. This simulation
was 100 times repeated and in all cases has lead to the same results. The second use of SOMA
here was not focused only on parameter estimation. SOMA was used with AP on a complex
set of functions (sin, cos, ...) operators : +,−, /, Power,× and constants a, b, c to find their best
combination i.e. to build up function fitting function 5000(x − x2) as closely as possible, see
Equations 24 and 25.

((4 + x)u(x)”)” = 5000
(
x− x2

)
(23)

u = 1.243 sin(πx) + 0.0116 sin(2πx) + 0.00154 sin(3πx) (24)

u = 1.243 sin(πx)− .3 sin(2πx) + .1 sin(3πx) (25)

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

800

1000

1200

x

f�
x�

(a) The best solution (Equation 24) of the
Equation 23
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Fig. 23. Synthesized PDE solutions by AP a) the best solution, b) typical but not suitable
solution observable at the beginning of the evolution. Original solution given by numerical
Galerkin/Ritz method in the Hilbert space is represented by solid red line, while
evolutionary synthesized solution is in dashed blue line.

3. Conclusion

Based on various applications of AP, it can be stated that AP seems to be powerful
algorithmical equivalent of such methods like GP or GE. The AP method has been carefully
tested during the last 9 years on various examples including selected examples from GP for
comparative study. Results from all of experiments, partially reported here, confirm the fact
that AP is possible to use for the same class of problems like another algorithms (GP, GE, etc.).
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1. Introduction 
An Evolutionary Algorithm (EA) is a meta-heuristic and stochastic optimization search 
process that mimics Darwinian evolution theory and Mendel's Genetics. Each process 
facilitates (a) population(s) evolve into fittest and/or convergence by setting parameters of 
selection, mutation, crossover, population resizing, and/or many other variant operators. 
However, due to two primary identified factors, EAs are still a challenging research topic: (1) 
Value choices/ranges for parameters (i.e., parameter settings) will greatly influence the 
evolution performance of a search process in terms of fittest and/or convergence; and (2) 
Parameter settings that are good for one fitness function do not guarantee the same evolution 
performance of another fitness function. Namely, parameter settings are function-specific. 
Different functions may have various characteristics that request specific attention. In order to 
better organize and overcome the parameter setting problem, Eiben et al. have classified 
parameter settings into parameter tuning and parameter control (Eiben et al., 1999): Parameter 
tuning determines parameter values before a search process begins while parameter control 
changes parameter values during a search process. More specifically, parameter control 
adjusts parameters on-the-fly using three different approaches: (1) Deterministic approach 
alters parameters based on certain pre-determined rules or formulae; (2) Adaptive approach 
strategically adjusts parameter values based on the feedbacks of a search process. Such 
feedbacks could be fitness, diversity, distance, among others; and (3) Self-adaptive approach 
encodes parameters to be adapted and evolves them along with a search process. Yet, even 
with such a classification, to our best knowledge there is no existing tool to assist researchers 
with conducting experiments of parameter settings with ease. Namely, researchers need to 
find out appropriate places out of thousand lines of EA source code to introduce and update 
specific parameters (including feedbacks) as well as formulae and adaptive strategies. 
Additionally, a number of revisions for EA source code will be also required for different 
kinds of experiments. To EA experimenters, such endeavor is time consuming and error 
prone. To EA developers, complex and tangling source code, resulted from different 
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parameter and strategy introductions, may also cause inflexibility for further extension and 
inevitability of faulty EA source code. In order to solve the aforementioned problems, a 
programmable approach, called PPCea (Programmable Parameter Control for Evolutionary 
Algorithms) (Liu et al., 2004), is presented in this book chapter. 
PPCea is a Domain-Specific Language (DSL) (Mernik et al., 2005) for EAs. It uplifts the 
abstraction layer to a higher (i.e., domain-specific) level and introduces domain-specific 
notations (e.g., parameters and statements) as well as common linguistic elements. Namely, 
the implementation details of Genetic Algorithms (GAs) and Evolution Strategies (ESs) are 
encapsulated and hidden so that EA experimenters are able to experiment with evolutionary 
algorithms and obtain statistical results by programming a few PPCea statements. 
Additionally, the flexible programming fashion also enhances the possibility of reproducing 
existing EA experiments in a simpler PPCea source code and likely introducing new 
experiments to facilitate even better optimization search or faster convergence. 
For EA experimenters, the first part of this book chapter introduces PPCea with examples to 
demonstrate PPCea’s capabilities and usability.  Famous existing parameter tuning and 
parameter control examples are reproduced using PPCea (e.g., Fogarty’s formula (Fogarty, 
1989), PROFIGA (Eiben et al., 2004), and 1/5 success rule (Bäck & Schwefel, 1995)). 
Additionally, new examples are also demonstrated to show the flexibility of PPCea. For 
example, introducing new metrics as feedbacks for parameter control and adaptively 
switching among different operators during an evolutionary process can be done with ease. 
For EA developers, design and implementation of PPCea are covered in the second part of 
the book chapter. In this part, DSL patterns and design patterns are utilized. Coding and/or 
UML examples are presented and discussed to show how such patterns lessen the extension 
problems during development and maintenance phases. Software metrics are also measured 
to prove the effectiveness of design patterns for modularization and extension. In summary, 
PPCea is a domain-specific tool that is “win-win” to both EA experimenters and developers: 
For EA experimenters, the programmable fashion and high level abstraction allow EA users 
to conduct EA experiments in a productive manner. For EA developers, the design and 
implementation of PPCea allow evolutionary algorithms, operators, algorithms of operators 
(i.e., strategies), and parameters to be introduced or revised painlessly. 
The book chapter is organized as follows. By using grammars, code snippets, and UML 
diagrams, Sections 2 and 3 respectively introduce PPCea from the perspectives of 
experimenters and developers. Section 4 discusses related work on parameter settings in 
Evolutionary Algorithms. PPCea’s capabilities, limitations, and future directions are 
concluded in Section 5. 

2. PPCea: A Painless Problem Curer for EA users  
Because of the meta-heuristic and stochastic characteristics towards searching optimization, 
experimenters or users of EAs are inevitably requested to perform a sufficient number of 
experiments. Needless to say, there are numerous combinations and scopes of domain-
specific parameters (e.g., mutation rate, crossover rate, and selection pressure) need to be 
tuned or controlled so that fittest and/or convergence can be discovered. A primary 
objective of PPCea is to become a problem curer for EA users/experimenters to conduct 
experiments painlessly. We first introduce PPCea through a number of examples 
categorized by Eiben et al.’s classification suggestions. The grammar of PPCea is appended 
at the end of the chapter for interested readers. 
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2.1 PPCea for parameter tuning 
Parameter tuning is an approach for EA experiments classified in (Eiben et al., 1999). Such a 
kind of experiments determines the parameters of an evolutionary process before it runs and 
will not change the parameter values during the process. Many of the existing EAs are 
classified into this category. Per their endeavors, common guidelines for setting mutation and 
crossover rates in GAs are as follows: mutation rate (pm) ≒ 1/(the bit length of an individual 
in genetic algorithms) and crossover rate (pc) ≒ 0.75~0.95. PPCea can reproduce such 
experiments easily. Figure 1 shows that twenty experiments of Ackley’s function from (Yao et 
al., 1999) with different parameter tuning settings are defined using Grefenstette’s guideline 
(Grefenstette, 1986). Also, if one does not want to reset different values for pm, pc, or any 
domain-specific parameters for each experiment, formulae may be defined to adjust the values 
of such parameters as seen in the italic part of Figure 1, where the if-statement within the while-
statement adjusts pm every 5 experiments. The experimental results of three reproduced 
parameter tuning-based experiments are available at (Liu, 2010). 
 

 
Fig. 1. Parameter tuning using PPCea 

2.2 PPCea for deterministic parameter control 
 

 
Fig. 2. Deterministic parameter control using PPCea 

genetic  
//skip initializing Round, Maxgen, Popsize, Epoch, pm, alpha, beta, gamma, length, r, g 

while ( r < Round ) do 
  init; //initialize population 
       while ( g < Maxgen ) do 
     callGA; //invoke an evolutionary process of GA 
      pm := sqrt(alpha / beta) * exp((0 – gamma)*g/2) / (Popsize / length); 

// the above formula is from Hessen & Manner 
// pm := 1 / (2+(( length-2 )/Maxgen)* g ) 
// the above formula is from Bäck & Schütz  
    g := g + Epoch // Generation stride for parameter control adaptation 

 end;  
r := r + 1 

end; 
writeresult //output the experimental results to text and Excel files 

end genetic 

genetic  
    readfile weightF10.txt; //load coeff. of Ackley’s function from Yao et al., 1999 
    Function := 10; //load Ackley’s function from Yao et al., 1999 
    Round := 20; //number of experiments 
    Maxgen := 1000; //maximum generation of an evolutionary process 
    pm := 0.001; //set mutation rate 
    pc := 0.95; //set crossover rate 
    r := 0;  
    while ( r < Round ) do 
  init; //initialize population 
 callGA; //invoke an evolutionary process of GA 
  if (( r % 5) == 0) then  
     pm := pm + 0.001 //change pm every 5 experiments 
      fi;  

r := r + 1 
end; 
writeresult //output the experimental results to text and Excel files 

end genetic 
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An important advantage of PPCea over other EA frameworks or software is its capability of 
performing parameter changes on-the-fly through a programmable fashion. Deterministic 
parameter control is an approach that defines how to change parameters during an 
evolutionary process using formulae. Fogarty (Fogarty, 1989) proposed one of the earliest 
deterministic approaches that adjusts mutation rate to a smaller value along with 
generations in order to tend from exploration towards exploitation. Liu et al. has published 
the experimental results of five unimodal and seven multimodal functions using Fogarty’s 
mutation rate formula in (Liu et al., 2009). Figure 2 reproduces (Hesser & Männer, 1991)’s 
and (Bäck & Schütz, 1996)’s mutation formulae to show that PPCea is capable of 
representing more sophisticated cases.  

2.3 PPCea for adaptive parameter control 
Different from deterministic parameter control that does not interact with the evolutionary 
process that it controls, adaptive parameter control utilizes the analysis results from the 
evolutionary process and then determines which directions the evolutionary process may 
move forward by changing the parameters of associated operators. PPCea has reproduced 
1/5 success rule (Bäck & Schwefel, 1995) and population resizing (Smith & Smuda, 1995) 
and introduced an entropy-driven approach (Liu et al., 2009) to adapt an evolutionary 
process. Figure 3 shows that PROFIGA (Eiben et al., 2004) is reproduced by PPCea.  
PROFIGA is a GA that utilizes population resizing to balance between exploration and 
exploitation. As seen in the first if-statement in the figure, if the best fitness is improved, 
then population size will be increased proportionally so that more exploration can be 
promoted. Similarly, if the evolutionary process is not improved every kgen generations, the 
population size will be proportionally increased using the same factor (growFactorX). The 
second if-statement performs such an objective. Note that growFactorX is a negative value so 
that the formula within the second resize uses subtract operator. Lastly, the last if-statement 
shows that if neither the first nor the second conditions hold, the evolutionary process will 
tend to exploitation by shrinking the population size. 
Of course, PPCea is not almighty. For example, GAVaPS (Arabas et al., 1994) and APGA 
(Bäck et al., 2000) perform population resizing based on aging concept. Such algorithms 
cannot be reproduced by current PPCea due to absence of age in individuals. Yet, once age 
is introduced along with associated operators, PPCea is capable of performing GAVaPS and 
APGA without a doubt. Similarly, parameter-less GA (Harik & Lubo, 1999) introduces a 
number of populations with different sizes to compete with each other. Because PPCea 
currently does not introduce multi-populations, reproducing parameter-less GA is also 
questionable. Because the design and implementation of PPCea facilitate extension and 
evolution, new algorithms like GAVaPS, APGA, parameter-less GA, and other EAs may be 
introduced with ease. More discussions on how to utilize such design and implementation 
advantages to introduce new algorithms will be covered in Section 3. 

2.4 PPCea for adaptive operator control 
Adapting parameters on-the-fly is not new in EAs. What about adapting operators on-the-
fly? Adapting operators may be classified into three categories:  
1. Operator adaptation is delegated to parameter control. Such an adaptation is done by 

adjusting parameters associated to specific operators. For example, 1/5 success rule 
utilizes mutation success rate to determine if mutation rate needs to be tuned up or 
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Fig. 3. PROFIGA reproduction using PPCea 

down. Similarly, selection pressure assists in adjusting the performance of selection 
operator in terms of fitting offspring. Usually adaptation in this category is classified as 
parameter control (Eiben et al., 1999);  

2. Instead of focusing on the effectiveness of a specific operator using parameter control, 
an evolutionary process may switch among different operators based on certain real-
time feedbacks. For example, Ursem (Ursem, 2002) introduced Diversity-Guided 
Evolutionary Algorithm (DGEA) that splits an evolutionary process into exploration 
and exploitation modes based on diversity. Under exploitation mode, recombination 
and selection are active. Otherwise, mutation is in charge; 

3. Adaptation can be also done by switching among different variants of the same type of 
operators (Herrera & Lozano, 1996). For example, switching from one-point mutation to 
N-point mutation may result in more exploration during an evolutionary process, and 
switching from linear selection to non-linear one may change the influence weight of 
certain portion of individuals.  

For (1), it has been discussed in the previous subsection. This subsection first reproduces 
DGEA falling into category (2) and then proposes how PPCea expresses experiments in 
category (3).  
DGEA introduces a new diversity metric that computes the distance of all individuals to the 
average point of an N-dimensional search space. Exploration mode is identified if the 
diversity metric is lower than a predefined lower bound, and exploitation mode is 
recognized as the metric is higher than a predefined higher bound. Selection and crossover 
are applied to explore search space while mutation is treated as exploitation operator. 
Figure 4 shows the reproduction of DGEA, where dLow and dHigh are user-defined 
parameters and DistanceToAvgPt is computed by PPCea. changeStrategy is a PPCea statement 

genetic  
// initialize all needed parameters. bestImproved and noImprovedForLong are false  

init; 
initBest := Best; // best fitness from initial population 
nextBest := initBest; 
while (g < Maxgen) do 

currBest := nextBest; // best fitness from the current population 
callGA; // invoke an evolutionary process 

   nextBest := Best;  // best fitness from the population of next generation 
growFactorX := factor * (Maxgen - g )* Popsize * (nextBest - currBest) / 
initBest; 
if ((nextBest - currBest) > 0) then //best fitness improved 

resize(Popsize * (1 + growFactorX)); 
bestImproved := true 

fi;  
   if ((nextBest - currBest) < 0 ) then //best fitness not improved for kgen 

i := i + 1; 
if ( i == kgen ) then 

        i := 0 
fi; 
resize(Popsize * (1 – growFactorX)); //Popsize increase 

    noImprovedForLong := true 
   fi;         
   if ((bestImproved != true) && (noImprovedForLong != true)) then 

    resize(Popsize * (1 - 0.05)) 
   fi; 
   g := g + Epoch; 
    end 
end genetic 
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that switches between operators. For example, within exploration mode, tournament 
selection and 1-point crossover are active and mutation is halted. Conversely, mutation is 
the only active operator while selection and crossover are halted by the two keywords 
specified within the second changeStrategy. 
 

 
Fig. 4. DGEA reproduction using PPCea 

The previous example shows that PPCea can swap between different operators when 
needed. Halting an operator under a specific condition is also feasible by setting 
GA_HALT_SELECTION, GA_HALT_MUTATION, and GA_HALT_CROSSOVER, among 
others. When PPCea interpreter identifies such keywords, the operators will not be executed 
until they are reactivated by next changeStrategy statement. More details about how these are 
implemented will be covered in Section 3.  
As mentioned before, DGEA is within category (2). A PPCea example classified within 
category (3) is introduced in Figure 5. Initially, context, a PPCea statement,  defines specific 
operators will be executed by the evolutionary process. Line 1 shows that linear selection, 1-
point mutation, and n-point crossover are picked to perform optimization search at the 
beginning. Lines 5 to 10 shows that two operator pairs (TOURNAMENT_SELECTION, 
N_PT_MUTATION) and (RANK_SELECTION, ONE_PT_MUTATION) will be swapped 
every 10 generations until 95th generation. Mutation will be stopped at the last 5 
generations. Because N_PT_CROSSOVER never appears in the pairs of changeStrategy, this 
operator will remain active during the entire evolutionary process. How PPCea interpreter 
executes such operator adaptation will be also covered in Section 3.  

2.5 Summary 
As can be seen in the previous examples, the programming fashion of PPCea facilitates 
introducing a number of experiments with same or different settings by writing a few lines 
of code. Each evolutionary process run by PPCea can also be controlled deterministically or 
adaptively through parameter and/or operator adaptation. For space consideration, the 
experimental results of the examples, acting as a proof of feasibility of PPCea, are available 
at (Liu, 2010).  Note that the previous examples also show some EAs cannot be reproduced 
easily derived from lacking needed attributes, multi-populations, parameters analyzed from 
an evolutionary process or operators. Section 3 attempts to address such problems from the 
perspective of EA developers. Lastly, categories of adaptive representation and adaptive 
fitness are also introduced in (Herrera & Lozano, 1996). They could be also potentially 
addressed by PPCea. Due to time constraint, they are left as one of our future work. 

genetic  
// initialize all needed parameters including dLow, dHigh 

init; 
while ( g < Maxgen ) do 

callGA; 
if ( DistanceToAvgPt < dLow ) then // exploration mode 
    changeStrategy(TOURNAMENT_SELECTION, GA_HALT_MUTATION, 
ONE_PT_CROSSOVER)  

    fi; 
    if ( DistanceToAvgPt > dHigh ) then // exploitation mode 
           changeStrategy(GA_HALT_SELECTION, ONE_PT_MUTATION, GA_HALT_CROSSOVER) 
    fi; 
    g := g + 1 

end 
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Fig. 5. Operator adaptation using PPCea 

3. PPCea: A Portable Pattern-driven Contrivance for EA developers 
Conducting parameter control experiments is always a time consuming task due to a variety of 
possible parameter combinations that may affect the convergence and optimization of an 
evolution process in different magnitudes. One may concentrate on a limited set of parameters 
to “de-scope” the problem (Harik & Lobo, 1999). Even so, a sufficient number of experiments 
are still needed due to heuristic nature of EAs. Per Aristotle, the aforementioned problems are 
essential difficulties (Brooks, 1987) inherent in EAs.  Conversely, code snippets for computing 
metrics and programming logics for adapting an evolution process on-the-fly based on such 
metrics still scatter and tangle with other EA source code. Such inflexibility for further 
extension and inevitability of faulty EA source code are accidental difficulties (Brooks, 1987) 
that may be solved by the approaches hiding such difficulties. 
A DSL is a modeling/programming language that shields accidental difficulties by 
introducing a higher level abstraction. It has been proved that DSLs may facilitate 
productivity (up to 10 times improvement), reliability, maintenability, and portability to 
domain users (Mernik et al., 2005). However, DSLs that are implemented by compiler or 
interpreter approaches may result in extension and evolution difficulties (Gray et al., 2008). 
For example, if a new mutation operator is introduced to PPCea, not only new syntax and 
semantics need to be introduced, but exsiting source code may be also affected due to 
inappropriate modularization in many compiler/interpreter-based DSLs including PPCea. 
Moreover, as mentioned in (Harik & Lobo, 1999), Holland would have never thought of a 
plentiful number of parameters are presented – Parameters are good for assisting in getting 
insight of an evolution process or helping control the process. Yet, EA computation may 
become overwhelmly slow resulted from parameter explosion. In summary, an objective of 
this section is to remedy the obstacles dervied from the introduction, extension, or evolution 
of parameters and operators in PPCea. 

3.1 Design of PPCea 
In order to design and implement PPCea in a manageable and systematic way, DSL patterns 
(Mernik et al., 2005) and design patterns (Gamma et al., 1995) are followed. Table 1 
summarizes the DSL patterns that PPCea applies.  

1  context(LINEAR_SELECTION, ONE_PT_MUTATION, N_PT_CROSSOVER); 
2  init; 
3  while (g <= Maxgen ) do //assume t = 1 initially and Maxgen = 100 
4      callGA; 
5      if (( g % 10) == 0) then 
6          changeStrategy(TOURNAMENT_SELECTION, N_PT_MUTATION) 
       //swap to tournament selection every 10 generations starting at g = 10 
7      fi; 
8      if (( g % 20) == 0) then 
9          changeStrategy(RANK_SELECTION, ONE_PT_MUTATION)  
       //swap to rank selection every 10 generations starting at g = 20 
10     fi; 
11     if (g > 95) then 
12         changeStrategy(GA_HALT_MUTATION)  
       //swap to temporarily stop mutation between generations 95 and 100 
13     fi; 
14     g = g + 1 
15 end; 
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Workflow Pattern Description 
Decision Task automation 

System front-end 
When and why to have PPCea 

Analysis FODA (Kang et al., 
1990) 

Find the common and variable features of EAs 

Design Denotational 
Semantics 
Design Patterns 
(Gamma et al., 1995) 

Formally define syntax and semantics of PPCea 
PPCea applies composite, visitor, strategy, 
decorator and singleton patterns to address 
introduction, extension, and evolution problems. 

Implementati
on 

Interpreter Introduce PPCea interpreter to conduct EA 
experiments 

Table 1. The DSL patterns applied in PPCea 

Decision patterns specify when and why a new DSL is essential. In order to provide an 
adaptable mechanism to solve such parameter control/setting problems, task automation 
and system front-end decision patterns are chosen. Task automation decision pattern hides 
the implementation details of EAs. Without browsing and understanding lengthy source 
code encapsulated in EAs, users omit the complex implementation but concentrate on the 
parameters and operators that lead to the optimization and/or convergence of EAs. 
Secondly, PPCea follows system front-end decision pattern that primarily handles 
configurations. Time-consuming and error-prone overhead can be reduced or avoided. As 
for analysis, PPCea utilizes Feature-Oriented Domain Analysis (Kang et al., 1990) to perform 
formal domain analysis so that common and variable features of EAs can be systematically 
identified.  With such, PPCea can be formally defined using denotational semantics (Aho et 
al., 2007) and designed using design patterns (Gamma et al., 1995). Lastly, interpreter 
pattern is utilized to implement PPCea. An overview of PPCea interpreter is shown in 
Figure 6. 
The interpreter is constructed with the assists of JFlex (Klein, 2010) and Construction of 
Useful Parsers (CUP) (Hudson, 2010). JFlex is a fast scanner generator for Java whose 
purpose is to generate a lexer that performs tokenization process for PPCea programs. CUP 
is a parser generator that introduces a bottom-up parser that performs syntax analysis. Such 
a parser may be integrated with user-defined semantics written in Java, accompanying with 
options to introduce syntax trees and symbol tables. The linguistic elements include 
commonly-seen constructs such as if-else, loop, and assignment statements as well as 
expressions and operators to perform necessary parameter adjustments. Additionally, 
domain-specific elements to describe an EA are presented: init statement initializes a 
population, callGA statement performs a GA, callES statement performs an ES, resize 
statement allows population resizing, changeStrategy statement offers the potentials to 
switch between different operators on-the-fly, context statement determines the operators 
that constitutes an EA, and require statement determines which domain-specific parameters 
to be computed. Such parameters are either the results from an evolutionary process that 
can be also acted as metrics or feedbacks to assist parameter control. There are also 
miscellaneous statements for various purposes (e.g., IOStatement). Interested readers may 
find more information on the PPCea web page (Liu, 2010). All the above linguistic elements  
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Fig. 6. An overview of PPCea interpreter (* means ongoing/future tasks) 

are represented as Java classes embedded with associated semantics. The interpreter 
currently accepts parameter tuning, deterministic, and adaptive PPCea programs as inputs, 
as seen at the top of the figure. The outputs, at the bottom of the figure generated by the 
interpreter, comprise best, average, worst fitness, standard deviation and Euclidean distance 
(i.e., diversity), entropy (Liu et al., 2009), and the success rates of crossover and mutation, 
among others. More domain-specific constructs and parameters can be introduced, 
extended and evolved following the design patterns introduced in the subsequent 
subsections. 

3.2 Evolutionary Algorithm and operator introductions 
Since Evolutionary Algorithms (EAs) were coined, there have been a variety of algorithms, 
operators, and parameters proposed in order to apply to a various number of applications 
and experiments as well as further improve optimal results and/or convergence rate of such 
algorithms. For example, different from the general sketches of GAs in (Michalewicz, 1996), 
Bi-population GA (Tsutsui et al., 1997), aGA (Ghosh et al., 1996), and PROFIGA (Eiben et al., 
2004), among others are variations that respectively introduces new algorithmic strategies 
(e.g., splitting populations into exploration and exploitation modes), new attributes (e.g., 
ages for individuals) or new operators (population resizing) to facilitate optimization 
and/or convergence. Additionally, DGEA, Evolution Strategies using Cauchy Distribution 
(Yao et al., 1999), Particle Swamp Optimization (Kennedy and Eberhart, 2001), and 
Differential Evolution (Storn & Price, 1997), to name a few, are also categorized in EAs that 
solve optimization problems from other perspectives. In addition to algorithm 
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introductions, many variations of existing operators and domain-specific parameters are 
also introduced (e.g., tournament selection, linear selection, uniform crossover, intermediate 
crossover, diversity-to-average measure (Ursem, 2002), and cluster entropy (Liu et al., 
2009)). PPCea has anticipated such extension and evolution potentials and hence adopted 
design patterns so that future changes can be addressed with ease. 

3.2.1 Evolutionary Algorithm and operator introductions using composite pattern 
Because PPCea is developed by following the interpreter/compiler pattern (Mernik et al., 
2005), inevitably, the syntactical representation of a PPCea program is expressed as a syntax 
tree structure (Aho et al., 2007). However, a commonly-seen implementation issue existing 
in such a tree structure is to deal with the composite-atomic hierarchies (i.e., whole-part 
hierarchies). For example, PPCea comprises if-else and loop statements that may embrace 
zero or more composite and/or atomic statements as child nodes (e.g., a nested if-else 
statement); and conversely, assignment and domain-specific statements are atomic ones that 
cannot hold any statement nested within their bodies. Because composite statements are 
derived from recursive productions defined in PPCea grammar (see appendix), they do not 
posses concrete semantics as other statements do. To reduce implementation complexity, a 
synergistic objective needs to be fulfilled: How to uniformly treat composite and atomic 
language constructs in the tree structure  (i.e., hide the differences), while distinctions 
between these two types of language constructs can still be easily made if necessary (i.e., 
behave as atomic and composite ones as supposed). 
A primary objective of composite pattern (Gamma et al., 1995) is to represent whole-part 
hierarchies and achieve the synergistic objective mentioned above. Figure 7 shows the 
implementation of composite pattern applied to PPCea interpreter, where IStmt is an 
abstract class that defines the interface and common behavior of both atomic (i.e., Stmt) and 
composite (i.e., Series) statements. The advantages of composite pattern mainly lie in the 
introduction of IStmt and the composition between Series and zero to more IStmt objects, 
which will be later identified as Series or Stmt concrete objects using polymorphism.  
 

 
Fig. 7. Composite pattern applied to PPCea intepreter 
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Composite pattern also follows open-close principle (Meyer, 2000). Such a principle 
advocates “open for extension and close for modification”: New statements can be added 
through inheritance; and modification on interface is closed and modification on 
implementation is isolated to associated methods only. For example, if one requests to 
introduce callPSO statement for Particle Swamp Optimization (Kennedy & Eberhart, 2001) 
in PPCea, three steps will be needed at the lexical, syntactical and semantic levels: (1) 
callPSO needs to be introduced as a token in PPCea.jlex (as seen in Figure 6); (2) A terminal 
that represents callPSO statement and the associated syntax are requested in PPCea.cup (can 
be found in Figure 6 too); and (3) Introduce a CallPSOStmt class inherited from CallEAStmt. 
Such a class defines the semantics/algorithms of Particle Swamp Optimization. A new 
operator that does not relate to any specific algorithm may be also introduced in the same 
manner. With such, introducing new algorithms or operators will not interfere with the 
remaining parts of PPCea. Extension and evolution of evolutionary algorithms and 
operators will be introduced next. Introducing evolutionary operators and parameters 
comprises the same steps as mentioned. For example, because ResizeStmt and 
ChangeStrategyStmt are two operators that can be applied to various EAs, they are not 
encapsulated into specific EA statements. For EA-specific operators, from the 
implementation’s perspective, they can be introduced as standalone statements like resize 
and changeStrategy or they can be encapsulated as methods in associated EA statement 
classes. For the sake of better design to satisfy high cohesion and responsibility driven 
concepts (Schach, 2010), such operators are encapsulated into EA associated statements. 

3.3 Evolutionary Algorithm and operator extensions/evolutions using visitor pattern 
Although composite pattern achieves the synergistic objective that allows uniformed 
treatments and making distinctions on atomic and composite statements when needed, 
extending or evolving methods encapsulated in EA statements is difficult. (Ironically, they 
are resulted from following good design principles as mentioned in the previous section). 
For example, semanticWithConguration in CallEAStmt is derived from IStmt that defines the 
semantics of a statement by executing a set of evolutionary operators (e.g., mutation, 
crossover, and selection). If a new operator, e.g., elite or n-point mutation, is introduced in 
CallEAStmt and invoked by semanticWithConguration, all CallEAStmt’s subclasses will be 
affected and recompilation is requested. Additionally, any evolution change to the existing 
algorithms and operators may be scattered around the entire class, which could be error-
prone and resulted in regression faults. Because visitor pattern (Gamma et al., 1995) has 
succeeded in solving such tree-related problems with composite pattern (e.g., Wu et al., 
2005), PPCea adopts visitor pattern so that the aforementioned extension and evolution 
problem can be solved.  
As shown in Figure 8, PPCea introduces a super class, called StmtVisitor, which comprises 
two subclasses: EAStmtVisitor and GenericStmtVisitor, where the former one is to define the 
semantics of EA-specific operators and the latter one is to define the semantics of generic or 
non-EA-specific operators. For EA-specific operators, three important evolutionary 
operators (selection, crossover, and mutation) and two utility operators (eval and getStat) are 
introduced as EAStmtVisitor’s subclasses, where eval is to compute the fitness value of each 
individual and getStat is to compute the statistical data of an EA that are shown at the 
bottom of Figure 6. For generic operators, population initialization (init), population resizing 
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(resize), strategy changing (changeStrategy) for adapting different evolutionary operators on-
the-fly, are introduced. Note that Context class introduced in Figure 8 is initialized by 
ContextStmt in Figure 7 that will store the current statement (or EA operator) that PPCea 
interpreter is executing and the resultant population. The usage of this class will be 
explained in more details in the next subsection. 
 

 
Fig. 8. Visitor pattern applied to PPCea 

Readers who are not familiar with design patterns may find it difficult to see how composite 
and visitor patterns work together to tackle introduction, extension, and evolution problems 
by decoupling the syntax tree structure and operators within each statement, while at the 
same time allow the semantics of each statement as well as the entire program to be 
functioned correctly. To explain such correlation, the first step is to understand how CUP 
works with associated semantics written in Java classes. Because CUP is a compiler 
generator that generates a bottom-up parser, when each non-terminal is traversed, the 
corresponding Java class is instantiated. All the necessary classes (statements, expressions, 
and operators as seen in Figure 6) that define associated semantics will be available after the 
root of the parse tree is traversed. Then the root node will trigger semantics of each line of 
program to be interpreted and executed. When a statement, called init, is reached, the 
semanticWithConfiguration method within such a class will invoke a private method, called 
accept with an object of InitVisitor class passed in (see Figure 7). Within the accept method, 
visitInitStmt method of InitVisitor class will perform node/statement identification, called 
double dispatch (Gamma et al., 1995). If the current statement to be executed is init, 
visitInitStmt will execute the semantics of population initialization accordingly. Similarly, if 
callGA (or callES) is executed, objects of EvalVisitor, SelectionVisitor, MutationVisitor, 
CrossoverVisitor, and GetStatVisitor will be passed as parameters of accept method. The 
semantics defined in each visitor subclass will be executed after callGA statement is 
identified by double dispatch. 
Important advantages that visitor pattern is capable of attacking extension and evolution 
problem can be expressed as the following three examples:  
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1. If a new EA-related operator is requested (e.g., clone or repair), we do not introduce an 
operator in CallEAStmt, CallGAStmt or CallESStmt, which will result in recompilation of 
almost the entire composite class hierarchy of Figure 7, as mentioned in the previous 
subsection. Instead, a subclass of EAStmtVisitor that defines the semantics of the newly 
introduced operator can be extended/introduced without affecting the remaining part 
of PPCea. There is no need to revise any part of JFlex and CUP files of PPCea either;  

2. If a new generic operator is needed (e.g., randomize that introduces new random 
individuals into current population), a subclass that defines such an operator can be 
inherited from GenericStmtVisitor without editing other parts. If the new operator is also 
requested to be added to PPCea grammar, there is a need to introduce an associated 
token, syntax, and a subclass of Stmt respectively at the lexical, syntactical and semantic 
levels. Note, however, such extensions will still not interfere other parts of the existing 
code; and  

3. If an existing EA-specific or generic operator is requested to be changed (i.e., evolution), 
the focus will be only on the specific subclass. Other parts will not be emphasized so the 
opportunities of regression faults will be minimized.  

Although utilizing composite and visitor patterns to solve tree structure problems is not 
new, our implementation slightly varies the traditional solution and results in an additional 
advantage that can be observed in Figure 8: Even though introducing an EA at the statement 
level (e.g., callGA) may give readers impression that it is inflexible to control lower level 
evolutionary operators. Instead, it is a wrong impression! The visitor pattern utilized in 
PPCea is a variant – it is implemented along with strategy pattern (Gamma et al., 1995), 
where different evolutionary operators can be controlled through changeStrategy at the 
granularity of operator rather than algorithm. Such implementation avoids possible 
frequent recompilation while allowing ease of extension and evolution. Namely, only when 
a new EA, for example, callPSO, is introduced, existing subclasses of EAStmtVisitor need to 
add and compile a new operator, called visitCallPSO. More discussions will be covered in 
Section 3.5. 

3.4 Strategic operator adaptation 
Section 2.4 introduced three categories of operator adaptation: (1) Adaptation delegated to 
parameters (i.e., parameter control); (2) Adaptation among different types of operators; and 
(3) Adaptation among same types of operators. Strategy pattern (Gamma et al., 1995) is 
applied and integrated with visitor pattern to realize categories (2) and (3). 
A primary objective of strategy pattern is to introduce a set of functionalities that can be 
interchanged upon request. Different kinds of evolutionary operators for GAs and ESs are 
introduced as subclasses of Strategy class in Figures 9 and 10, respectively. For example, 
we have implemented linear, non-linear, ranking, tournament and roulette wheel selections 
as subclasses of GASelectionStrategy. Similarly, the implementation of one-point  
and n-point mutation/crossover is defined in the associated subclasses of 
GAMutationStrategy/GACrossoverStrategy. If there is more than one way to initialize 
population, subclasses that specify such differences can be inherited from GAInitStrategy. 
Extension and evolution to different algorithms of an operator can be also easily done by 
introducing subclasses. For example, fitness proportional selection may be introduced as a 
subclass of GASelectionStrategy without interfering the remaining parts of the source code; 



 Evolutionary Algorithms 

 

190 

and revising existing strategies will be isolated in their own classes – Again, this design 
follows open-close principle. 
Figure 5 in Section 2.4 has presented how to adapt operators using PPCea. The dynamics of 
such code snippet with respect to strategy pattern is summarized as follows. Figure 10 is a 
simplified version of Figure 5 for ease of reading. Line 1 sets the default operators for 
selection, mutation, and crossover into context. A Context object will be instantiated with the 
Strategy objects of linear selection, 1-point mutation and n-point crossover as parameters.  
 

 
Fig. 9. Strategy pattern applied to GAs in PPCea 

 
 
 

 
Fig. 10. Strategy pattern applied to ESs in PPCea 
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Line 2 initializes a population for the GA. Then callGA performs the GA using such strategies. 
Namely, CallGA statement in Figure 7 will invoke its semanticWithConfiguration method that 
accepts objects of SelectionVisitor, MutationVisitor, CrossoverVisitor, EvalVisitor, and 
GetStatVisitor shown in Figure 8. Each visitor object accesses the Context object and executes 
the associated Strategy object within visitCallGAStmt method. For example, the object of 
SelectionVisitor by default will execute an object of LinearSelection set in Line 1 of Figure 11. 
Between two if-statements, by using changeStrategy selection operator switches between 
tournament and rank selections every 10 generations.  Additionally, mutation also switches 
between 1-point and n-point mutations every 10 generations. Crossover, on the other hand, 
will remain during the entire evolutionary process. Such behaviour is performed based on the 
following steps: (1) ChangeStrategy statement accepts an object of ChangeStrategyVisitor, which 
allows new Strategy objects (e.g., rank selection and n-point mutation at generation 10) to 
interchange with the existing Strategy object (e.g., linear selection and 1-point mutation). After 
exchange, Context object will execute new strategies. Note that, to avoid class explosion, 
Singleton pattern (Gamma et al., 1995) is applied to force each operator only has one associated 
object instantiated all the time. So that when the strategy pairs (tournament selection and n-
point mutation) and (rank selection and 1-point mutation) are swapped every 10 generations, 
there is no new object instantiated, but the existing ones are reused. Halting an operator 
temporarily is also a feasible solution by replacing the current Strategy object to HaltSelection, 
HaltMutation, or HaltCrossover, which simply choose not to execute the current strategies. With 
such, EAs categorized as uni-process approaches in (Liu et al., 2009) can be reproduced using 
PPCea (e.g., DGEA in Figure 4). 
 

 
Fig. 11. A simplified version of Figure 5. 

3.5 Parameter extension and evolution 
Domain-specific parameters are those predefined in a DSL grammar and may facilitate 
productivity and other advantages of DSLs mentioned before. In PPCea, domain-specific 
parameters, shown in Table 2, can be categorized in two groups: (1) Parameters that are 
used for controlling an evolutionary process; and (2) Parameters that are computed at the 
end of each generation and may be treated as feedback to adjust an evolutionary process.  
As seen in Table 2, parameters in group (1) are quite diverse. Some may be accessed across 
the entire project (e.g., Popsize, Maxgen, and Epoch) and others may be used by specific 
operators (e.g., Alpha, Beta, Miu, and Lamda). From the perspective of compiler/interpreter 
implementation, this kind of parameters usually already has identities stored in a symbol 
table (i.e., predefined). When such parameters are initialized by assignment statement, their 
values are stored in the symbol table accordingly. Whenever and wherever needed, the 

1 context(LINEAR_SELECTION, ONE_PT_MUTATION, N_PT_CROSSOVER); 
  //... skip some code 
2 callGA; 
3 if (( t % 10) == 0) then 
4     changeStrategy(TOURNAMENT_SELECTION, N_PT_MUTATION) then 
5 fi; 
6 if (( t % 20) == 0) then 
7     changeStrategy(RANK_SELECTION, ONE_PT_MUTATION) then 
8 fi; 
  //...skip some code 
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values can be accessed through the symbol table. Extension of parameters falling in group 
(1) usually means introducing new domain-specific notations at the lexical, syntactical and 
semantic levels, which therefore has the same way of implementing domain-specific 
statements. Conversely, evolution for such a kind of parameters is usually renaming and  
 
Group Parameter Name Description 

Function Fitness function to be evaluated (Obtained from (Yao et al., 
1999)) 

Popsize Number of individuals of a population 

Maxgen Maximum number of generation for an evolutionary  process 

Epoch Generation stride for parameter control adaptation 

pm Mutation rate 

pc Crossover rate 

psr Stochastic ranking rate 

Alpha Selection pressure (α) for linear/nonlinear selection  

Beta Selection pressure (β) for linear/nonlinear selection 

Miu Selection parameter (μ) for ESs 

Lambda Selection parameter (λ) for ESs 

TourQ Selection parameter for tournament selection 

 
 
 
 
 
 
(1) 

KMeans Number of centroids for clustering entropy 

Best Best fitness value of all individuals 

Average Average fitness value of all individuals 

Worst Worst fitness value of all individuals 

RatioM Success mutation rate 

RatioC Success crossover rate 

Stdv Standard deviation of all individuals 

Euclidean Euclidean distance of all individuals 

LinearEntropy Linear Entropy (Liu et al., 2009) 

RoscaEntropy Rosca Entropy (Liu et al., 2009) 

GaussianEntropy Gaussian Entropy (Liu et al., 2009)  

FitProEntropy Fitness Proportional Entropy (Liu et al., 2009) 

 
 
 
 
 
 
 
 
(2) 

ClusterEntropy Clustering Entropy (Liu et al., 2009) 
 

Table 2. Current domain-specific parameters introduced in PPCea 
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changing valid scope based on our experience. Hence, refactoring (Fowler, 1999) may be 
applied to the lexical, syntactical and semantic levels to tackle evolution. Parameters in 
group (2) are computational results analyzed from population either after every (several) 
generation(s) or at the end of an entire evolutionary process. However, not all of such 
parameters are needed all the time. For example, for parameter tuning approaches, readers 
may be interested in fitness-related parameters only. Similarly, for non-entropy-driven 
approaches, one may avoid the computation of the five entropies shown in Table 2 and 
hence improve the performance. To achieve such a “pay-as-you-go” objective, decorator 
pattern is applied. As seen in Figure 12, Parameter class is introduced as a super class that 
applies singleton pattern to avoid more than one instance instantiated during an 
evolutionary process. Decoratee class is a “decoratee” super class, which means that all the 
objects of the subclasses inherited from Decoratee are mandatory to be provided by PPCea 
interpreter. Conversely, DecoratorParameter represents a super class whose subclass objects 
can be optionally computed upon requests. 
The dynamics of how “pay-as-you-go” is achieved may be further observed by the code 
snippet shown in Figure 13: visitCallGAStmt is a method defined within GetStatVisitor class, 
accepted by CallGAStmt as described before, whose purpose is to analyze statistical results 
of a population. Lines 3 to 5 specify the mandatory domain-specific parameters to be 
computed. From lines 6 to 20, users may determine if any object of Decorator requires 
computation or not either directly defined in PPCea code (e.g., require(LINEAR_ENTROPY, 
FITPRO_ENTROPY, ROSCA_ENTROPY);) or through the graphical user interface we developed 
for PPCea interpreter. For example, if linear, fitness proportional and Rosca entropies are 
 

 
 
Fig. 12. Decorator pattern applied to PPCea. 
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selected by users (as seen above), when line 21 of Figure 13 is invoked, the calculate methods 
in Best, Worst, Average, LinearEntropy, FitProEntropy, and RoscaEntropy will be executed in a 
cascading and sequential order (see the notes in Figure 12). 
How does decorator pattern address the extension and evolution problems of parameters in 
group (2)? For extension, if a new parameter is mandatory, a subclass should be inherited 
from Decoratee class. Conversely, if users are in charge of the computation necessities of 
newly introduced parameters, subclasses of Decorator will be introduced. The computational 
algorithms of the new parameters will be defined in their own calculate methods, along with 
an invocation to its super class’ calculate method. One drawback of applying Decorator 
pattern is that when extension (i.e., introducing a new domain-specific parameter of group 
(2)) occurs, inevitably Figure 13 needs to be revised to incorporate such a change. It is 
because the purpose of the if-statements is to retrieve the answer of optional parameters that 
users determine to include. As for evolution, if any computational algorithm of a parameter 
changes, it is isolated in the associated calculate method. 
 

 
Fig. 13. Decorator pattern applied to PPCea. 

3.6 Software metrics 
Software metrics (Lincke et al., 2008) are measures that assist in providing comprehensibility 
of software being assessed. Therefore, the quality of the software can be observed through 
such metrics. PPCea utilizes Eclipse Metrics plug-in (Sauer, 2010) to compare the current 
version implemented with DSL and design patterns and the original version introduced in 
(Liu et al., 2004), shown in Figure 14. 
As seen in the figure, PPCea using patterns has much higher design and implementation 
quality in terms of Method lines of code, McCabe cyclomatic complexity (suggested 
maximum value: 10), and weighted methods per class. All other metrics listed in Figure 14 
surpass the suggested maximum values. Namely, the design and implementation of PPCea 
with patterns is in good quality and refactoring may not be necessary. 

1 Individual[] visitCallGAStmt(CallGAStmt gaStmt){  
2   /* skip the code of retrieving parameters from symbol table ...*/ 
3   Parameter decorator = new Best(); //required parameter 
4   decorator = new Worst(decorator); //required parameter 
5   decorator = new Average (decorator); //required parameter 
6   if (Linear_Entropy == 1) { 
7 decorator = new LinearEntropy(decorator); //optional parameter 
8   } 
9   if (Gaussian_Entropy == 1) { 
10 decorator = new GaussianEntropy(decorator); //optional parameter 
11  } 
12  if (FitPro_Entropy == 1) { 
13 decorator = new FitProEntropy(decorator); //optional parameter 
14  } 
15  if (Rosca_Entropy == 1) { 
16 decorator = new RoscaEntropy(decorator); //optional parameter 
17  } 
18  if (Cluster_Entropy == 1) { 
19 decorator = new ClusterEntropy(decorator); //optional parameter 
20  } 
21  decorator.calculate(population); 
22  return population; 
23 } 
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Fig. 14. Metrics comparison between old and new PPCea 

3.7 Potentials of PPCea 
The first five subsections discuss how to overcome introduction, extension and evolution 
problems in four specific levels: (1) Evolutionary algorithms; (2) Evolutionary and generic 
operators; (3) Functionalities (i.e., strategies) of an operator; and (3) Domain-specific 
parameters. For (1), composite pattern facilitates the introduction/extension of evolutionary 
algorithms by introducing EAs as domain-specific statements, subclasses inherited from 
IStmt. For (2), visitor pattern promotes introduction/extension of evolutionary and generic 
operators by introducing subclasses of StmtVisitor. If evolutionary algorithms or its 
operators evolve, the changes will be isolated in the subclasses of StmtVisitor (or associated 
strategies), because such subclasses define the semantics of PPCea statements. Additionally, 
the decision of not introducing EA-specific operators at the PPCea statement level reduces 
the possibility of frequent changes/recompilation of the StmtVisitor and its subclasses. For 
(3), strategy pattern assists introduction/extension of different algorithmic strategies of an 
operator by introducing subclasses of Strategy. Evolution of such strategies is also isolated in 
associated classes. Also, PPCea is capable of adapting with operators on-the-fly under the 
support of strategy pattern. Lastly, decorator pattern addresses the problem of 
introduction/extension and evolution of domain-specific parameters by introducing 
subclasses of Decorator and Decoratee. Users are also allowed to determine which parameters 
to be analyzed so that unnecessary computation cost can be reduced.  
To illustrate how a new EA can be introduced or an existing EA can be reproduced, let us 
use GAVaPS as an example. The algorithm of GAVaPS is as follows. 
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Fig. 15. The GAVaPS algorithm from (Arabas et al., 1994) 

Based on (Arabas et al., 1994), recombine in Figure 15 performs normal mutation and 
crossover and then selection chooses offspring from all individuals with equal opportunity. 
As for remove, it will kill all individuals older than a predefined lifetime threshold. The 
population will be then resized based on the formula defined in the paper. To realize 
GAVaPS using PPCea, age attribute needs to be introduced in Individual class. Also, lifetime 
parameter may be introduced as a parameter in group (1). With such, users can adjust the 
value of lifetime by PPCea code. Then GAVaPSSelection, inherited from GASelectionStrategy in 
Figure 9, implements selection mechanism with equal opportunity and increments age if 
needed. Because there is more than one resize algorithm, a ResizeStrategy subclass may be 
inherited from Strategy. Then ResizeByAge may be introduced as a subclass of ResizeStrategy 
that kills all overage individuals and randomly introduces the number of new individuals 
using the formula if needed. Figure 16 is a pseudo PPCea code to simulate Figure 15 under 
the assumption all necessary subclasses are introduced in PPCea. Another possible 
implementation option is to introduce an entire new PPCea statement, called callGAVaPS. 
Nothing is really different except that callGAVaPS encapsulates all needed Visitor objects, 
which invoke objects of GAVaPSSelection, OnePointMutation, OnePointCrossover, and 
ResizeByAge. 
 

 
Fig. 16. The pseudo PPCea code that reproduces GAVaPS 

In summary, PPCea utilizes DSL patterns and five design patterns so that the 
introduction/extension and evolution problems at the algorithm, operator, strategy, and 
parameter levels can be respectively addressed. 

begin 
  t=O 
  initialize P(t) 
  evaluate P(t) 
  while (not termination-condition) do 
    begin 
    t = t + l 
    increase the age of each individual by 1 
    recombine P(t) 
    evaluate P(t) 

remove from P(t) all individuals with age greater than the lifetime 
  end 
end 

Lifetime := 5; // any individual older than 5 will be killed 
context(GAVAPS_SELECTION, ONE_PT_MUTATION, ONE_PT_CROSSOVER, 
RESIZE_BY_AGE); 
init; 
while ( g < Maxgen ) do 
  callGA; 
  Popsize := ... // ... means the formulae from Arabas et al. 94 
  resize( Popsize );  
  g := g + 1 
end 
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4. Related work 
Evolving Objects (Keijzer et al., 2002) is an evolutionary computation framework that 
constructs an EA through component composition. Namely, each EA operator/statement is 
considered as a component and users need to select which specific components (similar to 
strategies) to be filled in to a specific spot of an evolutionary process. User defined 
parameters can be introduced to a file, which will be interpreted by the framework. ECJ 
(Luke et al., 2010) is a Java-based evolutionary computation system that requests users to 
describe an EA in Java by reusing/invoking a great number of packages for different EA 
operators. A set of predefined parameters with fixed identities also need to be defined in a 
specific file, acting like domain-specific parameters in PPCea. ESDL (Dower & Woodward, 
2010) is a DSL that introduces SQL-like syntax for users to construct EAs. Name conventions 
for both EA operators and parameters need to be followed, which is same as PPCea. Because 
of interoperability advantage of XML, Veenhuis et al. introduced EAML (Veenhuis et al., 
2000), a modeling language that utilizes XML to represent an EA. With such, different EA 
framework/software may introduce their own evolutionary processes by interpreting 
EAML files. There are also many EA framework or software that the book chapter is not able 
to fully cover. We leave this part to interested readers. 

5. Conclusion 
Controlling parameter settings to reach optimization and/or convergence of an EA has been 
a challenging topic in the evolutionary computation community. Firstly, due to meat-
heuristic and stochastic nature, there is a need to conduct a sufficient number of 
experiments of an EA under different parameter settings. Additionally, many practitioners 
and scholars have put forth various algorithms, operators, and parameters to improve the 
optimization and/or convergence. Without automatic tools for EA users, conducting EA 
experiments would become tedious and error-prone. Without capabilities to extend and 
evolve automatic tools, EA developers would not be able to invent new algorithms, 
operators, strategies, and parameters. PPCea offers a synergistic solution to address the 
aforementioned problems from the perspectives of both users and developers. The 
contributions of PPCea are three-folds: (1) PPCea is an automatic EA tool in a language 
format that assists EA users to conduct experiments using three parameter setting 
approaches introduced by Eiben et al.; (2) PPCea is an open-ended EA tool that allows EA 
developers to introduce, extend and evolve EA constructs in algorithm, operator, strategy 
and parameter levels; and (3) PPCea offers a fair platform to perform EA comparison – both 
reproduced algorithms and new algorithms can be described in PPCea code and run under 
PPCea interpreter. 
We have identified several future directions: (1) Multi-populations and multi-objective EAs 
are missing in current version. With such, more EAs can be reproduced (e.g., parameter-less 
GA) and invented; (2) As can be seen in Figure 6, PPCea currently cannot handle self 
adaptation algorithms. How to represent such algorithms and still offer open-end solutions 
is an emerging issue to tackle; (3) With the metrics from (Črepinšek et al., in press) 
introduced to PPCea, explicit balance between evolutionary and exploitation in a 
programmable fashion can be foreseen; and (4) Existing algorithms, operators, and 
strategies are effective in the individual granularity. Similar algorithms, operators, and 
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strategies working at the genotypical level may result in finer-grained experiments. With the 
aforementioned issues resolved, more EA users and developers may be benefited by PPCea. 

Appendix: PPCea Grammar 
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1. Introduction

Genetic algorithms (GA) and their general class – evolutionary algorithms (EA) belong to a
set of optimization methods that are nature inspired. In recent applications of computational
intelligence tools very often we deal with situation when imprecise data appear. The data can
be fuzzy. Hence, especially when an optimization of some object function has to be analyzed,
the problem appears which model of fuzzy data should be used. In the literature two
models of fuzzy numbers are mainly used: one is the classical model which follows from the
Zadeh fuzzy set model (Zadeh, 1965), restricted, however, to convex membership functions
defined on reals (Nguyen, 1978), and called convex fuzzy numbers (CFN), or the model with
restricted forms of membership functions, called (L,R)–numbers (Dubois & Prade, 1978).
The concept of convex fuzzy numbers has been introduced by Nguyen in 1978 in order to
improve calculation and implementation properties of fuzzy numbers. However, the results
of multiply operations on the convex fuzzy numbers are leading to the large grow of the
fuzziness, and depend on the order of operations since the distributive law, which involves
the interaction of addition and multiplication, does hold there. If one works with the second
model of fuzzy numbers, (L,R)–numbers, approximations of fuzzy functions and operations
are needed if one wants to follow the extension principle and stay within (L,R)–numbers
(Dubois & Prade, 1978). As long as one works with fuzzy numbers that possess continuous
membership functions the two procedures: the extension principle of Zadeh from 1975 and
the α-cut and interval arithmetic method give the same results (Buckley & Eslami, 2005). They
lead, however, to some drawbacks as well as to unexpected and uncontrollable results of
repeatedly applied operations (Wagenknecht et.al., 2001). From this several drawbacks of
convex fuzzy numbers and operations on them follow. One of them is non-existence of the
solution of the most general and simple algebraic equation A+X = C, when A and C are quite
arbitrary fuzzy numbers. In order to omit those drawbacks in 2002 the present author (W.K.)
with two co-workers developed a generalization of the classical concept of fuzzy numbers
and defined so-called ordered fuzzy numbers (OFN), in which membership function is not a
primitive concept, but a pair of real-valued functions defined on the unit interval [0, 1] ( cf.
(Kosiński et.al., 2002a; Kosiński et. al., 2003a;b)). Then all operations are natural defined
on those pairs, as a space of functions. The arithmetics of ordered fuzzy numbers becomes
an efficient tool in dealing with unprecise, fuzzy quantitative terms. Moreover, each convex
fuzzy number is included in this class, moreover it defines two different OFN: they differ

 

Evolution Algorithms in Fuzzy Data Problems 

11



by their orientations. The space of OFN is partially ordered, since a cone of positive fuzzy
numbers may be defined.
When data set of an optimization problem are not accurate, imprecise or just fuzzy, EA
methods may be difficult to apply. This is due to the fact that in the classical, Zadeh’s theory
(Zadeh, 1965; 1975) of fuzzy sets, the main object, namely fuzzy numbers, are not ordered.
Moreover, algebraic operations defined on classical fuzzy numbers (i.e. convex of Nguyen or
(L,R)-type of Dubois and Prade) which use either Zadeh’s extension principle or the interval
analysis on α-sections, do not have distributive property, which make the big problem when
repeated operations are performed (Wagenknecht et.al., 2001; Wagenknecht, 2001).
Order fuzzy numbers (OFN) invented by the present author and his two co-workers in
2002-2003 in order to omit these and other drawbacks, make possible to deal with fuzzy inputs
quantitatively, exactly in the same way as with real numbers. The space of OFN can give us
a natural setup to deal with optimization problems when data are fuzzy. Moreover, new
defuzzification functionals which attach to each fuzzy number a real, crisp, number, may be
used to supply the search space with additional fitness measure and order relations. The case
when fuzzy numbers are presented as pairs of step functions, with finite resolution, simplifies
all operations as well as the representation of defuzzification functionals. This helps us to
formulate a general optimization problem with fuzzy data.
In the paper we present model of OFN and show its application in formulation of optimization
problem when date for the object function are fuzzy. Those fuzzy data are regarded as
OFN. Then values of object function are fuzzy, as well. However, the space of OFN may be
equipped with the lattice structure, and hence the question of maximization of fuzzy-valued
fitness function may be solved. Some application will be given in the case, when we
confine our interest to step functions, appearing in the representation of OFN. Then each
fuzzy number can be identified with a point in 2K dimensional vector space, when K is
the resolution parameter, which is responsible for the maximal number of steps each fuzzy
number possesses. Then genetic algorithm can be formulated. The important role in dealing
with fuzzy evolutionary(genetic) algorithms play defuzzification functionals, which map each
OFN into reals. They should be homogeneous of order one and restrictive additive
The second problem considered in this chapter is related to the application of evolutionary
algorithms in finding forms of linear and nonlinear defuzzification functionals, knowing their
action on a subset of the space OFN. This forms a kind of approximation problem in which
data are given as fuzzy numbers.

2. Fuzzy numbers

Fuzzy numbers (Zadeh, 1965) are very special fuzzy sets defined on the universe of all real
numbers R. In applications the so-called (L,R)–numbers proposed by Dubois and Prade
(Dubois & Prade, 1978) as a restricted class of membership functions, are often in use. In
most cases one assumes that membership function of a fuzzy number A satisfies convexity
assumptions (Nguyen, 1978). However, even in the case of convex fuzzy numbers (CFN)
multiply operations are leading to the large grow of the fuzziness, and depend on the order
of operations.
This as well as other drawbacks have forced us to think about some generalization 1.
Our main observation made in (Kosiński et.al., 2002a) was: a kind of quasi-invertibility
(or quasi-convexity (Martos, 1975)) of membership functions is crucial. Invertibility of
membership functions of convex fuzzy number A makes it possible to define two functions

1 A number of attempts to introduce non-standard operations on fuzzy numbers has been made
(Drewniak, 2001; Klir, 1997; Sanschez, 1984; Wagenknecht, 2001)
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a1, a2 on [0, 1] that give lower and upper bounds of each α-cut of the membership function μA
of the number A

A[α] = {x : μA(x) ≥ α} = [a1(α), a2(α)] with a1(α) = μA|−1
incr(α) and a2(α) = μA|−1

decr(α) ,

where |incr and |decr denote the restrictions of the function μA to its sub-domains on which
is increasing or decreasing, respectively. Both functions a1(α), a2(α) were used for the first
time by the authors of (Goetschel & Voxman, 1986) in their parametric representation of fuzzy
numbers, they also introduced a linear structure to convex fuzzy numbers.

2.1 Ordered fuzzy numbers
In the series of papers (Kosiński et.al., 2002a; Kosiński et. al., 2003a;b) we have introduced
and then developed main concepts of the space of ordered fuzzy numbers (OFNs). In our
approach the concept of membership functions has been weakened by requiring a mere
membership relation .
Definition 1. A pair ( f , g) of continuous functions such that f , g : [0, 1]→R is called an ordered
fuzzy number A.
Notice that f and g need not be inverse functions of some membership function. If, however,
f is increasing and g – decreasing, both on the unit interval I, and f ≤ g, then one can
attach to this pair a continuous function μ and regard it as a membership function a convex
fuzzy number with an extra feature, namely the orientation of the number. This attachment
can be done by the formula f−1 = μ|incr and g−1 = μ|decr. Notice that pairs ( f , g) and
(g, f ) represents two different ordered fuzzy numbers, unless f = g . They differ by their
orientations.
Definition 2. Let A = ( fA, gA), B = ( fB, gB) and C = ( fC, gC) are mathematical objects called
ordered fuzzy numbers. The sum C = A + B, subtraction C = A − B, product C = A · B, and
division C = A÷ B are defined by formula

fC(y) = fA(y) � fB(y) , gC(y) = gA(y) � gB(y) (1)

where "�" works for "+", "−", "·", and "÷", respectively, and where A÷ B is defined, if the functions
| fB| and |gB| are bigger than zero.
Scalar multiplication by real r ∈ R is defined as r · A = (r fA, rgA) . The subtraction of B is
the same as the addition of the opposite of B, and consequently B− B = 0, where 0 ∈ R is the
crisp zero. It means that subtraction is not compatible with the the extension principle, if we
confine OFNs to CFN. However, the addition operation is compatible, if its components have
the same orientations. Notice, however, that addition, as well as subtraction, of two OFNs
that are represented by affine functions and possess classical membership functions may lead
to result which may not possess its membership functions (in general f (1) needs not be less
than g(1)).
A relation of partial ordering in the space R of all OFN, can be introduced by defining the
subset of positive ordered fuzzy numbers: a number A = ( f , g) is not less than zero, and write

A ≥ 0 if f ≥ 0, g ≥ 0 , and A ≥ B if A− B ≥ 0 . (2)

In this way the spaceR becomes a partially ordered ring . Neutral element of addition inR is a
pair of constant function equal to crisp zero.
Operations introduced in the space R of all ordered fuzzy numbers (OFN) make it an
algebra, which can be equipped with a sup norm ||A|| = max(sup

s∈I
| fA(s)|, sup

s∈I
|gA(s)|) if

A = ( fA, gA) . In R any algebraic equation A + X = C for X, with arbitrarily given
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fuzzy numbers A and C, can be solved. Moreover, R becomes a Banach space, isomorphic
to a Cartesian product of C(0, 1) - the space of continuous functions on [0, 1]. It is also a
Banach algebra with unity: the multiplication has a neutral element - the pair of two constant
functions equal to one, i.e. the crisp one.
Some interpretations of the concepts of OFN have been given in (Kosiński et.al., 2009a).
Fuzzy implications within OFN are presented in (Kosiński et. al., 2009b).

Step functions

It is worthwhile to point out that a class of ordered fuzzy numbers (OFNs) represents the
whole class of convex fuzzy numbers with continuous membership functions. To include all
CFN some generalization of functions f and g in Def.1 is needed. This has been already done
by the first author who in (Kosiński, 2006) assumed they are functions of bounded variation.
Then operations are defined in the similar way, the norm, however, will change into the norm
of the cartesian product of the space of functions of bounded variations (BV). Then all convex
fuzzy numbers are contained in this new space RBV of OFN. Notice that functions from BV
(Łojasiewicz, 1973) are continuous except for a countable numbers of points.
Important consequence of this generalization is a possibility of introducing a subspace of OFN
composed of pairs of step functions. If we fix a natural number K and split [0, 1) into K − 1

subintervals [ai, ai+1), i.e.
K−1⋃
i=1

[ai, ai+1) = [0, 1), where 0 = a1 < a2 < ... < aK = 1, and

define a step function f of resolution K by putting ui on each subinterval [ai, ai+1), then each
such function f is identified with a K-dimensional vector f ∼ u = (u1, u2...uK) ∈ RK , the K-th
value uK corresponds to s = 1, i.e. f (1) = uK . Taking a pair of such functions we have an
ordered fuzzy number fromRBV . Now we introduce
Definition 3. By a step ordered fuzzy number A of resolution K we mean an ordered pair
( f , g) of functions such that f , g : [0, 1]→R are K-step function.

We use RK for denotation the set of elements satisfying Def. 3. The set RK ⊂ RBV has been
extensively elaborated by our students in (Gruszczyńska & Krejewska, 2008) and (Kościeński,
2010). We can identifyRK with the Cartesian product of RK×RK since each K-step function is
represented by its K values. It is obvious that each element of the spaceRK may be regarded as
an approximation of elements from RBV , by increasing the number K of steps we are getting
the better approximation. The norm of RK is assumed to be the Euclidean one of R2K , then
we have a inner-product structure for our disposal.

2.2 Defuzzification functionals
In the course of defuzzification operation in CFN to a membership function a real, crisp
number is attached. We know a number of defuzzification procedures from the literature (Van
Leekwijck & Kerre, 1999). Continuous, linear functionals on R give a class of defuzzification
functionals . Each of them, say φ, has the representation by the sum of two Stieltjes integrals
with respect to two functions h1, h2 of bounded variation,

φ( f , g) =
∫ 1

0
f (s)dh1(s) +

∫ 1

0
g(s)dh2(s) . (3)

Notice that if for h1(s) and h2(s) we put λH(s) and (1− λ)H(s), respectively, with 0 ≤ λ ≤ 1
and H(s) as the Heaviside function with the unit jump at s = 1, then the defuzzification
functional in (3) will lead to the classical MOM – middle of maximum, FOM (first of
maximum), LOM (last of maximum) and RCOM (random choice of maximum), with an
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appropriate choice of λ. For example if for h1(s) and h2(s) we put 1/2H(s) then the
defuzzification functional in (3) will represent the classical MOM – middle of maximum

φ( f , g) = 1/2( f (1) + g(1)) . (4)

New model gives a continuum number of defuzzification operators both linear and nonlinear,
which map ordered fuzzy numbers into reals. Nonlinear center of gravity defuzzification functional
(COG) calculated at OFN ( f , g) is

φ̄G( f , g) =
1∫

0

f (s) + g(s)
2

[ f (s)− g(s)]ds{
1∫

0

[ f (s)− g(s)]ds}−1 . (5)

If A = c‡ then we put φ̄G(c‡) = c . When
1∫

0
[ f (s) − g(s)]ds = 0 in (5) a correction needs to

be introduced. Here by writing φ̄(c‡) we understand the action of the functional φ̄ on the
crisp number c‡ from R, which is represented by a pair of constant functions (c†, c†), with
c†(s) = c , s ∈ [0, 1]. New model gives a continuum number of defuzzification operators both
linear and nonlinear, which map ordered fuzzy numbers into reals. Nonlinear functional can
be defined, see (Kosiński & Wilczyńska-Sztyma, 2010).
In our understanding a most general class of continuous defuzzification functionals φ should
satisfy three conditions:

1. φ(c‡) = c ,

2. φ(A+ c‡) = φ(A) + c ,

3. φ(cA) = cφ(A) , for any c ∈ R and A ∈ R .

Here by writing φ(c‡) we understand the action of the functional φ on the crisp number
c‡ from R, which is represented, in the case of an element from RK , by a pair of constant
functions (c†, c†), with c†(i) = c , i = 1, 2, ...,K. The condition 2. is a restricted additivity, since
the second component is crisp number. The condition 3. requires from φ to be homogeneous
of order one, while the condition 1. requires

∫ 1
0 dh1(s) +

∫ 1
0 dh2(s) = 1, in the representation

(3).
On the space RK a representation formula for a general non-linear defuzzification functional
H : RK × RK → R satisfying the conditions 1.– 3., can be given as a linear composition
(Rudnicki, 2010) of arbitrary homogeneous of order one, continuous function G of 2K − 1
variables, with the 1D identity function, i.e.

H(u, v) = u1 + G(u2 − u1, u3 − u1, ..., uK − u1, v1 − u1, v2 − u1, ..., vK − u1) , (6)

with
u = (u1, ..., uK) , v = (v1, ..., vK) .

Remark. It can be shown from this representation that a composition of arbitrary
homogeneous of order one, continuous function F of k–variables, which is additionally
restrictive additive, with a set of k defuzzification functionals ϕ1, ϕ2, ..., ϕk, leads to a new
defuzzification functionals, i.e. F ◦ (ϕ1, ϕ2, ..., ϕk) on R (or on RK) is a new nonlinear (in
general) defuzzification functional. Moreover, the function F may be written in the form of
(6), in the case of RK . When the space R appears, we have to substitute its arguments with
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ϕ1, ϕ2, ..., ϕk; in general case it will be:

F(ϕ1, ϕ2, ..., ϕk) = ϕj + G(ϕ1 − ϕj, ϕ2 − ϕj, ..., ϕk − ϕj) , with some 1 ≤ j ≤ k , (7)

where the function G is homogeneous of order one and depends on k − 1 variables, since
between its arguments the difference ϕj − ϕj does not appear. In fact G is given by F in which
its j-th argument was put equal to zero.
Due to the fact that RK is isomorphic to RK ×RK we conclude, from the Riesz theorem and
the condition 1. that a general linear defuzzification functional onRK has the representation

H(u, v) = u · b+ v · d , with arbitrary b , d ∈ RK , such that 1 · b+ 1 · d = 1 , (8)

where · denotes the inner (scalar) product in RK and 1 = (1, 1, ..., 1) ∈ RK is the unit vector
in RK , while the pair (1, 1) represents a crisp one in RK . It means that such functional is
represented by the vector (b, d) ∈ R2K . Notice that functionals of the type φj = ej, j =
1, 2, ..., 2K, where ej ∈ R2K has all zero component except for 1 on the j-th position, form a
basis ofRK

∗ - the space adjoint toRK , they are called fundamental functionals .
Notice that each real-valued function ψ(z) of a real variable z ∈ R may be transformed to a
fuzzy-valued function on RBV , and even simpler on RK . Since each OFN from RK is a pair
of two vectors, each from RK , say (u, v), the fuzzy counterpart of the function ψ at (u, v) will
be a pair of vectors (ψ(u1), ..., ψ(uK), ψ(v1), ..., ψ(vK)), which 2 are inRK . Further on for these
compositions we will use the denotation ψ ◦ u and ψ ◦ v, or ψ ◦ (u, v).

3. Optimization with fuzzy data

Let us assume that we face with an optimization problem on a set D, a subset of the space
R2K and a fuzzy-valued fitness function Ψ : D ⊂ R2K → R2K has been constructed from a
real-valued one. The question is how to define an evolutionary algorithm for such problem?
Notice, that in case of fuzzy numbers A = (ua, va) and B = (ub, vb) from RK the relation
(2) means componentwise inequality uai − ubi ≥ 0 and vai − vbi ≥ 0 for i = 1, 2, ...,K. This
set of inequalities may be written in terms of inequalities between values of defuzzification
functionals forming the basis ofRK

∗, namely φj(A)− φj(B) ≥ 0 for j = 1, 2, ..., 2K.
Notice, that for each two fuzzy numbers A, B as above, we may define inf(A, B) and sup(A, B),
both from RK , by the formula inf(A, B) = C =: (uc, vc), where each uci := min{uai, ubi}
and vci := min{vai, vbi} with i = 1, ...,K. Similarly we define sup(A, B) = D =: (ud, vd) .
It is evident that our definitions are in agreement with the relation (2), since inf(A, B) ≤
A , inf(A, B) ≤ B, and similarly sup(A, B) ≥ A , sup(A, B) ≥ B; moreover A = inf(A, B)
in the case when A ≤ B. Similar relation follows with sup(A, B). These definitions allow us
to define a lattice structure on the space ofRK . It will be the subject of the next paper.
We know that due to the order relation (2) for two ordered fuzzy numbers A, B ∈ RK we may
have: either A ≥ B or A ≤ B, or we cannot say anything. Hence we should have for our
disposal another, additional set of measures, which will give us a chance to compare any two
different fuzzy values of the fitness function Ψ. We do this by introducing the next definition.
Definition 4. Let a set of defuzzification functionals (linear or nonlinear) Φ1, ..., ΦL be given
together with a fuzzy-valued fitness function Ψ : D ⊂ R2K → R2K . Let A, B be from RK . We
say that Ψ(A) 
 Ψ(B) if Φk(Ψ(A)) ≥ Φk(Ψ(B)), for k = 1, ..., L.
Notice, that if L = 2K and each Ψ is equal to φk ∈ RK

∗ the relation 
 corresponds to ≥ from
(2). We are rather interested in different ordering.

2 Here we have used the representation for u = (u1, ..., uK) and for v = (v1, ..., vK).
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However, if we use the convex combination of fundamental functionals given by the
defuzzification functional H from (8) and superpose it with the fitness function Ψ, then a
new real-valued fitness function Ψ̂(·) := H(Ψ(·)) : D → R may be defined, and use in further
evolutionary computation.
Finally we propose some genetic operators acting on arguments of the fitness function Φ. Let
two individuals A = (ua, va) and B = (ub, vb) be given. We may define a one (or many-point)
cross-over operator as an exchange at some position (positions) a part of components of two
vectors from R2K . Another operator could be a two-point mutation when after selection of
two positions 1 ≤ j1, j2 ≤ K the corresponding components of vectors ua and va have to
be exchanged. It may be added that using different denotation for individuals, say A, as a
K-dimensional vector of pairs ((ua1, va1), ..., (uaK , vaK)) , next genetic operations can be easily
defined. It will be the subject of the next paper, when a numerical implementation will be
performed.

4. Approximation of defuzzification functionals

Ultimate goal of fuzzy logic is to provide foundations for approximate reasoning. It
uses imprecise propositions based on a fuzzy set theory developed by L.Zadeh, in a way
similar to the classical reasoning using precise propositions based on the classical set theory.
Defuzzification is the main operation which appears in fuzzy controllers and fuzzy inference
systems where fuzzy rules are present. In the course of this operation to a membership
function representing a classical fuzzy set a real number is attached. We know a number
of defuzzification procedures from the literature, such as: FOM (first of maximum), LOM
(last of maximum), MOM (middle of maximum), RCOM (random choice of maximum),
COG (center of gravity), and others which were extensively discussed by the authors of
(Van Leekwijck & Kerre, 1999). They have classified the most widely used defuzzification
techniques into different groups, and examined the prototypes of each group with respect to
the defuzzification criteria.
The problem arises when membership functions are not continuous or do not exist at all.
The present chapter is devoted to a particular subsets of fuzzy sets, namely step ordered fuzzy
numbers on which an approximation formula of a set of defuzzification functionals will be
searched based on some number of training data.

4.1 Problem formulation
Let us think how recent representation can help us in the following approximation problem.
Problem. Let a finite set of training data be given in the form of N pairs: ordered
fuzzy number and value (of action) of a defuzzification functional on it, i.e. TRE =
{(A1, r1), (A2, r2), ..., (AN , rN)} . For a given small ε find a continuous functional H : RK →
R which approximates the values of the set TRE within the error smaller than ε, i.e.
max

1≤p≤N
|H(Ap)− rp| ≤ ε , where (Ap, rp) ∈ TRE .

Problem may possess several solution methods, e.g. a dedicated evolutionary algorithm
((Kosiński, 2007; Kosiński & Markowska-Kaczmar, 2007)) or an artificial neural network.
We have use the representation (6) of the searched defuzzification functional in which a
homogeneous, of order one, function Ψ appears. It means that values of this function are
determined from its arguments situated on the unit sphere S2K−1 in 2K− 1 D space.
If a genetic algorithm is in use then the form of genotypes could be rather standard: it is a
vector of 2K components. Dedicated genetic operators could be constructed: crossover and
two-point mutation. Possible fitness function can be based on the inverse of an error function.
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Numerical examples will be given in the next subsection. First a genetic, evolutionary, method
will be presented; then artificial neural network will be in use.

4.2 Dataset
Training and test sets used in the further section (from now denoted as TRE and TES,
respectively) have the following form. A set of N elements is composed of N pairs of OFN
and a value of a defuzzification functional on it, i.e.: {(A1, r1), (A2, r2), ..., (AN , rN)}.
In order to create these sets we use the approach utilizing points on a unit sphere ϕ2K−1 in
2K − 1 D space. First, we select points on a sphere ϕ2K−1. Part of these points is completely
random and part of them has to fulfil a certain condition. Given a point on a sphere ϕ2K−1
in a form (u2, u3, ..., uK , v1, v2, ..., vK) we select points where ui < ui+1, for i = 2, 3, ...,K and
vj > vj+1 for j = 1, 2, ...,K. This allows us to create fuzzy numbers with trapezoidal shape.
Next step involves adding a component u1. Value of this component can be either 0 or selected
from range [−4; 4]. Value of component u1 is added to each other component from a point on
sphere ϕ2K−1.
Following sets were created using this method: 2 TRE sets, consisting of 40 OFNs that
meet restriction mentioned earlier and 20 completely random OFNs. TRE1=TRE0 set used
u1 component of value 0 while TRE2=TRE4 set has a u1 component from range [−4; 4].
Respective values of a defuzzification functional of each OFN were calculated. TES1 and
TES2 sets were created using the same approach, each of them having 30 elements.

4.3 Genetic algorithm for linear defuzzification functional approximation
Chromosome represents the vector in the defuzzification functional H. Then we use the
following procedure for approximation :

• chromosome is encoded using 2K real values represented as fractions and has the
following form: (c1, c2, ..., ck, d1, d2, ..., dk)

• ci, dj ∈ [0, 1]

•
K
∑
i=1

(ci + di) = 1

Given fuzzy number A and some chromosome we can calculate the defuzzified value:

H(A) =
K

∑
i=1

(ciui + divi) . (9)

Error and fitness

Having a set of P instances on which we validate a chromosome, we calculate the error with
the following formula:

Error =
1
P

i=P

∑
i=1

(H(Ai)− ri)2 .

For the fitness we have chosen the simple representation:

Fitness = 1/Error .

Genetic operations

Two genetic operations have been used:
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• mutation - a randomly chosen small value was added to the gene

• two-point crossover .

Repair operation was needed to ensure that the new values fulfill the aforementioned
constrains. In case when the values failed to meet the conditions they were increased or
decreased proportionally.

Results for genetic algorithm

Average from results from 10 runs was:

Set Fitness Error
TES0 426567.7056282262 2.344293735333886E-6
TES4 1.1362690028303238E7 8.800732903116319E-8

Table 1. Average results from 10 runs

Averaged and rounded chromosomes from 10 runs:

• for TRE0:
0, 0, 0, 0, 0, 0, 0, 0.04, 0.07, 0.37,0, 0, 0, 0, 0, 0, 0.01, 0.03, 0.13, 0.341

• for TRE4:
0, 0, 0, 0, 0, 0, 0, 0.01, 0.16, 0.37,0, 0, 0, 0, 0, 0, 0.01, 0.03, 0.15, 0.30

(a) Subfigure 1 (b) Subfigure 2

Fig. 1. Results for genetic algorithm: a) on TRE0, b) on TRE4

Best error equals 0 as the algorithm managed to find the exact operator.

4.4 Results obtained using genetic programming
In order to approximate a value of a nonlinear defuzzification functional, an algorithm using
genetic programming was used. Algorithm tried to build a tree, that, when evaluated, would
minimize the error value of the approximation. Possible nodes consisted of a parameter node
(in this case a value of ui or vi from processed OFN), integer constant node or a function
node. The following set of functions was available to the algorithm: addition, subtraction,
multiplication, division, power.
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Genetic operators consisted of mutation and crossover. Mutation replaced a selected subtree of
the function tree with a new tree. Crossover operation swapped a subtree between parents.
Initial population was created randomly using the described building blocks, with the tree
depth limit of 12. In each iteration algorithm evaluated current population of function trees,
maintained 5% of best solutions and created new population using one of the two methods.
First method consisted of a roulette selection of trees that were later subject to mutation and
crossover operations. Second method created completely new trees and added them to the
pool. 90% of population members were selected using roulette, while 10% were new trees
during each iteration.
Tables 2 and 3 contain approximation numerical results obtained using this genetic approach.

Dataset Best Average Worst
TRE1 0.010774742 0.0112900473 0.0109660603
TRE2 0.0084995761 0.0154348379 0.0124602126

Table 2. Genetic programming results, root mean square error, RMSE

Dataset Best Average Worst
TRE1 0.1552756869 0.213444347 0.1759717912
TRE2 0.1519504725 0.2586461938 0.1960008602

Table 3. Genetic programming results, approximation error

(a) Subfigure 1 (b) Subfigure 2

Fig. 2. Errors for both sets (figure a) and RSME error (figure b)

In Fig.3 a final tree is presented. Examples of evolved functions for TRE2 data set are:

Hu, v) = (v10 − ((v10 − u9)/ 3
√

9) , H(u, v) = v10
√
u9/v10 .

4.5 Neural network simulations
Previous sections presented genetic algorithm method for the defuzzification approximation.
This problem can be solved by neural network approximation. We present in this section
our neural network approach, used for this purpose, and the results obtained of our neural
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Fig. 3. Example of function tree generated in genetic programming.

network defuzzification.

Data generation

The procedure to generate TRE and TES sets was the following.
1. Generate 60 random points on a 2K− 1 dimensional hyper-sphere, where K = 10. Let ϕ =

(u2, u3, ..., uK−1, v1, v2, ..., vK) be one of these points. All points fulfill the conditions un <
un+1 and vm > vm+1. This ensures that the generated fuzzy numbers have a trapezoidal
shape. In the further parts this assumption has been omitted.

2. Generate two sets of fuzzy numbers using the following methods of generating a value of
u
• u = 0
• u is a random value from (−4, 4)

3. For each fuzzy number find the defuzzified value and split the sets in ratio 2:1 to form:
• TRE0 and TES0 from fuzzy numbers with u1 = 0
• TRE4 and TES4 from fuzzy numbers with u1 ∈ (−4, 4)

4.6 Implementation of a neural network
In order to make approximation of linear and the nonlinear defuzzification functionals on step
ordered fuzzy numbers (SOFN) a package of artificial neural networks (ANN) has been used.
The following structure of three layered MLP neural network has been assumed:
• Since each SOFN is represented by a vector of 2K number, each input to artificial neural

networks has 2K real-valued components.
• one hidden layer composed of 5 neurons that build a weighted sum.
• one 1D output layer.
All of the NN Simulation was done with the help of GNU Octave 3.0.1. The structure of the
network is given below on Fig.12.
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4.7 Linear Defuzzification
4.7.1 ANN training
The general strategy was to train the network with data sets having 2K inputs and an
output representing the discrete values of fuzzy output values and the crisp output calculated
according to selected standard defuzzification algorithms. For the linear defuzzification we
have used: MOM (middle of maximum), LOM (last of maximum), FOM (first of maximum),
and COA (center of area).
Table 4 presents the final training MSE (for RSME[%]) for all the used methods. Table 5
presents the final training gradient for all the used methods.

Training Set MOM LOM FOM COA
TRE0 1.196156E-11 1.17966E-11 3.2052E-11 3.167E-8
TRE4 8.22773E-10 1.51997E-9 3.1339E-9 1.03805E-6

Table 4. Final training RMSE

Training Set MOM LOM FOM COA
TRE0 3.57907E-6 1.14851E-6 1.09344E-6 2.842E-5
TRE4 0.001232 0.0001864 0.00311 0.03940

Table 5. Final training gradient

4.7.2 ANN validation
The validation of our neural network is done by testing the network with TES0 and TES4 data
sets generated with all of the following defuzzification methods : MOM(middle of maximum),
LOM (last of maximum), FOM (first of maximum) and COA (center of area).
The validation of data TES0 and TES4 defuzzified with MOM strategy converges successfully.
The results are presented at the figures: for TRE0 MSE [%] (Figure 4), gradient (Figure 5),
for TRE4 RMSE (Figure 6), gradient (Figure 7). Similar results have been obtained for other
defuzzification methods.
Simulation results, conclusions

Performed simulation proved that ANN can successfully represent the defuzzification
strategies. Linear approximations of defuzzification functionals with MOM, LOM, FOM, and
COA were correct. The trained ANN approximations for all the methods were successfully
tested with TES0 and TES4 data sets. Table 6 presents the final validation RMSE for all the
used methods.

Testing Set MOM LOM FOM COA
TES0 1.781138E-5 3.020065E-5 0.0001056 0.00668950
TES4 4.300E-9 2.02054E-6 0.0006829 0.007569

Table 6. Final linear validating RMSE[%]

4.8 Nonlinear defuzzification functional
Similar method has been used for nonlinear defuzzification functional, namely for the center
of gravity (COG). The validation of data TES0 and TES4 defuzzified with COG strategy
converges successfully.
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Fig. 12. Neural network structure

4.8.1 Function representation of neural network
In this subsection we present the complex function composition realized by the neural
network. Its detailed structure is on Fig.12.
Transfer functions

The first layer transfer function is given by the formula :

f (x) =
2

1 + e−2x − 1

The hidden layer transfer function is given by g(x) = x , and the output is given by

Y = g(X) = X =
5

∑
j=1

Φjλj + B

where Φj = f (ϕj) = f (∑
20
i=1 ui ∗ωi,j +bj) . Hence we have

Y =
5

∑
j=1

f (
20

∑
i=1

uiωi,j +bj))λj + B .

The weights and other parameters are listed below in tables.

5. Conclusion

The present paper brings an outline of a model of an evolutionary algorithm defined on
a space of fuzzy date represented by ordered fuzzy numbers. Moreover, it shows how
evolutionary algorithms and genetic programming can be used to find an approximation
formula of defuzzification functionals defined on the space of step ordered fuzzy numbers.
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Input ωi1 ωi2 ωi3 ωi4 ωi5
U1 -1.500000 1.500000 -0.500000 0.500000 0.100000
U2 -1.764203 1.721917 -1.163269 0.325977 -0.766464
U3 -0.909134 0.969637 -1.070874 0.164166 -0.183957
U4 -1.888874 1.870025 -1.096356 0.652329 -0.950350
U5 -1.551447 1.618123 -0.028711 -0.164044 -1.205991
U6 -1.339349 1.297634 0.030845 0.789391 -1.386863
U7 -0.924551 0.758894 -0.292342 0.406089 0.273688
U8 -1.444772 1.426924 0.270408 0.433603 -0.521424
U9 -2.290977 2.078550 0.003299 0.771404 1.510400
U10 -2.035505 1.984894 0.007624 .370735 -0.662857
U11 -1.543991 1.181070 0.511984 0.784363 0.820112
U12 -1.893619 1.545661 0.350312 0.843925 1.318368
U13 -1.690412 1.296557 -0.424741 1.410183 1.098513
U14 -1.583763 1.208434 0.315078 0.782784 1.159102
U15 -1.477475 1.123565 -0.048310 0.786998 0.350696
U16 -1.629397 1.389360 -0.185788 0.619010 0.175965
U17 -1.758531 1.715217 0.851437 0.196586 -0.565551
U18 -1.477277 1.287993 -0.478476 0.377743 1.132364
U19 -0.877315 0.820842 -0.353786 -0.066219 0.204631
U20 -2.090962 1.904204 -0.355554 0.233310 0.775427

Table 7. NN structure after learning

Training Set b1 b2 b3 b4 b5
Nonlinear TRE0 0.562239483 0.425288679 1.616618821 1.759599096 1.0704185326

Table 8. First layer bias

Training Set λ1 λ2 λ3 λ4 λ5
Nonlinear TRE0 0.0814377120 0.001417061 -28.63429759 -0.0005601 14.19819490

Table 9. Hidden layer weight

Moreover, the results of approximation have been compared with that obtained with a help of
different tool of the computational intelligence, namely of artificial neural networks. We can,
therefore, conclude that both tools are helpful. It is rather evident that further research in this
field should follow.
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Gliwice, pp. 103–129.

Dubois D., Prade H., (1978). Operations on fuzzy numbers, Int. J. System Science, 9, 576–578.

216 Evolutionary Algorithms



Goetschel R. Jr., Voxman W., (1986): Elementary fuzzy calculus, Fuzzy Sets and Systems, 18,
31–43.
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Kosiński W., Prokopowicz P., (2004). Algebra of fuzzy numbers (in Polish), Matematyka
Stosowana. Matematyka dla Społeczeństwa, 5/46, 37–63.
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1. Introduction 
Optimization is essentially the art, science and mathematics of choosing the best among a 
given set of finite or infinite alternatives. Though currently optimization is an 
interdisciplinary subject cutting through the boundaries of mathematics, economics, 
engineering, natural sciences, and many other fields of human Endeavour it had its root in 
antiquity. In modern day language the problem mathematically is as follows - Among all 
closed curves of a given length find the one that closes maximum area. This is called the 
Isoperimetric problem. This problem is now mentioned in a regular fashion in any course in 
the Calculus of Variations. However, most problems of antiquity came from geometry and 
since there were no general methods to solve such problems, each one of them was solved 
by very different approaches.  
Generally, optimization algorithms can be divided in two basic classes: deterministic 
probability algorithm. Deterministic algorithm are most often used if a clear relation 
between the characteristic of possible solutions and their utility for a given problem exists. If 
the relation between a solution candidate and its fitness are not so obvious or too 
complicated, or the dimensionality of the search space is very high, it becomes harder to 
solve a problem deterministically. Trying it would possible result in exhaustive enumeration 
of the search space, which is not feasible even for relatively small problem.  
Then, the probabilistic algorithm come in to play. The increased availability of computing 
power in past two decades has been used to develop new techniques of optimization 
Today's computational capacity and the widespread Availability of computers have enabled 
development of new generation of intelligent computing techniques, such as genetic 
algorithm.  
Evolutionary Algorithm are population met heuristic optimization algorithms that use 
biologic- inspired mechanisms like mutation, crossover, natural selection, and survival of 
the fittest in order to refine a set of solution candidates iteratively [ Weise, 2009].  
All evolutionary algorithms proceed in principle according to the scheme illustrated in 
fig.(1). 
A simple Genetic Algorithm ܣܩݏ  is search algorithms based on the mechanics of natural 
selection and neutral genetics. They combine survival of fittest among string structures with 
a structure yet randomized information exchange to form a search algorithm with some of 
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Fig. 1. Cyclic life of an evolutionary algorithms 
the innovative flair of human search. In every generation; a new set of artificial creatures 
(string) is created using bits and pieces of the fittest of the old; an occasional new part is 
tried for good measure. They efficiently exploit historical information to speculate on a new 
search points with expected improved performance. A hybrid genetic algorithm (HGA) is 
the coupling of two processes: the simple ܣܩ and a local search algorithm. HGAs have been 
applied to a variety of problems indifferent fields, such as optical network design 
[Sinclair,2000], signal analysis [Sabatini, 2000], and graph problems [Magyar et al, 2000], 
among others. In these previous applications, the local search part of the algorithm was 
problem specific and was designed using trial-and-error experimentation without 
generalization or analysis of the characteristics of the algorithm with respect to convergence 
and reliability. The purpose of this study is to develop variants of hybrid simple genetic 
algorithm with local search algorithm represent by gradient or global algorithm present by 
evolution strategy to optimize solution of some functions where classifies as multimodal 
function and unimodel functions. One of import function of this study is likelihood function 
of time series autoregressive moving average  ܣܯܴܣሺ1,1ሻ model, this function defined as a 
unimodel function it is one of fundamental importance in estimation theory. The other   
functions used in this study as a test function used widely as benchmark functions. This 
study presents the( 1ܣܩܪ) which is represent hybrid of simple genetic algorithm with an 
widely local search algorithm used steepest decent algorithm the other approach of  hybrid 
denoted by 2ܣܩܪ is coupling simple genetic algorithm with global search algorithm 
multimember evolution strategy, compares its performance with the simple(ܣܩݏ), steepest 
descent algorithm(SDA), multimember evolution strategy ܵܧ; to study the behaviours many 
of functions classified as its kind  multimodal or unimodel function which is used as test 
functions. The reminder of this chapter, section 2 presents definitions needed, section 3 
giving a brief overview of genetic algorithms, representation of search points and their 
fitness evolution, selection, recombination, and mutation mechanisms. Then to be consistent, 
section 4 introduce the characteristic components of local search and its operators , also 
section 5 issue of  the multimember evolution strategy. Section 6 address the issue of 
coupling simple genetic algorithm with multimember evolution strategy. Section 7 is an 
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extension of the results of section, in which are representative of the classes of unimodel , 
and multimodal function. In which competition is raised.  

2. Definitions  
Definition 2.1 (Objective Function) An objective function f: ॿ ՜ ঀ with ঀ ك Թ is a 
mathematical function which is subject to optimization. 
The co-domain  ঀ of an objective function as well as its range must be a subset of the real 
numbers ঀ ك Թ. The domain ॿ of f is called problem space and can represent any type of 
element like numbers, lists, construction plans, and so on. It is chosen according to the 
problem to be solved with the optimization process. Objective functions are not necessarily 
mere mathematical expressions, but can be complex algorithms that, for example , involve 
multiple simulations. Global optimization comprises all techniques that can be used to find 
the best element כݔ א ॿ with respect to such criteria ݂ א  .ܨ
Definition 2.2 (local Maximum) A local maximum xො୪ א ॿ of one (objective) function ݂: ॿ ՜Թ is an input element ݂ሺݔොሻ  ݂ሺݔሻ for all x neighbouring xො୪. If ॿ א Թ୬, we can write: ݔො߳  0: ݂ሺݔොሻ  ݂ሺݔሻݔ א ॿ, ݔ| െ |ොݔ ൏ ߳. 
 

Definition 2.3 (Local Optimum). A (local) minimum xො୪ א ॿ of one (objective) function f: ॿ ՜ Թ is an input element with fሺxො୪ሻ  fሺxሻ for all  x neighbouring xො୪,  ݔො߳  0: ݂ሺݔොሻ  ݂ሺݔሻݔ א ॿ, ݔ| െ |ොݔ ൏ ߳. 

Definition 2.4 (Local Optimum).A local optimum xכ א ॿ of one (objective) function f: ॿ ՜ Թ 
is either a local maximum or a local minimum. 
Definition 2.5 (Global Maximum). A global maximum ݔො א  of one (objective) ݔ
function f: ॿ ՜ Թ is an input element with  ݂ሺݔොሻ  ݂ሺݔሻݔ א ॿ. 
 

Definition 2.6 (Global Maximum). A global maximum ݔො א  of one (objective) ݔ
function f: ॿ ՜ Թ is an input element with  ݂ሺݔොሻ  ݂ሺݔሻݔ א ॿ. 
 

Definition 2.7 (Local Optimum): A global optimum xכ א ॿ of one (objective) function f: ॿ ՜ Թ is either a global maximum or a global minimum. Even a one-dimension function f: ॿ ൌ Թ ՜ Թ may have more than one global maximum, multiple global minimum, or even 
both in its domain ॿ. Take the sine or cosine function for example; for cosine function it has 
global maximum ݔො ൌ ,ߨ2݅ ሺ݅ ൌ 0,1,2, … ሻ  and global minimum ݔො ൌ ሺ2݅  1ሻߨ, ሺ݅ ൌ 1,2, … ሻ.  
Definition 2.8 (Solution Candidate): A solution candidate x is an element of the problem 
space ॿ 
Definition 2.9 (Solution Space): we call the union of all solutions of an optimization 
problem its solution  space ॺ. ࣲכ ك ॺ ك ॿ 
This solution space contain (and can be equal to) the global optimal set ࣲכ. There may exist 
valid solution x א ॺ which are not elements of ࣲכ, especially in the context of constraint 
optimization. 
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Fig. 2. An example of function with multi global and local maximum and minimum optimal 
point.   

Definition 2.10 (Search space ) :The search space ॳ of an optimization problem is the set of all 
elements ग़ which can be processed by the search operations. The type of the solution 
candidates depends on the problem to be solved. Since there are many different applications 
for optimization, there are many different forms of problem spaces. It would be cumbersome 
to develop search operations time and again for each new problem space encounter.  
Definition 2.11 (Genotype): the elements ग़ א ॳ of the search space ॳ of a given 
optimization problem are called the genotypes. 
The elements of the search space rarely are unconstraint aggregations. Instead, they often 
consist  of distinguishable parts, hierarchical units, or well-type data strictures. The same 
goes for DNA in biology. It consists of genes, segments of nucleic acid, that contain the 
information necessary to produce RNA strings in a controlled manner. A fish, for instance, 
may have a gene for the colour of its scales. This gene, in turn, could have two possible 
"values" called alleles, determining whether the scales will be brown or grey. The genetic 
algorithm community has adopted this notation long ago and we can use it for arbitrary 
search space. 
Definition 2.12 (Gene). The distinguishable units of information in a genotype that encode 
the phonotypical properties are called gene. 
Definition 2.13 (Allele): An allele is a value of specific gene. 
Definition 2. 14 (Locus): The locus is the position where a specific gene can be found in a 
genotype. 
Definition 2.15 (Search Operation): the search operation search OP are used by 
optimization algorithm in order to explore the search space ॳ. 
Definition 2.16 (individual): An individual p is a tuple ሺp. g, p. xሻof an element p. g in the 
search space ॳ and the corresponding element . ݔ ൌ .݉݃ ݃ in the problem space ॿ. 
Definition 2.17 (Population): A population (pop) is a list of individuals used during an 
optimization process. 
ܲ  ك ॳ ൈ ॿ:  ൌ ሺ. ݃, . ሻݔ א ܲ ֜ . ݔ ൌ .ሺ݉݃ ݃ሻ  
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As already mention, the fitness ݒሺݔሻ of an element ݔin the problem space ॿ often not solely 
depends on the element itself. Normally, it is rather a relative measure putting the features 
of ݔ in to the context of a set of solution candidates ݔ.     

2.1 Genotype-phenotype mapping 
The genotype –phenotype mapping (GPM, or ontogeny mapping) ݃݉: ॳ ՜ ॿ is a left-total 
binary relation which maps the elements of the search space ॳ to elements in the problem space 

 ॿ; ݃ א ॳ ݔ א ॿ  ሺ݃ሻ݉݃  ൌ   ݔ
 

 
Fig. 3. The relation of genome, genes, and the problem space. 

3. Genetic algorithm  
3.1.1 Initialization 
The first step is the creation of an initial population of solutions, or chromosomes. The 
populations of chromosomes generally chosen at random, for example, by flicking a coin or 
by letting a computer generate random numbers. There are no hard rules for determining 
the size of the population. Larger populations guarantee greater diversity and may produce 
more robust solutions, but use more computer resources. The initial population must span a 
wide range of variable settings, with a high degree of diversity among solutions in order for 
later steps to work effectively.  

3.1.2 Fitness evaluation 
In the next step, the fitness of the population's individuals evaluated. In biology, natural 
collection means that chromosomes that are more fit tend to produce more offspring than do 
those that are not as fit. Similarly, the goal of the genetic algorithm is to find the individual 
representing a particular solution to the problem, which maximizes the objective function, so 
its fitness is the value of the objective function for a chromosome. Genetic algorithms can of 
course also solve minimization problems. The fitness function (also called objective function or 
evaluation function) used to map the individual's chromosomes or bit strings into a positive 
number, the individual's fitness. The genotype, the individual's bit string, has to be decoded 
for this purpose into the phenotype, which is the solution alternative. Once the genotype has 
been decoded, the calculation of the fitness is simple: we use the fitness function to calculate 
the phenotype's parameter values into a positive number, the fitness. The fitness function 
plays the role of the natural environment, rating solutions in terms of their fitness. To apply 
the GA to real – valued parameters  optimization problems of the form  ݂: ∏ሾݑ, ሿݒ  ՜ ܴሺݑ ൏



Evolutionary Algorithms 224 ݒሻ, the bit string is logically divided in to n segments of (in most cases )equal length ݈௫ሺ݈ ൌ݈݊௫ሻ   and each segment  is interpreted as the binary code of the corresponding object variable ݔ א ሾݑ, :ሿ . A segment decoding function Γݒ ሼ0,1ሽೣ ՜ ሾݑ,   ሿ  typically looks likeݒ

 Γ(ܽଵܽଶ … . ܽೣሻ ൌ ݑ  ௩ି௨ଶೣషభ ሾ∑ ܽ2ିଵሿ      (1) 

where ሺܽଵܽଶ … . ܽೣሻ denotes the ith segment of an individual Ԧܽ ൌ ൫ܽଵܽଶ. . . ܽೣೣ൯߳ܫ.ೣ ൌ  .ܫ
Associated with each individual is fitness value. This value is a numerical quantification of 
how good of solution to optimization problem the individual is .Individual with 
chromosomal strings. Representing better solution has higher fitness values, while lower 
fitness values attributed to those whose bit string represents inferior solution. Combining 
the segment-wise decoding function to individual – decoding function  Γ ൌ Γଵ ൈ … .ൈ Γ, 
fitness values are obtained by setting  

ሺߔ  Ԧܽሻ ൌ ሺ݂൫Γሺߜ Ԧܽሻ൯ሻ  (2) 

where ߜ denotes a scaling function ensuring positive fitness values such that the best 
individual receives largest fitness. 

3.1.3 Selection 
In the third step, the genetic algorithm starts to reproduce. The individuals that are going to 
become parents of the next generation selected from the initial population of chromosomes. 
This parent generation is the "mating pool" for the subsequent generation, the offspring. 
Selection determines which individuals of the population will have all or some of their genetic 
material passed on to the next generation of individuals. The object of the selection method is 
to assign chromosomes with the largest fitness a higher probability of reproduction.  

3.1.4 Tournament selection 
The tournament selection method select ߤ times the best individual from a random subset ߚ 
of size |ߚ| ൌ ,ߦ 2  ߦ ط ݇  ߤ א ሼ1, … ,  ሽ and transfers it to the mating pool (note hat thereߤ
may appear duplicates). The best individual within each subset ߚ selected according to the 
relation  ظ (read: better then). A formal definition of the tournament selection operator ܵ: ఓܫ ՜  :ఓ follows (Schowefel &Bäck, 1997)ܫ
Let  ߚ ؿ א ݇   ሻݐሺ ሺ1, … , |ߚ|ሻ each of sizeݐሻ be random subsets of ܲሺߤ ൌ א ݇   .ߦ ሺ1, … ,  ሻߤ
choose ܽ א ሬܾԦ    such thatߚ א :ߚ Ԧܽ  ሬܾሬԦ  வ    where  

  Ԧܽ  ሬܾሬԦ  வ : ֞ Φሺ Ԧܽሻ  ר 0 ݂൫Γሺ Ԧܽሻ൯  0  ݂ ቀΓ൫ሬܾԦ൯ቁ  (3) 

3.1.5 Genetic operators 
3.1.5.1 Crossover 
The primary exploration operator in genetic algorithms is crossover, a version of artificial 
mating. If two strings with high fitness values mated, exploring some combination of their 
genes may produce an offspring with even higher fitness. Crossover is a way of searching the 
range of possible existing solutions. There are many ways in which crossover can 
implemented, such as one point crossover, two-point crossover, n-point crossover, or uniform 
crossover. In the following, we will stay with the simplest form, Holland's one-point crossover 
technique. Single-point crossover is the simplest form, yet it is highly effective. 
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One point crossover, is often used in ܣܩݏ, it work first randomly picking a point between 0 
and  ݈. The participating parent individuals ݔԦ ൌ ሺݔଵ, … . Ԧݕ ሻ  andݔ ൌ ሺݕଵ, … .  ሻ are then splitݕ
at the point , followed by a swapping of the split halves to form two offspring individual ̀ݔԦ ܽ݊݀ ̀ݕԦ as follows (Kargupta, 1995):  

Ԧݔ̀  ൌ ሺݔଵ, … . , ,ିଵݔ ,ݔ ,ାଵݕ … . , Ԧݕሻ̀ݕ ൌ ሺݕଵ, … . , ,ିଵݕ ,ݕ ,ାଵݔ … . ,     (4)ݔ

where ߯߳ሼ1, … , ݈ െ 1ሽ  denotes a uniform random variable . 
3.1.5.2 Mutation 
If crossover is the main operator of genetic algorithms that efficiently searches the solution 
space, then mutation could called the "background operator" that reintroduces lost alleles into 
the population. Mutation occasionally injects a random alteration for one of the genes. Similar 
to mutation in nature, this function preserves diversity in the population. It provides 
innovation, possibly leading to exploration of a region of better solutions. Mutation performed 
with low probability. Applied in conjunction with selection and crossover, mutation not only 
leads to an efficient search of the solution space but also provides an insurance against loss of 
needed diversity, on a single individual , mutation operator ݉ሼሽ: ܫ ՜  formally works as ܫ
follows (Back & Schwefel, 1993): ݉ሼሽሺݔଵ, … , ሻݔ ൌ ሺݔଵ̀, … , ,̀ሻݔ ሺ݅ א ሼ1, … , ݈ሽሻ: 

ప̀ݔ   ൌ  x୧ , χ୧  P୫1 െ x୧ , χ୧  P୫൨                  (5) 

where ߯߳ሾ0,1ሿ is a uniform random variable, sampled anew for each bit. 

3.1.6 Conceptual algorithm 
The conceptual algorithm of ܣܩݏ can then formulated as  
t:=0;  t is the generation number 
Initialize         ܲሺ0ሻ ൌ ሼ Ԧܽଵሺ0ሻ, … , Ԧܽఓሺ0ሻሽ߳ܫఓ      Where  ܫ ൌ ሼ0,1ሽ      
Evaluate    ܲሺ0ሻ ൌ ሼΦሺ Ԧܽଵሺ0ሻሻ, … , Φሺ Ԧܽఓሺ0ሻሻሽ߳ܫఓ     
Where   Φሺ Ԧܽሺ0ሻ ൌ ሺ݂ߜ ቀΓ൫ Ԧܽଵሺ0ሻ൯ቁ , ܲሺ0ሻ        
While ሺ߬ሺሺܲሺܶሻሻ ്  do // while termination criterion not fulfilled    ݁ݑݎݐ
Recombine:     ܽ̀Ԧሺ݇ሻ ൌ ݇    ሻ൯ݐሽ൫ܲሺሼݎ א ሼ1, . . ,            ሻߤ
Mutate:            ܽ"ሬሬሬԦሺݐሻ ൌ ݉ሼሽሺ ܽ̀Ԧሺ݇ሻ      ݇ א ሼ1, . . ,  {ߤ
Evaluate          ܲ"ሺݐሻ ൌ ቄܽ"ሬሬሬԦଵሺݐሻ, … , ܽ"ሬሬሬԦఓሺݐሻቅ : ሼ Φሺܽ"ሬሬሬԦଵሺݐሻሻ, … , Φሺܽ"ሬሬሬԦఓሺݐሻሻሽ                            

Where          Φ ൬ܽ"ሬሬሬԦሺ0ሻ൰ ൌ ߜ ൭݂ ቆΓ ൬ܽ"ሬሬሬԦሺݐሻ൰ቇ , ܲሺݐ െ ሻ൱ݓ ;          
end 
Fig. 4. Pseudo code of ܣܩݏ algorithm 

3.2 Theorems and definitions needed 
Definition 2.1  
The directional derivatives of f(x, y) at the point (a, b) and in the direction of the unit vector u ൌ ,uଵۃ uଶۄ is given  by  

  D୳fሺa, bሻ ൌ lim୦՜ ሺୟା୦୳భ,ୠା୦୳మሻିሺୟ,ୠሻ୦    (6) 
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provided the limit exists. 
Theorem 2.1 
Suppose that f is differentiable at (a, b) and u ൌ ,uଵۃ uଶۄ  is any unit vector. Then we can write  

 D୳fሺxa, bሻ ൌ f୶ሺa, bሻ  f୷ሺa, bሻ (7) 
 

Clearly 2.1  
For convenience, we define the gradient of a function to be vector –valued function whose 
component are the first –order partial derivatives of f . we denote the gradient of a function f 
by grad  of f or f read "del f" and define by the given theorem . 
Theorem 2.2 
If f is a differentiable function of x and y and u is any unit vector, then 

,ݔ௨݂ሺܦ  ሻݕ ൌ ,ݔሺ݂ߘ .ሻݕ u (8) 

Clearly 2.2  
This theorem clear how to compute directional derivatives. Further, writing directional 
derivatives  as  a dot products. This theorem generalized to vector valued   ܨ: ܴ௫ଵ ՜ ܴ௫ଵ. 
Theorem 2.3 
Suppose that f is differentiable function of x and y at the point ሺܽ, ܾሻ. Then   
i. the maximum rate of change of f at  ሺܽ, ܾሻ is ԡfሺa, bሻԡ and occurs in the direction . 
ii. of the gradient,     ݑ ൌ ఇሺ,ሻԡఇሺ,ሻԡ the minimum rate of change of f at (a, b) is  െԡ݂ߘሺܽ, ܾሻԡ 

and occurs in the direction  opposite the gradient u ൌ െ  .ሺୟ,ୠሻԡሺୟ,ୠሻԡ
iii. the gradient fሺa, bሻ is orthogonal to the level curve fሺx,y)=c at the point (a ,b), where  

c=f(a, b). 
Definition 2.2 
We call f(a, b) a local maximum of f if there is an open disk R centred at (a, b), for which      fሺa, bሻ  fሺx, yሻ for ሺx, yሻ א R. Similarly , f(a, b) is called a local minimum of f if there is an 
open disk cantered at (a, b), for which fሺa, bሻ  fሺx, yሻ for ሺx, yሻ א R. In either case f(a, b) is 
called a local extreme of f. 
Theorem 2.4 
suppose that f(x,y) has continuous second order partial derivatives in some open disk 
containing the point (a ,b) and that f୶ሺa, bሻ ൌ f୷ሺa, bሻ ൌ 0. Define the discriminant D for the 
point ሺܽ, ܾሻ by  

 Dሺa, bሻ ൌ f୶୶ሺa, bሻf୷୷ െ ሾf୶୷ሺa, bሻሿଶ (9) 
  if ܦሺܽ, ܾሻ  0 and f୶୶ሺa, bሻ  0, then f has a local minimum at ሺܽ, ܾሻ. 

        ሺ݅݅ሻ if ܦሺܽ, ܾሻ  0 and f୶୶ሺa, bሻ ൏ 0, then f has a local maximum at ሺܽ, ܾሻ. 
        ሺ݅݅݅ሻ  if ܦሺܽ, ܾሻ ൏ 0 , then f has a saddle point  at ሺܽ, ܾሻ. 
        ሺ݅ݒሻ if ܦሺܽ, ܾሻ ൌ 0, then no conclusion can be drawn. 

4. Local search 
The local search operator looks for the best solution starting at a previously selected point, 
in this case a solution in the ܣܩݏ population. For this application, the steepest descent 
method was chosen as the local search operator. This method moves along the direction of 
the steepest gradient until an improved point found, from which a new local search starts. 
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The algorithm ends when no new relationship shown point can found (this is equivalent to a 
gradient equal to zero).  
For functions with multiple local optimum, the method find one local optima but it is not 
guaranteed to find the global minimum. For geometric with conical shape, for example, the 
method finds the local optimum in one local search starting from any point in side the basin 
of attraction. For other geometries, the local search operator required more than one 
iteration to achieve the solution. 

4.1 Descent method 
Cauchy (1847), Kantorovich (1940-1945), Leven berg (1944), and Curry (1944) are the 
originators of the gradient strategy, which started life as a method of solving equations and 
systems of equations. It first referred to as aid to solving variation problems by Hadamard 
(1908) and Courant (1943). This variant of the basic strategy, known under the name optimum 
gradient method, or method of 'steepest descent'. Theoretical investigations of convergence 
and rate of convergence of the method can be found e.g. in Akaike (1960),Goldstein (1962), 
Ostrowski (1967), Zangwill(1969) and Wolfe(1969,1970,1971)[6] The  general rule of steepest 
descent where used to find optimal solutions of nonlinear problems is 

  xሺ୩ାଵሻ ൌ xሺ୩ሻ  α୩d୩    (10) 

Where d୩ is an a suitably chosen direction and α୩ is a positive parameters (called step-size) 
that measures the step along the direction d୩. This direction is a descent direction if   d୩Tf൫x୩൯ ൏ ൫x୩൯݂ߘ  ݂݅        0 ് 0 

 d୩ ൌ 0                 if      f൫x୩൯ ൌ 0  (11) 

4.1.1 Steepest descent algorithm 
To approximate a solution p to the minimization problem    Gሺpሻ ൌ min୶אR Gሺxሻ 
Given an initial approximation x: 
Step 1.  set k ൌ 1 
Step 2. While ሺk  Nሻ do steps ( 3-8 ) 
Step 3.  Set  gଵ ൌ Gሺxଵ, … , x୬ሻ  //  note: gଵ ൌ G൫x୩൯; 

         z ൌ ,Gሺxଵ … , x୬ሻ // note: z ൌ  ;G൫xሺ୩ሻ൯
         z ൌ ||z||ଶ 

Step 4. if z ൌ 0 then output ("zero Gradient'') Output (xଵ, … , x୬, gଵሻ//[Procedure 
completed may have minimum check further]  

Step 5. choose δ s.t 
  g ൌ min ሺGሺx  δzሻ 
 Step 6.  Set x ൌ x  δz 
 Step 7. if |g െ gଵ| ൏  then  ݈ܶ
                output ሺxଵ, … , x୬, gଵሻ//    [ Procedure completed successfully ]  
               Stop 
 Step 8. set k=k+1; 
 Step 9. Output ('Minimum Iterations Exceeded') //   ( Procedure completed unsuccessfully )  
               Stop 

Fig. 5. Pseudo code of gradient algorithm 
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4.2 Hybrid genetic algorithm 
In this section we define a hybrid of ܣܩݏ with gradient method and we denoted as (HGA1) A 
hybrid genetic algorithm (HGA) is the coupling of two processes: the simple ܣܩ and a local 
search algorithm. The local search part of the algorithm was problem specific and  designed 
using trial-and-error experimentation without generalization or analysis of the characteristics 
of the algorithm with respect to convergence and reliability. The HGA algorithm is a standard, 
which combines an ܣܩݏ with local search. The local search step defined by three basic 
parameters: frequency of local search, probability of local search, and number of local search 
iterations. The first element for the definition of the algorithm is the frequency of local search, 
which is the switch between global and local search. In the ܣܩܪ algorithm, this switch 
performed every "G!" global search generations, where "G!" is a constant number called the 
local search frequency. The second element of the algorithm is the probability of local search P, 
which is the probability that local search will be performed on each member of the ܣܩݏ 
population in each generation where local search is invoked. This probability is constant and 
defined before the application of the algorithm. Finally, each time local search is performed, it 
is performed a constant number of local search iterations before local search is halted. 

4.2.1 Basic elements 
4.2.1.1 Genetic algorithm 
Three basic operators define the simple Genetic Algorithm (ܣܩݏ): binary tournament selection, 
single point crossover, elitism, and simple mutation. Through the successive application of 
these three operators, an initial population of solutions evolved into a highly fit population. 
4.2.1.2 Local search 
The local search operator looks for the best solution starting at a previously selected point, 
in this case a solution in the SGA population. For this application, the steepest descent 
method was chosen as the local search operator. This method moves along the direction of 
the steepest gradient until an improved point found, from which a new local search starts.  
The algorithm ends when no new relationship shown point can found (this is equivalent to a 
gradient equal to zero) and this satisfied in our formula adaptation [10].  

4.3 Hybrid genetic algorithm with local search algorithm  
A hybrid genetic algorithm (HGA) is the coupling of two processes: the ܣܩݏ and a local search 
algorithm. The local search part of the algorithm was problem specific and was designed using 
trial-and-error experimentation without generalization or analysis of the characteristics of the 
algorithm with respect to convergence and reliability. It is defined by three basic parameters: 
frequency of local search, probability of local search, and number of local search iterations. The 
first element for the definition of the algorithm is the frequency of local search, which is the 
switch between global and local search. In the HGA1 algorithm, this switch performed every 
"G!" global search generations, where "G!" is a constant number called the local search 
frequency. For example, if G!=3, local search would perform every 3 generations during the ܣܩݏ. The second element of the algorithm is the probability of local search P, which is the 
probability that local search will be performed on each member of the ܣܩݏ population in each 
generation where local search is invoked. This probability is constant and defined before the 
application of the algorithm. Finally, each time local search performed; it performed for a 
constant number of local search iterations before local search halted. 
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4.3.1 Conceptual algorithm of  
The coupling approach in this paper consist in the introduction of generation interval for 
hybrid activation operator (HAO).Through selection, crossover, and mutation operators, the 
canonical ܣܩݏ works on population of bit string encoding scheme generation by generation. 
When HAO is active (again implemented here every G? generation), the intermediate 
generation created by GA is fed into an adopted selection strategy which select 
subpopulation, usually of small size. Then each binary string individual in this 
subpopulation is convert into a real number vector, to be the initial value of  steepest 
descent (ܣܦݏ) algorithm that operate on this subpopulation for fixed small of generation. 
The vectors converted back into bit string values to manipulate again by master GA, ܣܦݏ 
used here in this hybridization as a tool operates in small number of generation fashion in 
an order to enhance the selected points driven from the master GA. It is appropriate that the 
version of ܣܦݏ tools to be of preservative survivor property to have worthy adjustment. The  
conceptual algorithm of the (HGA) given by the following steps: 
 Input: sample size, number of generation, .. Output  approximate value    Step1: Initialize GAሺgenerate Initial population of parametersሻ. Step2.1: for t ൌ 1to number of generation Do  Step2.2: for I ൌ 1: population size Do  The canonical genetic algorithm ሺsGAሻ operators:  Step2.2.1: Local Recombination, Step2.2.2: Mutation, Step2.2.3 Selection, Step3: Binary coded sGA individual remapped in to real vector individual.  Step4.1: Select ൬13 of population size  ൰   use as initial solution  of sDA  perform for each generation Step4.2. Start local search evaluation// Starting of Steepest Descent Algorithm ሺsDAሻ. Step4.3. : Real _coded local search algorithm individual remapped in to binary vector individual.  Step5. Repeat steps until all of generation complete or termination criterion is satisfied. Step6: end   
Fig. 6. Pseudo code of HGA algorithm 

5. ሺࣆା,  ሻ-Evolution strategiesࣅ
H.-P. Schwefel proposed the multi-member evolution strategies, the so-called ሺߤା,  ሻ-ES. Inߣ
their most general form, these strategies are described in the coming subsections. 

5.1 Representation and fitness evaluation 
An individual Ԧܽ ൌ ሺݔԦ, ,ାߤin ሺ ܫԦሻ߳ߪ Ԧܴ߳ା: A vector of step length or standard deviations ሺ1ߪ .Ԧܴ߳: The vector of object variablesݔ :ሻ-ES can consist of the components (Robert, Roland, 2002)ߣ  ݊ఙ  ݊ሻ of the normal 
distribution. The strategy parameter ߪԦ (also called the internal model) determines the 
variances of the n-dimensional normal distribution, which is used for exploring the search 
space. The user of an evolution strategy, depending on his feeling about the degree of 
freedom required, can vary the amount of strategy parameters attached to an individual. As 
a rule of thumb, the global search reliability increases at the cost of computing time when 
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the number of strategy parameters is increased. The setting most commonly used which 
form the extreme cases are:  
•  ݊ఙ ൌ 1 : (Uncorrelated mutation with one single standard deviation controlling 

mutation of all components of ݔԦ ). 
• ݊ఙ ൌ ݊: (Standard mutations with individual step sizes ߪଵ, . . ,   controlling mutation ofߪ

the corresponding object variables ݔ individually). The only part of Ԧܽ  entering the 
objective function evaluation is ݔԦ, and the fitness of an individual ߶ሺ Ԧܽሻ is identical to its 
objective function value ݂ሺݔԦሻ, i.e. ሺ߶ሺݔԦሻ ൌ ݂ሺݔԦሻ). 

5.2 Mutation operator 
The generalized structure of ሺࣆା,  ሻ-ES  mutation operator consists of the addition of aࣅ
normally distributed random number to each component of the object variable vector, 
corresponding to a step in the search space. The variance of the step-size distribution is itself 
subject to mutation as a strategy variable. Formally speaking, mutation operator ሼ࣎, :ሽ࣎ ࡵ ՜  is defined as follows [5]  ,ࡵ

 ݉ሼ߬, ߬ሽሺ Ԧܽሻ ൌ ݉௫ሺݔԦሻ ל ݉ఙሺߪԦሻ ൌ ሺݔԦᇱ,  Ԧᇱሻ   (13)ߪ

Which proceeds by first mutating the strategy parameters  ࣌ሬሬԦ:  ࣌: ࣌ାࡾ ՜  ;࣌ାࡾ

  ݉ఙሺߪԦሻ ൌ Ԧᇱߪ ൌ ሺߪଵ expሺݖଵ  ሻݖ , … , ߪ exp൫ݖ   ሻ൯  (14)ݖ

Where ݖ~ܰሺ0, ߬ଶሻ, ,~ܰሺ0ݖ ߬ଶሻ     ݅ א ሼ1, … . , ݊ఙሽ To prevent standard deviations from 
becoming practically zero, a minimal value of ߝఙis algorithmically enforced for all ߪ. 
Secondly, modifying ݔԦ according to the new set of strategy parameters obtained from  
mutating ߪԦ: ݉ఞ: ܴ ՜ ܴ 

 ݉௫ሺݔԦሻ ൌ ᇱሬሬሬԦݔ ൌ ሺݔଵ  ,ଵݖ … , ݔ   ሻ  (15)ݖ

5.3 Recombination operators 
In ሺߤା,  ሻ-ES, different recombination mechanisms are used in either local form, producingߣ
one new individual from two randomly selected parent individuals, or in global form, 
allowing components to be taken for new individual from potentially all individuals 
available in the parent population. Furthermore, recombination is performed on strategy 
parameters as well as the object variables, and the recombination type may be different for 
object variables, and standard deviations. 
Depending on the recombination types [4][6]: 
 
 

ܴ݁ܿ  = 
 

0 No recombination 
1 Discrete recombination of pair of parents 
2 Intermediate recombination of pair of parents                                    (16) 
3 Discrete recombination of all parents 
4 Intermediate recombination of parents  in pairs  

 

Sometimes, the choice of a useful recombination operator for a particular optimization 
problem is relatively difficult and requires performing some experiments [2].The rules of 
recombination operator ݎ: ఓܫ ՜ ,௫ܿ݁ݎሼݎ   ,for creating an individual ܫ ఙሽሺܲሻܿ݁ݎ ൌ ܽᇱሬሬሬԦ ൌ
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Likelihood ARMA Model Function and Many of Problems 231 ሺݔᇱሬሬሬԦ, ᇱሬሬሬԦሻߪ א  of a pre-selected parent individuals and the part of (Ԧߪ Ԧ orݔ i.e., either) are given respectively by referring to arbitrary vectors ሬܾԦ and ܾᇱሬሬሬԦ where ሬܾԦ and ܾᇱሬሬሬԦdenote here the part ,ܫ
an offspring vector receptively. Each of ሬܾԦ and ܾᇱሬሬሬԦ are of length ݉ א ሼ݊, ݊ణఙሽ,݅ א ሼ1, … , ݉ሽ  
 

ܾᇱ= 

ܾ ݂݅ ܿ݁ݎ ൌ 0ܾఞభ, ఞమ,ܾ ݎ  ݂݅ ܿ݁ݎ ൌ 1 ൫ܾఞభ,   ܾఞమ,൯. 0.5 ݂݅ ܿ݁ݎ ൌ 2                                                   (17) ܾఞయ, ݂݅ ܿ݁ݎ ൌ 3 ൫ܾఞయ,   ܾఞర,൯. 0.5 ݂݅ ܿ݁ݎ ൌ 4 
 

Where ߯ଵ, ߯ଶ~ܷሺሼ1, … , ,ሽfor each offspring, and ߯ଷߤ ߯ସ~ܷሺሼ1, … ,  .݅ ሽ for eachߤ
5.4 Selection operator 
There are two main classifications for selection according to the survival property of the 
parents [6]: 
Extinctive_ ሺߤ, :ܵ.ሻ strategy; where parents live for a single generation onlyߣ ఒܫ ՜ ఓ  ܵሺܲሻܫ ൌ ܲᇱ where |ܲ| ൌ |ᇱܲ| & ߣ ൌ ᇱሬሬሬԦܽ   & ,ߤ א ܲᇱ: Ԧܽ  א ܲ െ ܲᇱ: ݂ሺݔԦሻ  ݂ሺݔᇱሬሬሬԦሻ        
Preservative_ሺߤ   ሻ strategy; where selection operates on the joined set of parents andߣ
offspring, i.e., very fit individuals may survive indefinitely: ܵ: ఓାఒܫ ՜ ఓ      ܵሺܲሻܫ ൌ ܲᇱ where |ܲ| ൌ ߤ  |ᇱܲ| & ,ߣ ൌ ᇱሬሬሬԦܽ  and , ,ߤ א ܲᇱ: Ԧܽ  א ܲ െ ܲᇱ: ݂ሺݔԦሻ  ݂ሺݔᇱሬሬሬԦሻ   
The ratio ߤ ൗߣ  is known as selection pressure. In the choice of ߤ and ߣ, there is no need to 
ensure that ߣ is exactly divisible by ߤ. The association of offspring to parents is made by a 
random selection of evenly distributed random integers from the range ሾ1,  ሿ. It is onlyߤ
necessary that ߣ exceeds ߤ by a sufficient margin that on average at least one offspring can 
be better than its parent. Hoffeister and Bäck in [7] have stated that ߤ ൗߣ ൎ ଵ  are tuned for a 
maximum rate of convergence, and as a result tend to reduce their genetic variability, i.e., 
the number of different alleles (specific parameter setting) in a population, as soon as they 
are attracted by some local optimum.  

6. Cross- fertilization space of conical GAS and Standard Variant ሺૄା, ૃሻ-ES 
The coupling approach followed in this section consists in the introduction of generation 
interval for hybrid activation operator(HAO). Through selection , crossover, and mutation 
operators, the simple GA works on population of bit string encoding scheme generation by 
generation. When HAO is active ( implemented for every G? generation ), the intermediate 
generation created  by ܣܩݏ is fed into adopted selection strategy which select ub population, 
usually of small size. Then each binary string individual in this subpopulation is converted 
in to a real number vector , to be the parents of the first generation of ES tool that operate on 
this subpopulation for a fixed small number of generations. The vectors are converted back 
in to bit string values to be manipulated a gain by the master ܣܩ. As ܵܧ is used here in this 
hybridization as a tool operator in a small number of generation fashion in an order to 
enhance the selected point  driven from the master ܣܩ, then it is appropriate that the version 
of the ES too is to be of preservative survivor property to have worthy adjustment i.e., a  ሺߤା,  .ሻ-ES is usedߣ
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t=0; {is the generation number} 
ls=tmax            {is the HAO age} 
Initialize         ܲሺ0ሻ ൌ ሼ Ԧܽଵሺ0ሻ, … , Ԧܽఓሺ0ሻሽ߳ܫఓ      Where  ܫ ൌ ሼ0,1ሽ      
where I א ሼ0,1ሽ୪; 
Evaluate    ܲሺ0ሻ ൌ ሼΦሺ Ԧܽଵሺ0ሻሻ, … , Φሺ Ԧܽఓሺ0ሻሻሽ߳ܫఓ     

where Φ൫a୩ሬሬሬሬԦሺ0ሻ൯ ൌ δ ൬f ቀΓ൫aሬԦ୩ሺ0ሻ൯ቁ , Pሺ0ሻ൰ ; 
while (τሺPሺtሻሻ ് trueሻ do {while termination criterion not fulfilled} 
recombine:  aሬԦ"୩ሺtሻ ൌ rሼpୡሽ൫Pሺtሻ൯              k א ሼ1, … . , µሽ; 
mutate: aሬԦ"୩ሺtሻ ൌ mሼp୫ሽ൫aሬԦ୩ሺtሻ൯              k א ሼ1, … . , µሽ; 
evaluate P"ሺtሻ ൌ ሼaሬԦ"୩ሺtሻ, … aሬԦ"µሺtሻሽ: ሼΦሺaሬԦ"୩ሺtሻሻ, … ΦሺaሬԦ"µሺtሻሻሽ: 
where ΦሺaሬሬሬԦ"୩ሺtሻሻ ൌ  δሺfሺΓሺa"ሬሬሬԦ୩ሺtሻሻሻ, ሺPሺt െ wሻሻ; if ሺls  ܹܣܪ ݀݊ܽ 0 ൌ  ሻdo ሼif HAO still live and active݁ݑݎݐ
Select :Pୱ୳ୠ െ popሺtሻ ൌ ሼbሬԦଵሺtሻ, … bሬԦµଵሺtሻሽ א Iµ 
Where I ൌ R୬ା୬౩౦  and bሬԦ୩ሺtሻ ൌ ሺx୧, σ୨    i א ሼ1 … nሽj א ሼ1, … nሽ; 
{binary _coded GA individual is remapped in to (µ  λሻ െ ESሽ 
{real vector individual} 
For tµାሻିES ൌ 1 to      t୫ୟ୶ _ሺµାሻିES {do tmax sexual propagation 
Recombine : b"ሬሬሬԦ୩ሺtሻ ൌ rሼrec୶, recሽ൫Pሺtሻ൯               k א ሼ1, … , λሽ; 
Mutate: b"ሬሬሬԦ୩൫tሺµାሻES൯ ൌ mሼதబ,தሽ ቆbሖሬԦ ቀtµభାభሻESቁቇ         k א ሼ1, … , λሽ Evaluate : P" ቀtሺµାሻESቁ ൌ ቄb"ሬሬሬԦଵሺtሺµଵାଵሻ െ ESቁ , … , ቄb"ሬሬሬԦଵሺtሺµଵାଵሻ െ ESቁሽ; ൜Φ ቀb"ሬሬሬԦଵtሺµଵାଵሻ െ ESቁ൰ , … , Φሺb"ሬሬሬԦଵtሺµଵାଵሻ െ ESሻሻሽ  
Where Φ ቀb"ሬሬሬԦଵtሺµଵାଵሻ െ ESቁ ൌ f ቀx"ሬሬሬԦଵtሺµଵାଵሻ െ ESቁ ; 
Select: P൫tሺµଵାଵሻ െ ESାଵ൯ ൌ SሺP൫tሺµଵାଵሻିESశభ   P"ሺtሺµଵାଵሻିESశభ൯ 
End ሺµ1  λ1ሻ െ ES generation loop 
Evaluate  P"ሺtሻ ൌ ቀP"ሺtሻ െ Pୱ୳ୠି୮୭୮ሺtሻቁ  ሺP୲ౣ౮ _ሺµభశಓభሻషESሻ ൌ ሼa"ሬሬሬԦଵሺtሻ, … , a"ሬሬሬԦµሺtሻሽ א Iµ 
Where I ൌ ሼ0,1ሽ୪ 
and Φ ቀa"ሬሬሬԦଵሺtሻቁ ൌ δ ൭f ቆΓ ൬a"ሬሬሬԦଵሺtሻ൰ቇ , Pሺt െ wሻ൱ ; re-evaluate fitness 

end 
Select Pሺt  1ሻ ൌ SሺP"ሻሻԖIµ ls ൌ ls െ 1; when ls=0 then the loop is turned  into pure GA phase  t ൌ t  1 
end  
 
 
Fig. 7. Conceptual algorithm of HGA2 ( hybrid Genetic algorithm with multimember 
evolution strategy) 
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7.2 Test functions 
In order to evaluate the behaviours of hybrid genetic algorithms, a set of test problem have 
been carefully selected to illustrate the performance of the algorithms and to indicate that it 
has been successful in practice. The nine test functions, which is classifies as multimodal or 
unimodel function; these function given with more details in section below. 

7.3 Simulations 
Multi- functions used as a test functions classified as unimodel and multi model it is 
deployed to verify the proposed hybrid genetic algorithms. The firs test function is likely 
hood function of ARMA(1,1) model, this function classifies as a unimodel the simulating 
experiment described in the following. 

7.3.1 ۴: Test function / Likelihood function  
The likelihood function is one of fundamental importance in estimation theory. This principle 
says that the data has to tell us about the parameters contained in the likelihood function, all 
other aspects of the data being irrelevant. In moderate and large samples, the likelihood 
function will be unimodel and can be adequately approximated over a sufficiently extensive 
region near the maximum by a quadratic function. Hence, in these cases   the log-likelihood 
function can be described by its maximum and its second derivatives at the maximum. The 
values of parameters which maximize the likelihood function, or equivalently the log-
likelihood function, are called maximum likelihood (ML) estimates. The second derivatives of 
the log –likelihood provide measurers of “spread” of the likelihood function and can be used 
to calculate approximate standard errors for the estimates [  ]. 
Now, to study the likelihood function of ܣܯܴܣሺ1,1ሻ let as suppose the ܰ ൌ ݊  ݀ original 
observations ܼ from a time series which can be denoted by Zିୢାଵ, . . , ZZଵ, Zଶ, . . , Z୬ 
we assume that this series is generated by an   ܣܯܴܣሺ1,1ሻ model. From these observations, 
we can generate a series w of n ൌ N െ d differencesݓଵ, ,ଶݓ . . , ௧ݓ , whereݓ ൌ  ௧. Theݖௗ
stationary mixed ܣܯܴܣሺ1,1ሻ model in eq.7 may be written as [2]: 

 ܽ௧ ൌ ௧ݓ െ ߶ଵݓ௧ିଵ   ଵܽ௧ିଵ  (18)ߠ

Whereܧሺݓ௧ሻ ൌ 0. Suppose that ሼܽ௧ሽ has the normal distribution with zero mean and 
constant variance equal to σୟ౪ଶ , then the likelihood function can get as follows [2]: 

ܮ  ൌ ሺ2ߪߨଶሻషమ ሺଵ,ଵሻ|భమexp ሺି௦ሺథభ,ఏభሻଶఙమೌܯ|   (19) 

Where  ܯሺଵ,ଵሻ ൌ ݎܽݒ െ ,ሺ߶ଵݒܿ ଵሻߠ ൌ ,ଵሺ߶ଵିܫ  ଵሻߠ

 ൌ ଵூሺథభ,ఏభሻ ݆ܽ݀ሺܫሺ߶ଵ,  ଵሻሻ  (20)ߠ

,ሺ߶ଵܫ  ଵሻߠ ൌ ఙమೌ  ఙమೌଵିథభమ ఙమೌଵିథభఏభఙమೌଵିథభఏభ ఙమೌଵିఏభమ
  (21) 

then the log- likelihood function is:  

 lnሺLሻ ൌ െ ୬ଶ ሺ2πσୟሻ  ଵଶ ln൫หMሺଵ,ଵሻห൯ െ Sሺமభ,భሻଶమ    (22) 
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where: 

 ܵሺ߶ଵ, ଵሻߠ ൌ ∑ ሺܽ௧|߶ଵ, ,ଵߠ ሻଶ௧ୀିஶݓ    (23) 

is the sum squares errors,݊  is the sample size, and ሾܽ௧|߶ଵ, ,ଵߠ ሿݓ ൌ ,ሺሾܽ௧|߶ଵܧ ,ଵߠ   ሿሻݓ
denotes the expectation of ܽ௧  conditional on߶ଵ,  Sum squares errors can be found  .ݓ ଵ andߠ
by unconditional calculation of the ሾܽሿԢݏ  are computed recursively by taking conditional 
expectations in eq.13. A back-calculation provides the values ൣିݓ൧, ݆ ൌ 0,1,2, .. 
This back-forecasting needed to start off the forward recursion.  
For moderate and large values of n in eq.17 is dominated by ܵሺ߶ଵ,  ଶ  and thus theߪଵሻ/2ߠ
contours of the unconditional sum squares function in the space of the parameters ሺ߶ଵ,  ଵሻߠ
are very nearly contours of likelihood and of log likelihood . It follows, in particular, that the 
parameter estimates obtained by minimizing the sum of squares in eq.17, called least square 
estimates will usually provide very close approximation to the (maximum likelihood 
estimator). 
7.3.1.1 Drive formula of gradient of likelihood function  
These section, we try to drive general form of steepest descent to estimate  ܣܯܴܣሺ1,1ሻ 
model parameters, ܣܦݏ is an iterative strategy  depends on the following rule for numerical  
computation: 

 β୧ିଵכ ൌ β୧ିଵ െ kഥeଶ  (24) 

Where ߚିଵ  Parameter model ݇ Constant value depend ഥ݁ଶ is the gradient which approximate by ഥeଶ ൌ ሾபୣమபஒభ , பୣమபஒమ , … , பୣమபஒౣሿ                              
we can see that the  estimation of parameters depend on iterative algorithm  which start 
with initial value ߚ   (get by one of traditional  estimation methods) this algorithm continue 
in modified these estimators even we get the value which don’t have change in values 

ܧܵܯܨ  ൌ ∑ ሺ௭ି௭̂ሻమసభିଵ   (25) 

where ݖ௧, actual value of observed time series; ̂ݖ௧  predicted value of actual value. 
We know,  ARMA(1,1) model form is 

௧ݖ  ൌ ߶ଵ௧ݖ௧ିଵ  ܽ௧ െ  ଵ௧ܽ௧ିଵ   (26)ߠ

Where ܽ௧s are a random variable with standard normal density function known as random 
shock term. 
then 

 ܽ௧ଶ ൌ ሺݖ௧ െ ߶ଵ௧ݓ௧ିଵ   ଵ௧ܽ௧ିଵሻଶ  (27)ߠ

ሺ ∂a୲ଶ∂Ԅଵ୲ ൌ െ2a୲z୲ିଵ, ∂a୲ଶ∂θଵ୲ ൌ െ2a୲a୲ିଵሻ 

S0 

 ሾ߶ଵ௧כ , כଵ௧ߠ ሿ ൌ ሾ߶ଵ௧  2݇a୲z୲ିଵ, ଵ௧ߠ െ 2݇ܽ௧ܽ௧ିଵሿ  (28) 
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The value of k gets as follows 

 ܽ௧ ൌ ௧ݖ െ ߶ଵ௧ݓ௧ିଵ   ଵ௧ܽ௧ିଵ  (29)ߠ

 ܽ௧כ ൌ ௧ݖ െ ߶ଵ௧כ ௧ିଵݓ  |ଵ௧ܽ௧ିଵ  (30) |Δܽ௧ߠ ൌ |ܽ௧כ െ ܽ௧| ൌ 2݇ܽ௧ሺݖ௧ିଵଶ  ܽ௧ିଵଶ  ( 0 ൏ | ᇞ | ൏ 1      ՜ 0 ൏ 2݇ሺݖ௧ିଵଶ  ܽ௧ିଵଶ ) <1    so 

 0 ൏ ݇ ൏ ଵଶሺ௭షభమ ାషభమ ሻమ   

7.3.2 Results of likelihood function 
In order to evaluate the behaviour of ܣ , ES, SDA with ܣܩܪଵ and ܣܩܪଶ, we performed several 
experiments to test the capabilities of the methods.  The results of experiments given by the 
following the conceptual algorithm for simple genetic algorithm and hybrid genetic 
algorithms adopted for the likelihood estimator of ܣܯܴܣሺ1,1ሻ. The experimental results 
performed here are based on different sample size (i.e.݊ ൌ 25,75,125ሻ,ሺ߶ଵ, ,ଵሻ set-to ሼሺ0.8,0.6ሻߠ ሺ0.4,0.5ሻ, ሺെ0.1,0.2ሻ, ሺെ0.3, െ0.4ሻ. The random sample are generated using Box-
Muller formula which presented by using Delphi Pascal coding programming, MATLAP2008. 
All results obtained by running each experiment 5 different runs and each iterates with 150 
generations for population size 50 and averaging the resulting data for ܲ ൌ 0.75, ܲ ൌ 0.1. 
Further, the results of ሺܣܩݏ,  compared with those obtained by stepwise descent based on (ܣܩܪ
initial value computed by moment method for the same value of (parametersሻሺ߶ଵ,  ଵሻ andߠ
sample size (݊) (with 1000 runs). The comparison made based on Mean square error    

ܧܵܯ  ൌ ሺ߶ሻݎܽݒ     ݏܾܽ݅
 ݊ ߶ଵ ߠଵ 

 ܣܦܵ
best 

ܣܩݏ
best 

HGA1 
best 

 
ES 

HGA2 
best ߶ଵ ߠଵ ߶ଵ ߠଵ ߶ଵ ߠଵ ߶ଵ ߠଵ ߶ଵ ߠଵ 

25 

0.6 0.8 1.28 1.43 0.473 0.693 0.2300 0.598 0.3668 0.3631 0.01765 0.0342 
0.4 0.5 0.74 1.01 0.517 0.51 0.276 0.419 0.1703 0.0752 0.012116 0.0312 
-0.1 0.2 0.49 0.29 0.191 0.156 0.1 02 0.139 0.1454 0.2404 0.09456 0.0104 
-0.3 -0.4 0.55 0.95 0.393 0.436 0.182 0.421 0.1351 0.2295 0.01023 0.0353 

75 

0.6 0.8 1.27 1.34 0.415 0.568 0.182 0.484 0.3556 0.3520 0.01198 0.0211 
0.4 0.5 0.71 0.88 0.446 0.391 0.257 0.336 0.1701 0.0751 0.01201 0.0024 
-0.1 0.2 0.21 0.15 0.157 0.154 0.054 0.093 0.1437 0.2374 0.0012 0.0065 
-0..3 -0.4 0.52 0.715 0.381 0.325 0.159 0.317 0.1336 0.2272 0.00543 0.0012 

125 

0.6 0.8 1.23 1.32 0.324 0.546 0.139 0.462 0.1803 0.0584 0.00156 0.0011 
0.4 0.5 0.66 0.87 0.186 0.342 0.108 0.3106 0.169 0.0746 0.009 0.0013 
-0.1 0.2 0.27 0.1237 0.137 0.136 0.031 0.0 35 0.1451 0.2401 0.0023 0.0015 
-0..3 -0.4 0.432 0.52 0.121 0.306 0.013 `0.213 0.1337 0.2274 0.00161 0.0010 

             

Table 1. Comparisons among ( GA,ES,SDA, HGA1,HGA2) algorithm based on MSE of best 
estimator after averaging 5 runs. 
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Results given in Fig. 7.and table(1).The experiments on a set of data give some impressions 
of the behaviours of ሺܣܩݏ,  are smaller than   ܣܩܪ of ܧܵܯ ,As one can see that .ܣܦݏ and  (ܣܩܪ
those of steepest descent (ܣܦݏ). This indicates that ܣܩܪ is more reliable than  ܣܩܪ and ܣܦݏ 
to give estimator of the parameters of the model under study. Moreover, one can see that 
value of ܧܵܯ decreases as the sample size increase. For ሺܣܩݏ,  we can also see that the ܣܩܪ
value of sum square decreases when increasing the number of generation and sample size. 
In addition, the behaviour of ሺܣܩܪ when the objective function parametersሺ߶ଵ,  ଵሻ takeߠ
positive values are better than when they are negative. The HGA2 algorithm was also more 
robust than the ܣܩݏ, ES and HGA1 performing optimally across a broad range of parameter 
values. In addition  we can see the second best algorithm converge to best solution is HGA1.  
 

 
                   A1                                             A2                                               A3 
           Simple size                                  Simple size                                    Simple size 
     n=25,( ߶ଵ=.6, ,ଵ=.8)                          n=75,( ߶ଵ=.6ߠ ,ଵ=.8)                        n=125,( ߶ଵ=.6ߠ  (ଵ=.8ߠ
 

 
                    B1                                            B2                                              B3 
             Simple size                             Simple size                                Simple size 
        n=25,( ߶ଵ=-.1, ,ଵ=.2)                 n=75,( ߶ଵ=-.1ߠ ,ଵ=.2)                   n=125,( ߶ଵ=-.1ߠ  (ଵ=.2ߠ
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          n=25,( ߶ଵ=.4, ,ଵ=.5)                  n=75,( ߶ଵ=.4ߠ ,ଵ=.5)                   n=125,( ߶ଵ=.4ߠ  (ଵ=.5ߠ
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                  D1                                            D2                                              D3 
           Simple size                               Simple size                               Simple size 
    n=25,( ߶ଵ=-.3, ,ଵ=-.4)              n=75,( ߶ଵ=-.3ߠ ,ଵ=-.4)                     n=125,( ߶ଵ=-.3ߠ  (ଵ=-.4ߠ

Fig. 8. Compression Among best fitness values respect to sample size and ARMA model 
parameters getting by algorithms under study 

7.3.2 Benchmark test functions 
The reminder of test functions using the following parameterization of the algorithms 
compared are used for experimental test runs    
• Genetic Algorithm with population size ߤ ൌ 200 mutation rate  ൌ 0.1 , crossover rate  ൌ 0.75 one-point crossover , binary code, and bit string length ݈ ൌ24, this algorithm 

denoted sGA 
• Evolution strategy ((30ା, 200ሻ െ with self adaption of ݊ఙ ܵܧ ൌ ݊ standard deviation, no 

correlated mutation, local discrete recombination on object variables ܿ݁ݎ௫ ൌ 1, global 
intermediate recombination on standard deviation ܿ݁ݎఙ ൌ 4 and standard deviation 
initialize at 3.0. (30ା, 200ሻ െ was used for unimodel functions, while ሺ30,200ሻ ܵܧ െ  ܵܧ
used for multimodal  function. 

• Steepest decent Algorithm(SDA): use maximum of iteration =15; with tolerance =10-3. 
And initial size take randomly from x range .  

• Hybrid Es algorithm with the algorithm GA a master and (30+200) ES as a tool for the 
master , for unimodel function, the best fit 30 GA individual are selected to be delivered 
to the (30+200)ES tool. while for multimodal  functions, an evenly random selected 30 
GA individuals are delivered to that  ES tool.HAO is active after 3 generations of the 
cross-fertilization phase. HGA1 

• Hybrid steepest descent with genetic algorithm  Genetic Algorithm with population 
size ߤ ൌ 200 mutation rate  ൌ 0.1 , crossover rate  ൌ 0.75 one-point crossover , 
binary code, and bit string length ݈ ൌ24, this algorithm denoted sGA, use maximum of 
iteration =15; with tolerance =10-3. And initial solution take as the best individual from 
genetic algorithm for values equal  (pop_size/3) from population. All results were 
obtained by running  5 experiments per algorithm and averaging the resulting data.  ܨଶ: Test function 

Ackley Function(multi), this function is named after Ackley who invented it 

  fሺxሬԦሻ ൌ െ20eି.ଶටభ ∑ ሺ୶మሻసభ െ eభ ∑ ୡ୭ୱ ሺଶ୶ሻసభ  20  e  (31) 
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The original version was a two- dimensional function and it was later generalized to n 
dimension by Back. In this study form defined on n=2. The values of xሬԦ defined on  
[-32.0,32.0]. The global minimum is located at the origin and its value is zero. The Ackley 
function is a nonlinear multimodal function with regularly distributed local optima 
 
 

 
Fig. 9. F2 Test  function  shape. 
The results showing the ability of HGA2 to give more robust results.  Also HGA1 promise to 
give robust results  cleared  in fig.16 . 
F3: Test Function 

 fሺxଵ, xଶሻ ൌ ሾ25 െ ሺxଵ െ 5ሻଶ െ ሺxଶ െ 5ሻଶሿభమ  (32) 

With constraints   
– xଵଶ  4xଶ  04xଵ െ xଶଶ  12xଶ  58xଵ, xଶ  

ሺݔଵ, ଶሻݔ א ሾ0,7ሿଶ. 

Optimal solution get when ݔଵ,  .ଶ=5ݔ

The first set of results of this function given in table(2) for describing the ܵܣܦ algorithm 
which is depended on  experiment designed for studying the behaviour of algorithm  under 
study, where results in table (2) explained how the gradient algorithm depend on three 
operators the first one is initial values x0 generated randomly, tolerance of accuracy take 
equal to 10-3; number of iterations (determined at the begging of experiment designed equal 
to 50. from results increasing number  iterations when increasing  variation of parameter (S), 
the best results get at (5.5419,5. 7225)where maximum value is(4.9178) where S=1.691, 
number of iterations is 6. With x0 = (3.5,3). 
When applying ܣܩݏ we get the best solution get at generation 15 with X=( 4.5035, 4.8091 ) 
and F(x1,x2) = 4.9716. Hybrid of ܣܦݏ with GA gave the best results at generation 95 with 
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x = (4.9904, 4.96268) and F(x1,x2) = 4.99976 the compression among algorithms used refer to 
HGA2 And HGA1 to give more robust results with  
 
 

 
Fig. 10. F3 Test  function  shape. 

 
 

X0=(x10,x20) 

Max 
iteration 

for 5 
runs 

s x1 x2 f(x1,x2)

Min 
iteration 

for 5 
runs 

s x1 x2 f(x1,x2) 

(7 ,1) 20 2.6676 4.349 6.302 4.7834 6 2.381 4.5177 5.9647 4.8823 
(5 ,4.5) 20 2.6412 5 7.1406 4.5186 2 1.839 5 6.3387 4.8175 
(3.5,3) 38 2.4953 5.8697 6.1596 4.7853 6 1.691 5.5419 5.7225 4.9178 

(2.5,1.2) 24 2.836 5.8308 6.2628 4.766 8 2.729 5.5737 5.872 4.8898 

Table 2. Relation among number of iteration and( stepsize –s-) with initial value  
F4: Test Function 
This function with multiple basins of attraction 

 fሺx, yሻ ൌ ୢ୰మ ሺxതଵଶ െ yതଵଶሻሺ2 െ ୶തభమା୷ഥభమ୰ െ d୧         xതଵଶ  yതଵଶ  r୧ଶ  (33) 

 

with constraints  d୧ , r୧ generated randomly. The test functions given in eq.29 are multi-modal 
functions with multiple basins of attraction. The coordinates (ݔ,,  ,) are the coordinates ofݕ
the basin of attraction “i”, which has random geometry (radius and depth r୧depth d୧), The 
basins of attraction for functions are randomly distributed.  (Goldberg and Voessner, 1999) 
has conical basins of attraction represents the best case for local search, in which only one 
local search is required to find the local minimum. 
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Fig. 11. F4 Test  function  shape 

The simulation results cleared in fig.16.  
F5. Single test function 
This function is a nonlinear function with single input variable  

 ݂ሺݔሻ ൌ ݁ିଶሺଶሻሺ  ೣషబ.భ బ.ఴ ሻమ|sin ሺ5ݔߨሻ| (34) 

Where ݔ א ሾെ1,1ሿ. Actually, this simple function has several local maximum. However, there 
is only one global maximum, as shown in Fig.11. 
 

 
Fig. 12. F5 Test  function  shape 

F6: Test function 

 ݂ሺݔ, ሻݕ ൌ cos ሺݔሻଶ  sin ሺݕሻଶ  (35) xሬԦ defined in[-5,5], this function has infinite global maximum in Rଶ at points ቀ୫ଶ , nπቁ , m, n ൌ ,1ט 2ט …  
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Fig. 13. F6 Test  function  shape 
F7: Test Function 
This function known as Rosenbrock function was invented by Rosenbrock, mathematically 
defined as 

 fሺxሬԦሻ ൌ ∑ ሺ100ሺx୧ାଵ െ x୧ଶሻଶ  ሺx୧ െ 1ሻଶሻ୬ିଵ୧ୀଵ   (36) 

Where xሬԦ is an n-dimension vector located within the rangeሾെ30.0,30.0ሿ୬. the global 
optimum is located at (1,…,1) with a function value of zero. This function exhibit a 
parabolic-shaped deep valley. In the optimization literature it is considered a difficult 
problem due to the nonlinear interaction between variables [1]. 
 

 
Fig. 14. F7 Test  function  shape 
F8: Test function 
The Salmon function is rotation – invariant and was proposed by Salmon ,it is defined as 

 fሺxሬԦሻ ൌ 1 െ cosሺ2πට∑ x୧ଶሻ୬୧ୀଵ  0.1ට∑ x୧ଶ୬୧ୀଵ  (37) 

Where xሬԦ is an n-dimensional vector located within the range ሾെ100,100ሿ the global optimum 
located at the origin with a function value of zero. 
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Fig. 15. F8 Test  function  shape 
F9. Test function 
This function also known as Schaffer's function or the sine envelope sine wave. 
Mathematically define as  

 fሺxሬԦሻ ൌ 0.5  ୱ୧୬మሺඥ୶భమା୶మమሻሺଵା.ଵሺ୶భమା୶మమሻሻమ (38) 

Where xሬԦ is a two-dimension vector located within the range [ሾെ100.0,100.0ሿ୬. The global 
optimal is located at the origin with a function value equal to zero. 
 

 
Fig. 16. F9 Test  function  shape 
F10 :  Esom function 
This function was proposed by Easom to evaluate global optimization techniques. It is n-
dimensional function with single minimum  that is also the global optimum. The 
mathematical expression of this function is 

 ݂ሺݔԦሻ ൌ െ ∏ cos ሺݔሻୀଵ . ݁ି ∑ ሺ௫ିగሻమసభ  (39) 
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Fig. 17. F9 Test  function  shape 
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F8 Test Function Comparison    F9 Test Function Comparison    F10 Test Function Comparison 

Fig. 18. Compression among   fitness values respect to number of  generations for 
benchmark test functions 

7.3.3 General results getting from designing experiments  
According to the results presented above, a general trend will be drawn about the course of 
actions of the competent algorithms. Results show that sGA alone with its bit level crossover 
and mutation operators can act as a heuristic for exploration with somewhat little emphasis 
on search focus. 
Sample  GA showed to be trapped by local plateaus. One could return this behavior to the 
main distinguished operator of the master GA, the one point crossover operator. one can 
easily see that the canonical GA is the slowest of the algorithms under study. The behavior 
of GA is almost identical on all the unimodel functions. 
The collective nature of GA tournament selection, one point crossover, and mutation 
operators give a clear demonstration of its missing emphasis on the convergence and local 
optimization. On the other hand , the ES with self adaption of ݊ఙ ൌ ݊ standard deviation is , 
on overall, the faster by far and its results are superior to that obtained from (GA,HGA1). 
The combination of self-adaption , recombination , and relatively strong selective pressure 
as used in ܵܧ algorithm. The nature of the preservative survival of the best individual  
implied by the plus selection strategy. Also, the self adaption role of the strategy parameters 
through intermediate recombination and mutation is shown to be fascinating. Even if all the 
parents start with equal ߪ ൌ ߪ ൌ ݅ 3.0 ൌ 1, … , ݊ఙ, and all the step length components are 
varied by a common random factor in the production of the offspring , the ߪ of all 
individuals will differ from each other in the subsequent generations through self adaption. 
So in this way a better combination affords a higher chance of survival to its bearer. It can 
therefore be expected that in the course of the optimum search, the currently best 
combination of the ሼߪ; ݅ ൌ 1, . . , ݊ఙሽprevails. 
The HGA2 reduces the speed gap between the canonical GA and standard variant ESs 
convergence , it does not  outperformed ES with both its,  variants, except for some cases . 
The deviation in convergence velocity of the HGA2 from ES variants can be attributed to the 
fact that although in the first cross-fertilization phase of HGA2, the best GA individuals are 
enhanced by the coupling EA algorithm, the  exploration power of the master GA still 
remained an order of  magnitude. A closer look is given here to compare the behavior of ES 
and HGA2 one hand , and HGA2 with HGA1,GA, SDA. comparing the results of the overall 
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hybridization established in HGA1 with the hybridization of HGA2, one could see that the 
presented results of HGA2 are more powerful than that of HGA1. 

8. Conclusions 
This chapter is devoted to global optimization algorithms, which are methods to find 
optimal solutions for given problems. It especially focuses on two major groups of 
optimization algorithms evolutionary computation by discussing evolutionary algorithms, 
genetic algorithms, evolution strategy. Second group represent by hybrid algorithms which 
are coupling simple GA with local algorithm steepest descent algorithm(HGA1) and GA 
with  self adaptive global algorithm  evolution strategy (HGA2). The results , depending on 
the standard functions presented in the test suite, it campers the performance of (sGA, ሺµା, λሻ-ES, SDA, HGA1,HGA2) algorithms. The  simulating experiments designed for sets of 
benchmark test functions classifies as unimodel and multimodal, Four unimodel functions, 
the hybridization was found to be advantageous for speeding up the performance of the 
canonical GA so the speed gap difference between the very general purpose optimizer 
algorithms as canonical GA and the specialized parametric optimization algorithm as 
multimember ES is diminished . Also, the hybridization was found to be beneficial in 
multimodal functions where convergence reliability is of interest. By taking the advantages 
of both exploration power of the GA and the exploitation power of the multimember ES, the 
HGA introduces more reliable solutions than GA or ES when worked individually. 
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1. Introduction 
The mankind achieved an astonishing technological development through centuries of 
innovation, creation and continuous improvement. The history of engineering is the 
inherent component of the civilization. Moreover, outstandingly important lessons for 
further development can be studied in the history of engineering. The investigations of the 
recent complex engineering knowledge, experience, analytical and computational tools may 
serve to explain the technical progress and facilitate the future development. For this 
purpose this chapter will present how the evolutionary algorithms can simulate the 
developing complexity of engineering reasoning that in reverse can back-trace the primitive 
origins of modern technical products. The chapter will resume the evolutionary algorithms 
as well as the evolutionary optimization and design processes based on innovative and 
creative activities with the aim to define their potentialities in discovering the evolution of 
engineering products. More so when adding to the whole process the touch of randomness 
introduced in form of mutation operator the algorithm gains the property to converge to the 
global optimum within multi-modal search space. Both of these processes crossover and 
mutation have been present in the natural evolution for eons of time. From an algorithmic 
perspective crossover and mutation enable adaptation of the population of feasible solutions 
to the imposed environment conditions of the search spaces. The chapter will concentrate on 
the multi-objective optimization problems taking for example the NSGA-II algorithm (Deb, 
2001). The result will be obtained as the population of optimal solutions distributed along the 
Pareto frontier. Using constraint domination condition and constrained tournament selection 
operator the evolution of the object under consideration will be explained. Normally 
engineering relies on the design process that is for technical purposes modelled as a set of 
cyclic activities put in a logical order to guide the procedure until the desired technical aim is 
reached. The design process is comprehensible as a shortcut to a satisfying product that is also 
in clear correlation with the formulation of an algorithm, particularly with evolutionary 
algorithm. The evolutionary methods affect design process and teach about process itself. They 
stimulate innovation and creativity during the human efforts to design and apply processes 
which are all in reality an attempt to produce an unbiased human performed heuristic search. 
The evolutionary design relies on the normal contemporary progressive engineering reasoning 
aspired with achievement of highly efficient products providing appropriate safety levels by 
employing genetic algorithms. The chapter will consider how the reverse process to the 
technical progress can reconstruct the origins of contemporary products using evolutionary 
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algorithms on engineering models in two manners. Chapter will present two examples. The 
first case study in this chapter investigates the evolution of a truss structure possibly in the 
future up to the very important engineering entity – the wheel. The second case study back-
traces the development of the stiffened shells in aerospace and shipbuilding industry to their 
primitive origins in boats originally made of carved-out log. 

2. Evolutionary Algorithms 
C. Darwin wrote that evolution begins with the inheritance of the gene variations. Inspired 
by the natural evolution in the mid 20th century the field of evolutionary computation 
emerged to its dawn and new class of algorithms was born. By the principle of the survival 
of the fittest, solution or set of solutions to given problem evolve in time using fitness - 
objective function that is, as an evolutionary guide. During the search new solutions are 
generated by reusing and mixing together pieces of the past solutions. Like with the living 
organisms – information in digital computer comprehensive manner was being exchanged 
between the most feasible solutions. Important class of evolutionary algorithms, genetic 
algorithms resembled natural evolution in the most (Yokey, 2005). Information exchange 
between solutions was done by exchanging binary number strings by crossover operators. 
Information chunk exchange was described in well known Building Block Hypothesis 
(Goldberg, 1989). Goldberg’s attempt of proving the convergence of heuristic genetic 
algorithm is in line with the mid 20th century genetics theories. It is known that information 
exchange during forming of amino acids is also linear and digital like in computers and it is 
build from chunks of information (Yokey, 2005). Since they were not calculus based 
application of such genetic algorithms was soon to be recognized as they were applied as 
general optimization problem solvers. Range of applications included combinatorics 
(scheduling, TSP problem, close packing problems), various engineering optimization 
problems (single or multy-objective optimization), neural network trainers etc. 
Evolutionary algorithms own their properties and behavior to the process that they are 
trying to mimic in order to find solution - the natural evolution of living organisms. The 
solution or the set of solutions to the given problem evolves in time from the feasible 
solution population by the principle of the survival of the fittest – selection operator, with 
the fitness function acting as the evolutionary guide. The discreteness of algorithm is 
devised from its crossover operators, which when generating new solutions, are reusing and 
mixing together pieces of the past solutions making it very useful when dealing with non 
continuous problems. Such usage of the past knowledge described by Goldberg in the 
Building Block Hypothesis (Goldberg, 1989) gives to the algorithm property to converge to 
desired better solution to a given problem, which ultimately distinguish it from the plain 
random walk algorithms. More so when adding to the whole process the touch of 
randomness introduced in the form of mutation operator, the algorithm gains the property 
to avoid the pitfalls of local optima. Both of these processes, crossover and mutation, have 
been present in the natural evolution for eons of time. From an algorithms perspective 
crossover and mutation enable adaptation of the population of feasible solutions to the 
imposed environment conditions of the search spaces. The recent 15 years have presented a 
significant number of methods and tools (Goldberg, 2002) for application in engineering. 
The general multi-objective optimization problem is tackled by the NSGA-II algorithm (Deb, 
2001) that is implemented as a dynamic-link library in C# within Microsoft .NET 
Framework 2.0. to provide a generic multi-objective solver for various optimization models 
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in engineering. NSGA-II algorithm generates populations of optimal solutions distributed 
along the Pareto frontier, using constraint domination condition and constrained 
tournament selection operator (Deb, 2001). Normally the design process is structured as a 
set of cyclic activities put in a logical order to control and guide the procedure until the 
desired aim is reached (Goldberg, 2002). 

3. Evolutionary optimization 
Evolutionary algorithms (EA) have been used as a general optimization tool for technical 
systems ranging from general single objective benchmark optimization cases, such as 
Golinski’s problem (Golinski, 1970), to multi-objective genetic algorithms (Tan, Lee&Khor, 
2002), (Deb, 2001). Evolutionary algorithms provide a solution or a set of solutions of 
optimization problems in discrete time using the fitness function and the simple prime 
mechanisms, crossover, mutation and selection. The crossover operator is in fact a great 
recombination machine that combines bits and pieces of past solutions into a new sequence. 
The binary encoded genotype in the form of binary string sequences is shuffled throughout 
the evolution. Applicability as a discrete problem solver of the genetic algorithm is a direct 
result of the crossover operator. With the introduction of a reasonably small degree of 
randomness in the form of a bit-flip mutation operator, the algorithm gains the property to 
avoid pitfalls of local optima. Both of these processes have been present in the natural 
evolution for. Crossover and mutation enable the adaptation of the feasible solution 
population to the imposed environmental conditions of the search spaces. Selection, the 
third operator, acts as a collective learning enforcer, which will ruthlessly guide the 
evolution by means of the survival of the fittest. Fitness merit is assigned after the 
evaluation of the objective function to each and every population member. The collective 
learning process and a possibility to impose the search strategy distinguish GAs from the 
plain random walk algorithms (Bäck&Fogel, 2000). The research of evolutionary 
computation-based tools for enhancing the design optimization is therefore reasonable and 
justified because real engineering design search spaces are often multimodal, full of 
discontinuities and constrained. The range of applications (Bäck&Fogel, 2000) included 
planning (scheduling, TSP problem, close packing problems), simulations (behavior 
prediction), recognition, and control (adaptation and evolvable hardware).  

4. Evolutionary design 
The design process is comprehended in this text as a shortcut to a satisfying product using 
general and personalized knowledge and experience of design modeling in order to 
accelerate the technical development which naturally should occur evolutionary in spacio-
temporal and social circumstances. The design process can be put in correlation with the 
formulation of an algorithm as an iterative problem solving procedure involving a finite 
number of steps. One could define such a procedure as a search algorithm where the search 
space itself is built on lists of requirements or design variables and constraints – the problem 
or design task formulation, and the search for the feasible solution is being conducted by 
iteration, abstraction, concretization and improvement (Goldberg, 2002). All of these four 
processes are built in core of an evolutionary algorithm. They are iterative – searching for 
solution during each new generation, abstracting – a common practice in multi-objective 
optimization where the objectives are put in order by degree of importance and evaluated 
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respectively (Bäck&Fogel, 2000), concretizing – in order not to hinder the process the 
objectives can be introduced at a desired point in evolution when solutions are evolved 
enough, improving – by evolving solutions in every generation using selection, crossover 
and mutation operators. The evolutionary methods may provide enhancement of design 
process or findings about process itself. Properties of search spaces will depend on 
complexity of the design aim and could be constrained, multimodal and full of 
discontinuities. Many applications of evolutionary algorithms in search spaces have been 
recognized (Bentley, 1999), (Golinski, 1970), (Tan, Lee&Khor, 2002). Various methods enhance 
design innovation and creativity such as Delphi method, 635 method and synectics 
(Pahl&Beitz, 1988), (Wood&Otto, 1999), or brainstorming that support an unbiased human 
search for technical solutions. The evolutionary algorithms for this purpose use the form of 
mutation operator which stochastically alters feasible solutions. It can be hypothesized that in 
order to produce innovative solutions a design process as well as the natural evolution 
should be performed without a bias. By using evolutionary design the designer is shaping 
and adjusting his designs enabling their existence in constraint bounded design space simlarly 
to the principles recurring in natural evolution. 

5. Evolution of truss structures 
In the realm of genetics, natural evolution and information theory, the problem of 
information encoding and decoding is permanently reconsidered (Yockney, 2005). A 
common point of all three mentioned researched areas is how to design a specific encoding 
of sequences carrying information, or how to decode them properly from a noisy 
environment to an error-free state. Genotype encoding and its counterpart, decoding into a 
phenotype, present a special point of interest in the evolutionary computation community 
(Goldberg, 2002) and (Bentley, 1999). Notions regarding overall convergence and 
phenomena that occur during the information exchange between chromosomes were first 
tackled in Goldberg’s famous “building-block hypothesis”. Explored further by the same 
author (Goldberg, 1989), an attempt was made to evaluate the quality of binary string 
building blocks when used in different classes of problems. Evolutionary algorithms are 
considered to be robust due to both their operators and their easy customization to suite 
different areas of application. However, to accomplish robustness specific to encoding, 
decoding and phenotype representations must be created. To found out the right answers to 
the addressed problem, evolutionary algorithms must have a good material to work with. In 
the paper, a new encoding/decoding scheme will be presented. The results point out that 
the scheme is well suited for the structural optimization of truss structures. 
The applicability of evolutionary and genetic algorithms as optimization tools is elaborated 
in the next case study. Then, a state-of-the-art overview of the truss structure optimization 
and research motivation for using advanced methods is presented. Drawbacks of each 
method, resulting from different problem approaches are also addressed. The pseudo-code 
of the proposed encoding for the 2-D continuous domain is presented.  
The aim of the research is to move away from the orthodox structural continuous optimization 
approach, where most of topology is initially fully predefined or locally constrained 
(Hasançeb, 2007), (Coello&Christiasen, 2000). In such a way, the search space is reduced, thus 
inhibiting evolution to progress towards new uncovered solutions. Such genotypes are easily 
coded because one can predict nodal inter-arrangements. They do not cover the possibilities of 
the initial randomness of the structure shape; instead, they optimize the usual truss bound 
design variables (cross-sectional area, length etc.). By contrast, a different type of coding is 



Tracing Engineering Evolution with Evolutionary Algorithms 

 

251 

proposed in the topological optimum design (TOD) (Jakiela at all, 2000), (Hamda&Schoenauer, 
2002) and (Kim&Weck, 2004). The structure is represented in a discrete domain, in the form of 
material distribution, which is a straightforward approach to the shape optimization. The 
genotype encodings are done through matrices, Voronoi representations 
(Hamda&Schoenauer, 2002), or even by using 3-D FEM building blocks. In the same manner, 
the phenotype representation then visually depicts the resulting structure. An interesting 
cantilever optimization problem has been elaborated by Kim and de Weck (Kim&Weck, 2004), 
who addressed the quality of search with the chromosomal length (Goldberg, 1989). They 
increased the domain resolution throughout the evolution course. By taking this approach, 
they (Kim&Weck, 2004) also addressed the design concretization defined in literature (Hubka, 
1992), (Pahl&Beitz, 1988) as progression from abstract to concrete through the design process 
stages. Although TOD is computationally demanding, it optimizes the structure in the form of 
the in-domain material distribution, but the other design variables, such as the cross-sectional 
area, remain predefined or out of reach. A more subtle approach using the the shape annealing 
(SA) method and shape grammars for structural optimization purposes was proposed by 
(Shea&Cagan, 1998). Shape grammars, as their linguistic fundament (Chomsky, 1957), provide 
language and in this case a design language for the structure shape manipulation. They are 
driven by a simple set of production IF-THEN rules. The evolution begins with the initial 
structural member expanding and growing slowly through the rule implementation to a 
complete structure. However, to search all possible truss structures that can be constructed 
within a search domain in order to obtain a global optimum, than the rule set must be 
adequate to enable the emergence of such solutions within a design language. So for generic 
approach, to evolve structures one should be able to evolve the rules (Gero&Louis, 1995). 
The genotype encoding and decoding should enable the search space to be as large and 
unconstrained as possible. Genotype are a collection of binary encoded nodes and the 
phenotype represented as truss structure is then defined as a result of the inter-nodal 
arrangement. Although this idea is straightforward, it has not been explored so far. The 
problem in the 2-D continuous domain is depicted in Fig. 1. 
 

 
Fig. 1. Random nodal arrangement in 2-D continuous domain - predefined nodes in 
supports and in force node  

There is no problem for the genetic operators to function properly for an ordinary binary 
encoded string, but getting a structure out of such genotype encoding posses a more serious 
difficulty.  
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There exist a number of connections between nodes as the ones presented in Fig. 1. In fact, 
the number of combination is enormous and it strongly depends on what is tried to be 
accomplished. How to connect 2-D collection of nodes (for a prototype planar collection of 
nodes see Fig. 1) with the resulting truss structure at the phenotype level is elaborated in the 
following chapter.  

5.1 Proposed coding scheme for 2-D continuous domain 
Genotype and phenotype representation coding schemes are proposed with some 
restrictions and are based on the following assumptions:  
• Firstly, the structural model is defined as a FEM model. In each evolution turn for every 

new population member the system stiffness matrix is re-assembled. In the matrix, truss 
(rod) elements are defined as a consequence of the inter-nodal arrangements. Hence, a 
new structural model is to be generated according to the current system topology. 

• Secondly, to use common knowledge in the design of truss structures and to avoid 
possible singularities of the system stiffness matrix, the system components are always 
arranged in triangular schemes (see Fig. 2). To clarify, it is a widely known fact that the 
triangle substructure presents a stiff building block common in engineering. Such a 
restriction narrows the search space and enhances the conversion of the algorithm by 
eliminating the known unfeasible and mathematically singular problems. By following 
the described procedure the result would not always be a structure bounded by a 
convex polygon. 

• And finally, there exist a number of predefined nodes. These nodes have defined 
positions in a given 2-D domain. Predefined nodes are always supports and nodes with 
force vector (see Fig. 1). The total number of fixed nodes is given by NoNx, and the total 
number of free nodes is given by NoN. 

5.1.1 Genotype encoding 
Genotype is encoded with binary strings. Nodes are coded as shown in Table 1. 
Chromosome is then represented as a collection of nodes (see Table 2.). All of the genetic 
operators are easily applicable to such coding.  
 

Nodej 
x coordinate - binary encoded string lj y coordinate - binary encoded string lj 

Table 1. Encoding of node 

 
Chromosomes 

Node1 Node2 ,…, Nodej ,…, Noden       (n = NoN+NoNx) 

Table 2. Chromosomes structures 

Crossover is made by randomly selecting a crossover point among nodes on the 
chromosomal level (see Table 2), and then by selecting another crossover point on the nodal 
level (see Table 1). Mutation is performed easily, in a bit-flip manner, directly altering the 
nodal position. 
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5.1.2 Genotype decoding and phenotype representation 
For every evaluation during the evolution, a genotype must be decoded into a phenotype. 
The algorithm for getting a phenotype, i.e. defining the rods and truss structure, based on 
the nodal positions is presented in the pseudo-code below: 
 

1 sort nodes ascending over x, if equal compare over y 
2 move to first node in chromosome j ← 0 
3 while (j < n - 2) do 
 A. if node(j).y >= node(j + 1).y  

for rod FEMs definition consider nodes(j + 1, j + 2 ,…, j + k) that are ordered 
ascending over y do 
break the search if node(j + k + 1): 
 a. is not ordered ascending over y 
 b. is second node in ascending order satisfying node(j + k + 1).y > node(j).y 
 c. j + k + 1 > n 

od 
 B. else: do the same as in A but considering the descending order of nodes 
 C. define rod FEMs between node(j) and all found nodes within A or B 
 D. move to next node j ← j + 1 
4 od 

 
The algorithm starts with all of the nodes being sorted ascending based on their x 
coordinate. From collection of nodes the first node is taken into consideration by setting 
counter j to zero (pseudo-code line 2). In the following while loop marked by number 3, the 
algorithm will search for possible ways to define FEM rod elements between considered 
node and all the nodes having greater x coordinate. Resulting structure must be triangular 
with no FEM elements intersections. Inside the loop two possibilities exist (marked with 
letters A and B); based on its position the first following node can be below or on equal 
height (A) or above the considered node j (B). Inside A all of the nodes will be ranked 
feasible for FEM definition if they do not violate the conditions inside a, b and c. Condition a 
takes into an account weather all of the following j + k + 1 nodes are in ascending order over 
y, b breaks the search if the node is the second one above the node j and c prevents the 
counter being larger the overall collection of nodes n. B takes into account situation opposite 
of A - the first following node being above node j thus considering the decreasing order over 
y. Afterwards the FEMs are defined and whole procedure is repeated for node j + 1. 
The singular conditions that occur when two or more nodes occupy same position are 
regulated with general constraints. The results of inversing the order of sorting in the way 
that the sorting is first conducted over the y and then over the x node coordinate (pseudo-
code line 1), were not explored in this paper. Besides for the reasons of common practice, the 
procedure runs first over x and then over y. On Fig. 2, a truss structure phenotype is 
depicted corresponding to the nodal arrangement already shown in Fig. 1. 
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Fig. 2. Truss structure obtained from nodal positions shown in Fig. 1 

5.2 Structural FEM model 
The structure is modeled with FEM planar trusses with 6 degrees of freedom. It is necessary 
to introduce bending to trusses and implicitly convert them into beams. The result of the 
evolution with infinite stiffness to bending will always converge to a single horizontal rod. 
Such structure would have zero displacement since it cannot bend, it would be minimal in 
mass since it is just a horizontal line. Normal forces would also be equal to zero if the force 
vector is put vertically as in Fig. 3-5. 
Respective force F and displacement δ vectors per element are given as follows: 
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The element stiffness matrix K is common (Zienkiewicz, 1971) and is given here by: 
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The vector of the nodal displacements u of the evolved structures is calculated by solving 
the usual linear equation system given by: 

{ } [ ]{ }F K u=  

5.3 Optimization model 
In this optimization case the goal is to find an optimal distribution of trusses that comprise 
truss structure for a given 2-D domain. The result will be a structure that is a result of its 
interaction with the environment - the objective function, design space conditions and 
constraints. For the reasons of simplicity a number of involved nodes are given by the user 
as a process input parameter. Since the algorithm uses fixed length chromosomes nodes 
cannot extinct during the course of evolution. 
Next, all the trusses have the same fixed cross-section area therefore significantly reducing 
the search space. These parameters will be introduced as variables in the future work. 
Finally, the optimization problem is formulated as follows: 
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The objective function is the minimization of structure mass m. 
The optimization parameters are given as follows: 
• F – force vector in vertical direction, 
• A, I, E – truss cross-section properties and material Young’s modulus, 
• NoN – number of free nodes,  
• NoNx – number of fixed nodes,  
• BC – boundary conditions – number and type of supports at particular nodes. 
Problem variables: 
• x and y coordinates of each node considered,  
• δ – absolute deflection vector, 
• l – length of respective rod. 
Constraints are defined as the maximally allowable absolute nodal deflection  δmax and the 
minimally allowable beam length lmin. The domain or design space is defined as a 2-D 
bounding box. 

5.3.1 Implementation, control parameters and evolutionary operators 
The applied genetic algorithm is a struggle genetic algorithm. Reasons for applying this 
particular GA lay in its elitist steady-state evolution. Only the best solution from the 
offspring population replaces the closest solution from the parent population if it is better. 
The distance between solutions is measured in the Euclidian objective space. The struggle 
GA manages to maintain diversity during the evolution process, thus preventing premature 
convergence. The control parameters of algorithm (Bäck&Fogel, 2000) are as follows: 
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• population size λ= 60,  
• offspring population λ = λ,  
• one point crossover probability pc = 1, 
• bit-flip mutation probability when static pm’’ = 0.02. 
Mutation operator was introduced to help guide and boost the process in order to avoid 
local optima in the early stages of evolution. In literature, there exist a number of such 
mutation approaches (Goldberg, 1989), (Bentley, 1999), (Deb, 2001) and (Bäck&Fogel, 2000). 
This one is driven by the notions from the natural evolution, where initial mutation rates 
were much higher because of the imposed environmental conditions. Bit flip mutation rate 
is a function of its initial rate pm’ = 0.1 and the number of evolution iteration N. Mutation rate 
is simply linearly scaled over a desired number of iterations by the following formula: 

    1000
1000

                         1000

m m
m

m

m

p p N p N
p

p N
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Constraint handling is done by measuring how potential solutions violate constraints. Two 
populations of feasible and unfeasible solutions were ranked accordingly; the feasible one 
sorted ascending over the objective function and the latter sorted in the same manner but 
over the violation measure. Constraint violation measure ( )( )ixΩ  (Deb, 2001) of i-th solution 
x(i) is derived as the summation of normalized violations ωj(x(i)): 

3
( ) ( )

1
( ) ( )i i

j j
j

x R xω
=

Ω = ∑  

No violations were favored so the weighting factor used is R=1 for all constraints. Every 
chromosome is a collection of n nodes. For encoding of the nodal x and y coordinates, 
binary strings were used. In addition to the refinement of the search, the Gray coding was 
applied (Bäck&Fogel, 2000). 

5.4 Results 
The results were obtained after roughly 1000 iterations in each of the presented examples. 
The evolution was conducted on a PC with the AMD Athlon 64 X2 5000+ processor. For the 
sake of further research, object-based dynamic-link libraries were designed in C# (MS .NET 
Framework 2.0) to provide a generic multi-objective solver for various engineering 
optimization models. The results of the optimal truss structure on the following three 
figures (Fig. 3-5) present the course of evolution under different initial conditions. The 
number of free nodes is increased as the load is increased in the force node.  
 

 
Fig. 3. Optimal structure with 5 free nodes 



Tracing Engineering Evolution with Evolutionary Algorithms 

 

257 

 
Fig. 4. Optimal structure with 6 free nodes 

 

 
Fig. 5. Optimal structure with 10 free nodes 

Of course, this is a subjective approach. There is an obvious correlation between the number 
of nodes, the amount of load imposed and the cross-section of the respective rod. At this 
point of research it was impossible to tackle all of the possible influences since the research 
focus was on a new type of encoding. 
 

0 500 1000 1500 2000

m

N  
Fig. 6. Graph of the algorithm performance shown in terms of objective function m put 
against evolution step N 

Graph of the algorithm performance shown in terms of objective function m and number of 
evolution steps N is presented in Fig. 6. This particular graph corresponds to the initial 
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condition of five free nodes. Every fifth solution is drawn in graph. Because of its stochastic 
nature algorithm cannot produce same performance graph in every run, however some key 
features remain. In Fig. 6 it is clearly visible that after the step N=1100 the value of the 
objective function stepwise diminishes. With sufficient certainty it could be said that the 
algorithm moved search to the feasible space. Before the N=1100 the aim of the algorithm 
was the minimization of the constraint violation expressed in equation (6) resulting in 
dispersion of the values of the objective function. After the step N=2000 the evolution slows 
down and no significant improvements were noted.  

6. Evolution of stiffened panels 
The simplified ship hull structure in this case study, see for example a traditional boat in Fig. 7, 
is modeled as a transversely framed shell of isotropic material under lateral outer pressure p, 
and longitudinal in-plane stress σL (Hughes, 1972), Fig. 8, also considering the state of the art 
rules and regulations of classification societies based on experience of shipbuilding and 
shipping (CRS, 2006) (DNV, 1978) that evolved during a long period of development of theory 
and practice of shipbuilding. The material properties are the elastic modulus E, the Poisson’s 
ratio ν, the allowable normal σa and shear τa stresses in shell and in framing (CRS, 2006). 
 

 
Fig. 7. Boat hull structure 

The small deflection elastic plate bending theory (Hughes, 1972) defines the maximal local 
stress under lateral pressure p in the middle of the longer edge  in the direction of the 
shorter edge s in the plating of thickness t clamped at stiffeners, Fig. 8. Using the semi-

empirical plate side aspect ratio (Hughes, 1972) 
2

1 0,4s
sk ⎛ ⎞= − ⎜ ⎟

⎝ ⎠
, the stress in the shell 

under lateral load p  can be assessed as: 
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 (1) 

The simple elastic beam bending theory (Hughes, 1972) defines the normal stresses in 
frames, Fig. 8: 
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The end connection factor for clamped frame ends is km=1/12. The elastic section modulus 
Wf,e of a single frame accounts for the width of the effective plate flange. The shear stress at 
supporting ends of the frame web (Hughes, 1972), taking the correction factor wc =3/2 for 
rectangular cross sectional area Af of a flat bar (CRS, 2006) (DNV, 1978) is as shown: 
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w
f
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c p s
A

τ
⋅ ⋅ ⋅

=  (3) 

The orthotropic plate elastic bending theory (Hughes, 1972) defines the stresses in the edges 
of the longer side in the direction of the shorter edge, Fig. 7, of the whole transversely 
stiffened plate as: 
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In (4), If  is the frame moment of inertia including effective plating width and e is the 
distance from the neutral axes to the plating. From Shade’s diagrams (Hughes, 1972) is 
K=0.0916 for the edges of the longer side in the direction of the shorter edge and K=0.0627 
for the edges of the shorter side. 
The critical buckling stress of plating under in-plane compression of plates between frames 

(Hughes, 1972), (CRS, 2006), (DNV, 1978)  using the term 
2
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For transversely stiffened panels is 
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 and for longitudinally stiffened panels 

is 4pk = . For elastic buckling is 1kσ =  and for plastic buckling is 
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The torsional buckling of flat bar stiffeners prevents the empirical ratio of height to thickness 
(DNV, 1978)  that is normally < 20. 
The ultimate bending strength with respect to multimodal plastic failure modes of plates at 

the mid of the longer edge of unit plate plastic section modulus 
2

, 4p p
tW =  between frames 

under bending moment 2
mM k p s= ⋅ ⋅  acting due to lateral pressures p combined with in-

plane load Lσ , may be expressed by the following interaction formula (DNV, 1978) 
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The usage factor β  relates the maximal permissible load to the collapse load. Using the 

factor 
2

,
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L p
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k σβ
β σ
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 to represent the influence of the in-plane stress, the ultimate 

lateral pressure on plating accounting for the yield stress σy (DNV, 1978) is: 
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The ultimate bending strength of frames under lateral pressure and axial stress is the 
capability to prevent the plastic failure defined as a three-hinged mechanism (DNV, 1978). 
For frames with plastic section modulus ,f pW  including the effective plate flange under 
bending moment 2

mM k p s= ⋅ ⋅ ⋅  due to lateral pressure p and for small axial stresses xσ  
(the shear is usually small) the relation derived from (2) holds (DNV, 1978): 
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where ε  is the permissible usage factor. 
The ultimate lateral pressure on the whole panel viewed as the orthotropic plate (4), is as 
shown: 
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Since the transverse in-plane compression of bottom plating is normally small, Fig. 7, it is 
not likely that buckling of plating occurs at all (DNV, 1978).  
The model is a ship hull panel of thickness t, length , width b which is transversely 
stiffened by n flat bars of thickness tw and height hw at spacing s, Fig. 8. The plate is laterally 
loaded by pressure p and with in-plane stress σL. 
 

 
Fig. 8. Panel structural model 

The evolutionary design in this example uses the engineering model in order to demonstrate 
the technical development by employing genetic algorithms aspired with achievement of 
appropriate safety level as well as with reduction of weight, expenses and production efforts 
using different materials. 
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Therefore the stiffened panel design of the case study is basically defined as a general non-
linear mathematical programming model of the appropriate ship structure built of the 
material characterized by material coefficient k and l density ρ following section 4 as 
follows: 
- parameters: , , , , , , , ,y f s sp b k ρ σ σ σ τ  

- variables: n, t, tw, hw  
Design goals are the minimization of panel mass m, the minimization of number of 
transversely stiffening flat bars n which expresses in a simple way the complexity of design 
or workmanship expenses and finally the minimization of standard deviation of ultimate 
load carrying capacity taken as a measures of robustness of a structure (Žiha, 2000) 
st.dev.( , ,u pp σ , , ,f pp σ , , ,b pp σ ). 
The later encapsulates the robustness of design by leveling out the safety apprehended as 
the maximum lateral pressure that the whole panel and its structural members – plate and 
stiffeners can withstand (Žiha, 2000)  that means avoidance of week links in the structure. 
Finally the design problem is formulated as: 
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 (9) 

 

At the beginning hard constraints in (9) can hinder the evolutionary process since the 
majority of the early solutions are infeasible. Consequently, by measuring constraint 
violations one can rank infeasible solutions. 
Later that ranking is added to Pareto frontier of feasible population (Deb, 2001). Constraint 
violation measure ( )( )ixΩ  of i th−  solution ( )ix  is derived as summation of normalized 
violations ( )( )i

j xω  (10) (Deb, 2001): 
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No violations were favored so the weighting factor used is 1R =  for all j .  
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For encoding of chromosomes binary strings were used. Every chromosome consists of four 
genes which comprise four design variables of the ship hull panel. In addition for the 
refinement of search the Gray coding was applied (Pahl, 1998). 
 
Design variable t n hw tw 

The gene number 1 2 3 4 
Available strings per gene 10 10 10 10 
Maximum value attainable after mapping 
[mm] 130 200 430 20 

Table 3. The chromosome structure 
The emergence of new genes 2, 3, and 4, Table 3, for number of frames, thickness and height of 
the frame web opens potentials for development of plates stiffened by flat bars. These four 
characteristics together with the problem parameters define all the other panel properties. 
Since the evolution was carried through fixed length chromosomes then the length of the 
individual genes is also a limitation - constraint put upon the search space, that guide 
evolution towards reasonable solutions and hopefully speed up the overall search process, 
Table 3. 
Control parameters of the applied NSGA-II algorithm (Deb, 2001) were as follows: 
- population size 60λ = ,  
- offspring population μ λ= ,  
- uniform crossover (Bäck&Fogel, 2000) - probability 1cp = . 
- bit flip mutation probability 1 / 0.026mp l= ≡  (Bäck et. al., 2000). 
The genetic algorithm tackles the design of the stiffened plate of a contemporary steel ship 
transversely stiffened panel structure, Fig. 9, of breadth b=28,8 m, length  =5,17 m under 
lateral pressure of p=0.1 N/m2 according to design loads defined by classification rules (CRS, 
2006) using potentials of all the genes, Table 3. 
 

 
Fig. 9. The modern ship hull transversely framed side structure 
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The computation results of one out of many iterative trials with repeatable outcomes on 
standard personal computers are presented as the 3-D Pareto frontier plot n-m-st.dev., 
Fig. 10. 
 

 
Fig. 10. 3-D Pareto frontier plot 
After the full gene potential of chromosome, Table 3, is being unleashed more up to date 
solutions evolved. The obtained results after 8000 iterations are plotted on Figs. 10. – 14. 
 

 
Fig. 11. n-m plot 
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Fig. 12. st.dev.-m plot  

 

 
Fig. 13. st.dev.-n plot  

The aim of the illustrative example is to interpret the optimization results obtained by 
evolutionary algorithm as the effects of social and environmental conditions on the 
development of technical structures. It is comprehensible on one hand, Fig. 11, how the 
expensive workmanship related to the number of stiffeners irrespective to the material 
expenses and other technical requirements may yield to preferable solutions of thicker 
plates with smaller number of stiffeners, even simple plates without stiffeners, regardless of 
the overall mass of the panel. On the other hand, the socio-environmental condition of 
expensive material or technical request for light structures irrespective to the workmanship 
expenses leads to solution of thinner plates with greater number of stiffeners. For highly 
efficient light-weight structures when the material and workmanship expenses are 
irrelevant, just the minimal mass, thinner plates with a greater number of stiffeners of 
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higher class material are preferable. The mathematical model incorporates the assumption 
of the importance of robustness when the environmental conditions imply uncertainties. 
The robustness is considered as the minimal variation among safety measures of different 
failure modes (Žiha, 2000) (inter frame plate bending (6), frame bending (7), overall panel 
yield (8) and effect of shear stresses (3)). In Fig. 12 it is shown how the request for maximum 
robustness (minimal standard deviation of safety measures) in this example leads to 
solution of minimal mass panel that satisfies the prescribed safety level. Moreover the 
increase of robustness followed by diminution of mass is affordable only by significant 
increase in workmanship efforts due to large number of built-in stiffeners, Fig. 13.  
Implementing the ancient conditions of expensive (unavailable) material (except for 
example wood) and tough workmanship (no experience and tools available) into the 
mathematical model the solutions points to least expensive plane plate, Fig. 11, without 
stiffening as the primitive carved-out logs, Fig. 14.  
 

 
Fig. 14. The primitive boat structure 
Finally, the contemporary engineering model resulting in four genes, Table 1, in the last run 
degenerates to the one single primitive gene number 1, having the plate thickness for the 
only property. The design model is used in its most degenerative form appropriate to early 
days of shipbuilding and lack of engineering knowledge and experience. As a final 
consequence, the mathematical model points to un-stiffened 125 millimeter thick plating, 
Fig. 14, as the least workmanship demanding solution although inappropriate for now days 
practice. The only affordable outcome of one primitive gene is the simple un-stiffened plate 
of minimal thickness appropriate to ancient conditions for carved-out logs that satisfies the 
past and modern safety requirements, Fig 15. 
 

 
Fig. 15. Carved-out log 
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7. Conclusion 
The first case study in this chapter brings a special way of genotype encoding well suited for 
mechanisms of genetic algorithm operators. Furthermore, it considered how the structural 
model is decoded from such a genotype. The aim of this study of the new “mesh-like” 
approach was a consequence of formerly detected deficiencies of the existing methods. The 
presented advanced methods for the truss structure optimization work perfectly, but are 
specialized either for the structure properties optimization (Hasançeb, 2007), 
(Coello&Christiansen, 2000), or the structure topology optimization (Jakiela at all, 2000), 
(Hamdam, Schoenauer, 2002) and (Kim&Weck, 2004). Shape annealing and shape grammars 
applied for the structural optimization (Shea&Cagan, 1998) offered an alternative, but a GAs 
are found as suitable alternatives. For the reasons of simplicity, at this point of research the 
search space is reduced. The struggle genetic algorithm applied for single objective uses a 
fixed length chromosome, and the number of nodes is therefore user-defined. The cross-
section area of trusses is fixed. Future work will include an introduction of these present 
parameters as variables with suitable coding and will aim at defining load vectors. To 
enhance speed the parallelization of algorithm is being considered in future too. With all 
which has been accomplished, moving away from the single to the multi-objective 
optimization makes a natural step ahead in evolving truss structures. 
The evolutionary design supports normally the contemporary progressive engineering 
reasoning aspired with achievement of highly efficient products providing socially 
acceptable safety levels and appropriately lower costs by employing genetic algorithms. 
However, the second case study in this chapter indicates how the reverse process to the 
technical progress can reconstruct the origins of contemporary products using evolutionary 
algorithms on engineering models in two manners. The simplest way is the replication of 
primitive conditions, such as for example lack of experience, unavailability of appropriate 
material and technology. Introduction of past conditions into up to date mathematical 
models corroborates early solutions based on past engineering practice. Reconstruction of 
past social and environmental conditions may lead to primitive solutions appropriate to 
early human’s engineering but it does not characterize only the evolutionary algorithms. 
Another way is the simplification or degeneration of the design model that is in terms of 
genetic algorithms, deactivating or removing more complex genes from the chromosomes 
that might be viewed as a particular feature of evolutionary algorithms. 
Evolutionary design approach upholds that the technical progress goes on if the existing 
gene potentials are activated or the new evolutionary potentials based on additional 
knowledge are introduced.  
The optimization search by genetic algorithms may be viewed as time-condensed best-
practice that in reverse order can back-trace the engineering development either by 
replicating past condition or by omission of chromosomes introduced into evolutionary 
models by growth of engineering experience. 
The chapter demonstrated that the evolution of structural systems is successfully driven 
forward towards the fittest structures by the synthesizing criteria of most uniform 
responsiveness. The changing of external circumstances that provoke uniform structural 
response is interpretable as the robustness criteria. The research takes up the most 
commonly used statistical measures of data dispersion to define the structural system 
robustness for practical purposes. The most conveniently measure appears the minimal 
coefficient of variations of internal forces under displaced external loads. Shortly, the thesis 
is that the fittest structure is the robust one. 
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1. Introduction

This chapter investigates a noise-aware dominance operator for evolutionary multiobjective
optimization algorithms (EMOAs). An EMOA uses a population of individuals, each of which
represents a solution candidate. It evolves individuals through generations and seeks the
optimal solution(s) in a multiobjective optimization problem (MOP), which is formalized as
follows.

min F(�x) = [ f1(�x), f2(�x), · · · , fm(�x)]T ∈ O
subject to �x = [x1, x2, · · · , xn]T ∈ S

}
(1)

S denotes the decision variable space. �x denotes a decision variable vector (or solution
candidate) with respect to S . It is called an individual in EMOAs. A function vector, F : Rn →
Rm, consists of m real-value objective functions, each of which produces an objective value
with respect to the objective space O. An MOP is to find an individual(s) that minimizes
objective values with subject to O.
In an MOP, objective functions (i.e., f1(�x), · · · , fm(�x) in Equation 1) often conflict with each
other; there exist rarely a single individual that is optimum with respect to all objectives.
Therefore, an MOP often aims to find the optimal trade-off solutions, or Pareto-optimal
solutions, by balancing conflicting objectives simultaneously. The notion of dominance plays
an important role to seek Pareto optimality in MOPs (Srinivas & Deb, 1995). An individual
�x ∈ S is said to dominate an individual �y ∈ S (denoted by �x � �y) iif the both of the following
conditions are hold.

• fi(�x) ≤ fi(�y) ∀ i = 1, · · · ,m

• fi(�x) < fi(�y) ∃ i = 1, · · · ,m

In real-world MOPs, objective functions tend to contain noise (Beyer, 2000; Bianchi et al., 2009).
Thus, objective functions can yield different objective values from the same individual from
time to time. For considering this noise, Equation 1 is revised as follows.
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min F(�x) = [ f1(�x) + ε1, f2(�x) + ε2, · · · , fm(�x) + εm]T ∈ O
subject to �x = [x1, x2, · · · , xn]T ∈ S

}
(2)

εm represents noise in the m-th objective function. Noise in objective functions can interfere
with a dominance operator, which determines dominance relationships among individuals.
For example, a dominance operator may mistakenly judge that an inferior individual
dominates an superior one. Defects in a dominance operator significantly degrades the
performance (e.g., convergence velocity) to solve MOPs (Arnold, 2000; Beyer, 2000; Beyer &
Sendhoff, 2007; Bianchi et al., 2009; Carroll et al., 2006; Diwekar & Kalagnanam, 1997).
In order to address this issue, this chapter proposes a notion of noise-aware dominance, called
α-dominance, and studies the α-dominance operator for EMOAs. This operator takes objective
value samples of given two individuals, estimates the impacts of noise on the samples and
determines whether it is confident enough to judge a dominance relationship between the
two individuals. Unlike existing noise-aware dominance operators, the α-dominance operator
assume no noise distributions a priori. (See Section 5. for more details.) Thus, it is well
applicable to a variety of real-world MOPs whose objective functions follow unknown noise
distributions.
This chapter describes the design of the α-dominance operator and evaluates it with
the probabilistic traveling salesman problem with profits (pTSPP), which can derive a
number of real-world noisy MOPs. pTSPP is a combination of existing two variants of
the traveling salesman problem (TSP): the probabilistic TSP (pTSP) (Jaillet, 1985) and the
TSP with profits (TSPP) (Feillet et al., 2005). In experimental evaluation, the α-dominance
operator is integrated with NSGA-II (Deb et al., 2000), a well-known EMOA, and compared
with existing noise-aware dominance operators. Experimental results demonstrate that the
α-dominance operator reliably performs dominance operation in pTSPP and outperforms
existing noise-aware operators in terms of the optimality, convergence velocity and diversity
of individuals.
The remaining part of this chapter is structured as follows. A further related work,
particularly in the areas of probabilistic Traveling Salesman Problems(TSPP) and noise
handling techniques of evolutionary algorithms, is surveyed in Section 5.. Section 2.proposes a
new problem, probabilistic Traveling Salesman Problem with Profit (pTSPP) and describes its
objectives and objective function. Section 3.introduces background of MOEAs and describes a
variant of NSGA-II, a well-known EMOA. To handling the uncertainties whose distribution is
unknown a priori, a noise-aware dominance operator is proposed in Section ??. This section
also presents the integration of proposed noise-aware dominance operator and NSGA-II.
Then, Section ?? reports computational results of proposed noise-aware dominance operator
on some test pTSPP problems with comparison to some other noise-aware dominance
operators. Section 6.concludes this research with a summary.

2. Probabilistic Traveling Salesman Problem with Profits (pTSPP)

This paper uses the following notations to define pTSPP. pTSPP is defined on a
fully-connected graph G = (V, E).

• V = {v0, v1, v2, ..., vn} is a set of vertices in G, where v0 is the depot. V′ = V − {V0} is a
set of n vertices. This paper assumes that vertices are stationary, and |V| does not change
dynamically.
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• E = {vi, vj|vi, vj ∈ V; i 	= j} is the set of edges. Each edge {vi, vj} ∈ E has an associated
cost cvi ,vj .

• Each vertex vi ∈ V′ maintains a visiting probability pvi , which represents the probability
that vi is visited. pvi ∈ [0.0, 1.0]. The visiting probability of the depot pv0 = 1.0.

• Each vertex vi ∈ V′ has an associated profit ρvi ≥ 0.0. The depot’s profit ρv0 = 0.0.

• R is a sequence of vertices, starting and ending with v0. R may not contain all the vertices
in V′: |R| ≤ |V′ |+ 2. No redundant vertices exist in R. (A node is never visited more than
once.) R is an a posteriori route; the salesman uses it to decide a posteriori which vertices he
actually visits based on the visiting probabilities associated with vertices in R.

pTSPP is to find the Pareto-optimal routes with respect to the following two objectives.

• Cost: The total traveling cost that the salesman incurs by visiting vertices in a route. This
objective is to be minimized. It is computed as:

fcost = ∑
vn ,vn′ ∈R

pvn pvn′ cvn ,vn′ (3)

where vn′ is the next vertex of vn in R.

• Profit: The total profit that the salesman gains by visiting vertices in a route. This objective
is to be maximized. It is computed as:

fpro f it = ∑
vn∈R

pvnρvn (4)

Two objectives in pTSPP conflict with each other. For example, a shorter route (i.e., a route
containing a smaller number of vertices) yields a lower cost and a lower profit. On the
contrary, a longer route (i.e., a route containing a larger number of vertices) yields a higher
cost and a higher profit.
pTSPP inherently considers noise in its objective functions. Following the notations in
Equation 2, pTSPP is formulated as follows.

min F(R) = [ fcost(R) + εcost, 1
fpro f it(R) + εpro f it]T ∈ O

subject to R = [v0, · · · , vn, vn′ · · · , v0] ∈ S

}
(5)

As mentioned in Section 1., pTSPP is a combination of pTSP (Bertsimas & Howell, 1993; Jaillet,
1985) and TSPP (Feillet et al., 2005). pTSP is to find an optimal a priori route with the minimum
cost in which each vertex requires a visit of the salesman with a given visiting probability.
TSPP is to find the optimal route, with respect to profit as well as cost, with which the salesman
visit a subset of given vertices. pTSPP extends pTSP in a sense that pTSPP computes the total
profit of a route based on the profit and visiting probability associated with each vertex in the
route (Equation 4). Unlike TSPP, pTSPP considers a visiting probability for each vertex.
A number of real-world noisy MOPs can be reduced to pTSPP as various real-world
optimization problems can be reduced to pTSP and TSPP (Bertsimas & Howell, 1993;
Feillet et al., 2005; Jaillet, 1985; Jozefowiez et al., 2008a). For example, pTSPP can represent
noisy MOPs in transportation planning, supply chain networks, data routing/gathering in
computer networks.
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3. The proposed evolutionary multiobjective optimization algorithm for pTSPP

This section describes the proposed noise-aware evolutionary multiobjective optimization
algorithm (EMOA) to solve pTSPP. It is designed to evolve individuals (i.e., solution
candidates) toward the Pareto-optima through generations with various operators such as
parent selection, crossover, mutation, selection, individual ranking and diversity preservation
operators. The α-dominance operator is used in the parent selection and individual ranking
operators. Section 3.1explains the representation of individuals in the proposed algorithm.
Section 3.2overviews the algorithmic structure of the proposed algorithm. Sections 3.3to 3.5
describe key operators in the proposed algorithm.

3.1 Individual representation
In the proposed EMOA, each individual represents a solution candidate for pTSPP: an a
posteriori route R that contains a sequence of vertices. (See Section 2..) Every individual has
the depot (v0) as its first and last element. Figure 1 shows an example individual. Given this
route, the salesman starts with v0, visits v3 and its subsequent 7 nodes, and returns back to v0.

Fig. 1. The Structure of an Example Individual

Different individuals have different lengths, depending on the number of nodes to be visited.

3.2 Algorithmic structure
Listing 1 shows the algorithmic structure of evolutionary optimization in the proposed
EMOA. It follows the evolutionary optimization process in NSGA-II, a well-known existing
EMOA (Deb et al., 2000).
At the 0-th generation, N individuals are randomly generated as the initial population P0
(Line 2). Each of them contains randomly-selected vertices in a random order. At each
generation (g), a pair of individuals, called parents (p1 and p2 ), are chosen from the current
population Pg using a binary tournament (Lines 6 and 7). A binary tournament randomly
takes two individuals from Pg, compares them based on the α-dominance relationship
between them, and chooses a superior one as a parent.
With the crossover rate Pc, two parents reproduce two offspring with a crossover operator
(Lines 8 and 9). Each offspring performs mutation with the mutation rate Pm (Lines 10 to 15).
The binary tournament, crossover and mutation operators are executed repeatedly on Pg to
reproduce N offspring. The offspring (Og) are combined with the parent population Pg to
formRg (Line 19).
The selection process follows the reproduction process. N individuals are selected from 2N
individuals in Rg as the next generation’s population (Pg+1). First, the individuals in Rg
are ranked based on their α-dominance relationships. Non-dominated individuals are on the
first rank. The i-th rank consists of the individuals dominated only by the individuals on
the (i − 1)-th rank. Ranked individuals are stored in F (Line 20). Fi contains the i-th rank
individuals.
Then, the individuals in F move to Pg+1 on a rank by rank basis, starting with F1 (Lines 23
to 26). If the number of individuals in Pg+1 ∪ Fi is less than N, Fi moves to Pg+1. Otherwise,
a subset of Fi moves to Pg+1. The subset is selected based on the crowding distance metric,
which measures the distribution (or diversity) of individuals in the objective space (Deb et al.,
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2000) (Lines 27 to 29). The metric computes the distance between two closest neighbors of an
individual in each objective and sums up the distances associated with all objectives. A higher
crowding distance means that an individual in question is more distant from its neighboring
individuals in the objective space. In Line 28, the individuals in Fi are sorted based on their
crowding distance measures, from the one with the highest crowding distance to the one with
the lowest crowding distance. The individuals with higher crowding distance measures have
higher chances to be selected to Pg+1 (Line 29).

1 g = 0
2 Pg = Randomly generated N individuals
3 while g < MAX-GENERATION do
4 Og = ∅

5 while |Og| < N do
6 p1 = tournament(Pg)
7 p2 = tournament(Pg)
8 if random() ≤ Pc then
9 {o1, o2} = crossover(p1, p2)

10 if random() ≤ Pm then
11 o1 = mutation(o1)
12 end if
13 if random() ≤ Pm then
14 o2 = mutation(o2)
15 end if
16 Og = {o1, o2} ∪ Og
17 end if
18 end for
19 Rg = Pg ∪Og
20 F = sortByDominationRanking(Rg)
21 Pg+1 = {∅}
22 i = 1
23 while |Pg+1|+ |Fi | ≤ N do
24 Pg+1 = Pg+1 ∪ Fi
25 i = i+ 1
26 end while
27 assignCrowdingDistance(Fi)
28 sortByCrowdingDistance(Fi)
29 Pg+1 = Pg+1 ∪ Fi [1 : (N − |Pg+1|)]
30 g = g+ 1
31 end while

Listing 1. Optimization Process in the Proposed EMOA

3.3 Crossover
The proposed EMOA adopts partially-mapped crossover (PMX) as its crossover operator.
PMX was originally proposed to solve TSP (Goldbert & Lingle, 1985). It is known that PMX
effectively works for TSP and its variants (Goldbert & Lingle, 1985; Kellegőz et al., 2008).
PMX first selects two crossover points on parent individuals at random. A sub-route
surrounded by the two crossover points is called a mapping section. In an example in Figure 2,
parent 1’s mapping section is [3, 9, 4, 13], and parent 2’s mapping section is [2, 8, 7, 3]. Given
two mapping sections, mapping relationships are formed by paring elements in the mapping
sections on a position by position basis. In Figure 2, the first elements in two mapping sections,
2 and 3, are paired; 2–3 is the first mapping relationship. Similarly, three extra mapping
relationships, 8–9, 7–4 and 3–13, are formed. In order to reproduce two offspring from two
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parents, mapping sections are exchanged between parents. In Figure 2, parent 1’s mapping
section is replaced with parent 2’s; therefore, one of proto-offspring is [0, 2, 7, 6, 2, 8, 7, 3,
10, 5, 1, 0]. (Note that Figure 2 does not show the other proto-offspring.) If proto-offspring
has redundant vertices across its mapping section and the other section, PMX replaces each
redundant vertex with its counterpart shown in mapping relationships. In Figure 2, 7 and
2 are redundant vertices. Given a mapping relationship of 7–4, 7 is replaced with 4 in the
non-mapping section. (Replacements always occur in the non-mapping section.) 2 is replaced
with 13 by referencing two mapping relationships (2–3 and 3–13) recursively.

Fig. 2. An Example Crossover (PMX) Process

3.4 Mutation
The proposed EMOA provides a multi-mode mutation operator to alter reproduced offspring.
The operator has the following four modes and selects one of them at a time randomly.

1. Add: randomly chooses a vertex from unvisited vertices and inserts it to a
randomly-selected position in a route (Figure 3(a)). This mode gives the salesman a higher
chance to visit more vertices.

2. Delete: removes a randomly-selected vertex from a route(Figure 3(b)). This mode reduces
the number of vertices that the salesman visits.

3. Exchange: randomly chooses a vertex in a route and replaces it with one of unvisited
vertices (Figure 3(c)). The unvisited vertex is also selected at random. This mode is
intended to change a set of vertices that the salesman visits.

4. Swap: exchanges the positions of two randomly-selected nodes in a route (Figure 3(a)). This
mode is intended to change a visiting sequence of vertices.

3.5 α-Dominance
This section describes the notion of α-dominance and the design of the α-dominance operator.
α-dominance is a new dominance relationship that extends a classical dominance relationship
described in Section 1.. It takes objective value samples of given two individuals, estimates
the impacts of noise on the samples, and determines whether it is confident enough to judge
which one is superior/inferior between the two individuals.
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Fig. 3. Example Mutation Processes

3.5.1 The α-dominance operator
The α-dominance operator determines the α-dominance relationship between given two
individuals by statistically processing their objective value samples. With this operator,
individual A is said to α-dominate individual B (denoted by A �α B), iif:

• A’s and B’s objective value samples are classifiable with a statistical confidence level of α,
and

• C(A, B) = 1∧ C(B, A) < 1.

In order to examine the first condition, the α-dominance operator classifies A’s and B’s
objective value samples with Support Vector Machine (SVM), and measures a classification
error. (See Step 1 in an example shown in Figure 4.) The error (e) is computed as the ratio
of the number of miss-classified samples to the total number of samples. For evaluating
the confidence level (α) in a classification error, the α-dominance operator computes the
classification error’s confidence interval (eint):

eint = e± tα,n−1σ (6)

tα,n−1 denotes a single-tail t-distribution with α confidence level and n− 1 degrees of freedom.
n denotes the total number of samples. σ is the standard deviation of e. It is approximated as
follows.

σ ∼=
√

e
n

(7)

If eint is significant (i.e., if eint does not span zero), the α-dominance operator cannot classify
A’s and B’s samples with the confidence level of α. Thus, the operator determines that A and
B do not α-dominate each other. (See Step 2 in Figure 4.)
If eint is not significant (i.e., if eint spans zero), the α-dominance operator can classify A’s and
B’s samples with the confidence level of α. Thus, the operator examine the aforementioned
second condition. (See Step 2 in an example shown in Figure 4.) It measures C-metric (Zitzler
& Thiele, 1999) with a classical notion of dominance (�) described in Section 1.. C(A, B) denotes
the fraction of individual B’s samples that at least one sample of individual A dominates:
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C(A, B) =
|{b ∈ B | ∃a ∈ A : a � b}|

|B| (8)

If C(A, B) = 1, all of B’s samples are dominated by at least one sample of A. If C(B, A) < 1,
not all of A’s samples are dominated by at least one sample of B. The α-dominance operator
determines A �α B if C(A, B) = 1 and C(B, A) < 1. If C(A, B) < 1 and C(B, A) < 1, the
operator determines neither A �α B nor B �α A. See Figure 4 as well.
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Fig. 4. An Example Process to determine the α-Dominance Relationship between two
individuals (A and B)

Figure 4 shows an example to determine the α-dominance relationship between two
individuals, A and B, with two objectives, f1 and f2, to be minimized. Individual A and B have
seven samples each. First, the α-dominance operator classifies these 14 samples in the objective
space with SVM and computes eint. Suppose SVM produces a classification vector as shown

in Figure 4. Two samples of B are miss-classified; e = 2
14 (0.143). Thus, σ ∼=

√
0.143

14 = 0.1.
Assuming the confidence level α of 95%, eint = 0.143± 1.771 ∗ 0.1 = 0.143± 0.1771. Since eint
spans zero, A’s and B’s samples are classifiable with the confidence level of 95%. This means
that the aforementioned first condition is hold. In order to examine the second condition,
the α-dominance operator measures C(A, B) and C(B, A). In Figure 4, C(A, B) = 1 and
C(B, A) = 2/14 < 1. This means that the second condition is hold. As a re result, the
α-dominance operator concludes A �α B.
Listing 2 shows pseudo code of the α-dominance operator.A and B denote individual A’s and
B’s samples, respectively. A′ and B′ denote two clusters of samples classified by SVM.

1 function alphaDominance(A, B, α)
2 {A′, B′} = SVMClassifier(A, B)
3 e = 0 // classification error
4 for each x ∈ A′ do
5 if x /∈ A then
6 e = e+ 1
7 end if
8 end for
9

10 for each x ∈ B′ do
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11 if x /∈ B then
12 e = e+ 1
13 end if
14 end for
15
16 if e = 0 then
17 if C(A,B) = 1 then
18 return 1 // A α-dominates B.
19 else if C(B,A) = 1 then
20 return -1 // B α-dominates A.
21 else
22 return 0 // A & B are non-α-dominated.
23 end if
24 else
25 t = t-test(α, sqrt(e,|A|+ |B|))
26 if e− t < 0 then // eint spans zero.
27 return 0 // A & B are non-α-dominated.
28 else
29 if C(A,B) = 1 then
30 return 1 // A α-dominates B.
31 else if C(B,A) = 1 then
32 return -1 // B α-dominates A.
33 else
34 return 0 // A & B are non-α-dominated.
35 end if
36 end if
37 end if
38 end function

Listing 2. Pseudocode of the α-Dominance Operator

3.5.2 Dynamic adjustment of confidence level
The α-dominance operator dynamically adjusts its confidence level (α) by estimating how
close individuals have converged to the Pareto-optimal front. The convergence of individuals
is estimated based on their disorderliness in the objective space. When individuals are
disordered in the objective space, it indicates that they have not converged enough to the
Pareto-optimal front. Therefore, the α-dominance operator maintains a low confidence level
to determine the α-dominance relationships among individuals in a less strict manner and
have diverse individuals explore the decision space and seek the Pareto front. Conversely,
when individuals are ordered in the objective space, which indicates that individuals have
converged close to the Pareto front, the α-dominance operator increases its confidence level to
perform dominance operation in a more strict manner.
The α-dominance operator measures the disorderliness of individuals as their entropy in the
objective space. To this end, a hypercube is created in the objective space. Its size is bounded by
the maximum and minimum objective values yielded by individuals. (Note that all samples
of all individuals, including dominated or non-dominated ones, are plotted in the objective
space.) The hypercube is divided to sub-cubes. For example, Figure 5 shows six individuals
plotted in a three dimensional hypercube contains eight sub-cubes.
The entropy of individuals (H) is computed as:

H = −∑i∈C P(i) log2(P(i))
P(i) = ni

∑i∈C ni

}
(9)
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Fig. 5. An Example Hypercube in the Objective Space

C denotes a set of sub-cubes in a hypercube, and P(i) denotes the probability that individuals
exist in the i-th sub-cube. ni denotes the number of individuals in the i-th sub-cube. Entropy
(H) is normalized as follows:

Ho =
H

Hmax
=

H
log2 n

(10)

Hmax is the maximum entropy: the entropy in the case that all sub-cubes have the same
number of individuals. n denotes the total number of sub-cubes. Given normalized entropy
(Ho), the confidence level α is adjusted as follows:

α = ((αmax − αmin)
√

1− (1− Ho)2) + αmin (11)

αmax and αmin denote the predefined maximum and minimum confidence levels, respectively.
α is adjusted in a non-linear fashion; a unit circle function is used to map Ho to α.

3.5.3 Integration of the α-dominance operator with parent selection and individual ranking
operators

This section describes how α-dominance operator is integrated with the parent selection
operator (tournament(); Lines 6 and 7 in Listing 1) and the individual ranking operator
(
sortByDominatinoRanking(); Line 20 in Listing 1).
Listing 3 shows pseudo code of a noise-aware parent selection (binary tournament) operator
that leverages the α-dominance operator. P is the current population of individuals.

1 function tournament(P)
2 a = randomSelection(P)
3 b = randomSelection(P)
4 A = samplesOf(a)
5 B = samplesOf(b)
6 r = alphaDominance(A, B, α)
7 if r = 1 then
8 return a
9 else if r = -1 then

10 return b
11 else if r = 0 then
12 if random() > 0.5 then
13 return a
14 else
15 return b
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16 end if
17 end if
18 end function

Listing 3. Pseudocode of a Noise-aware Binary Tournament Operator using the α-Dominance
Operator

First, two individuals (a and b) are randomly drawn from the current population P (Lines 2
and 3). Then, in Lines 4 and 5, their samples are obtained to execute the α-dominance operator
in Line 6. Depending on the operator’s return value (r), one of two individuals (a or b) is
returned as a parent individual (Line 7 to 15). If the α-dominance operator cannot determine
the α-dominance relationship between a and b (i.e., if r = 0), one of them is randomly selected
and returned.
Listing 4 shows pseudo code of a noise-aware individual ranking operator that leverages
the α-dominance operator. sortByDominatinoRanking() calls findNonDominatedFront(),
which identifies non-α-dominated individuals in a given population using theα-dominance
operator (Lines 11 to 27).

1 function sortByDominationRanking(P)
2 i = 1
3 while P 	= ∅ do
4 Fi = findNonDominatedIndividuals(P)
5 P = P \ Fi
6 i = i+ 1
7 end while
8 return F
9 end function

10
11 function findNonDominatedIndividuals(P)
12 P′ = ∅

13 for each p ∈ P and p /∈ P′ do
14 P′ = P′ ∪ {p}
15 for each q ∈ P′ and q 	= p do
16 P′ = P′ ∪ {p}
17 for each q ∈ P′ and q 	= p do
18 A = samplesOf(p)
19 B = samplesOf(q)
20 r = alphaDominance(A, B, α)
21 if r = 1 then
22 P′ = P′ \ {q}
23 else if r = −1 then
24 P′ = P′ \ {p}
25 end if
26 end for
27 end for
28 return P′
29 end function

Listing 4. Pseudocode of a Noise-aware Individual Ranking Operator using the α-Dominance
Operator

4. Experimental evaluation

This section evaluates the proposed EMOA, particularly its α-dominance operator, through a
series of computational experiments.
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4.1 Test problems
This evaluation study uses three test problems that are built based on three TSP instances:
ch130, pr226 and lin318. The TSP instances are obtained from TSPLIB*(Reinelt, 1991). ch130,
pr226 and lin318 contain 130, 226 and 318 vertices, respectively. They are customized in this
evaluation study so that each vertex maintains a profit and a visiting probability. The value
ranges of a profit and a visiting probability are [1.0, 100.0] and [0.0,1.0], respectively. Both
values are assigned to each vertex at a uniformly random.
A certain noise is generated and injected to each of two objective functions every time it
is evaluated, as shown in Equation 5. Two types of noise are generated: random noise,
which follows continuous uniform distributions, and Gaussian noise, which follow normal
distributions. Each noise type has three levels of noise: low, medium and high. Table 1
illustrates noise configurations. For random noise, each cell of the table shows a pair of the
lower and upper bounds of noise values. For Gaussian noise, each cell of the table shows a
pair of the mean and variance of noise values.

Random noise Gaussian noise
(Uniform distribution) (Normal distribution)

ch130 pr226 lin318 ch130 pr226 lin318

Cost
Low [-20,20] [-320,320] [-96,96] (0,40) (0,740) (0,192)

Medium [-80,80] [-1280,1280] [-384,384] (0,100) (0,1600) (0,480)
High [-140,140] [-2240,2240] [-672,672] (0,160) (0,2560) (0,768)

Profit
Low [-2,2] [-2,2] [-2,2] (0,4) (0,4) (0,4)

Medium [-8,8] [-8,8] [-8,8] (0,10) (0,10) (0,10)
High [-14,14] [-14,14] [-14,14] (0,16) (0,16) (0,16)

Table 1. Noise Configurations for Costs and Profits

4.2 Algorithmic and experimental configurations
The proposed EMOA is configured with a set of parameters shown in Table 2. It is called
NSGA-II-A, or simply A, in this evaluation study because it follows NSGA-II’s algorithmic
structure and customizes the structure with the α-dominance operator, the PMX crossover
operator and a mutation operator described in Section 3.4. In order to evaluate the α-dominance
operator, NSGA-II-A is compared with the following three variants of NSGA-II:

• NSGA-II (or simply R): the original NSGA-II (Deb et al., 2000) with its crossover and
mutation operators replaced by PMX and a mutation operator described in Section 3.4
. Its classical dominance operator does not consider noise in objective functions.

• NSGA-II-U (or simply U): NSGA-II with its classical dominance operator by a noise-aware
dominance operator that assumes uniform distribution noise (Teich, 2001).

• NSGA-II-N (or simply N): NSGA-II with its classical dominance operator by a noise-aware
dominance operator that assumes normal distribution noise (Eskandari et al., 2007).

All experiments have been implemented and carried out with jMetal (Durillo et al., 2006).
Every experimental result is obtained and shown based on 20 independent experiments.

*http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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Parameter Value Parameter Value
Population size 100 # of samples per individual 30

Max # of generations 500 SVM type C-support vector
Crossover rate 0.9 classification
Mutation rate 0.2 SVM kernel Linear

αmin in Equation 11 0.90 C parameter for SVM 1
αmax in Equation 11 0.99 SVM termination criteria 1e−3

Table 2. Parameter Configurations

4.3 Metrics for performance evaluation
This evaluation study uses the following five performance metrics to compare individual
algorithms.

• The number of non-dominated individuals: counts the number of non-dominated individuals
in the population at the last (i.e., the 500th) generation. The higher this number is, the
more successfully an algorithm in question has evolved and converged individuals by
eliminating dominated ones. This metric evaluates the degree of convergence/evolution
pressure on individuals.

• Hypervolume (Zitzler & Thiele, 1999): measures the volume that non-dominated individuals
cover in the objective space. The higher a hypervolume measure is, the closer
non-dominated individuals are to the Pareto-optima. This metric evaluates the optimality
of individuals.

• D1R (Knowles & Corne, 2002): is computed as follows.

D1R(A) =
1
|R| ∑

r∈R
minz∈Ad(r, z) (12)

A denotes a set of non-dominated individuals. R denotes a set of reference individuals.
d(r, z) = maxk

(rk−zk)
Rk

where k = 1, ...,K indexes objectives and Rk is the range of objective
values that individuals in R yield with respect to the k-th objective. rk and zk denote the
objective values that individuals r and z yield with respect to the k-th objective. In this
evaluation study, R contains a set of non-dominated individuals that NSGA-II produces
when no noise is given to objective functions. Therefore, the lower a D1R measure is, the
more effectively an algorithm in question cancels the existence of noise to yield a more
similar performance as NSGA-II’s. This metric evaluates the optimality of individuals as
well as their degree of noise canceling.

• U-metric (Leung & Wang, 2003): is computed as follows.

U =
1
D

D

∑
i=1

∣∣∣∣ did̄ − 1
∣∣∣∣ (13)

di denotes the euclidean distance between the i-th individual and its nearest neighbor in
the objective space. D denotes the total number of pairs of the nearest neighbors among
non-dominated individuals. d̄ = 1

D ∑
D
i=1 di is the average of di. The lower a U-metric

measure is, the more uniformly individuals are distributed in the objective space. This
metric evaluates the distribution (or diversity) of individuals.
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• C-Metric (Zitzler & Thiele, 1999): uses Equation 8 to compare two different algorithms by
examining the two sets of non-dominated individuals they produce.

In addition to the above metrics, this evaluation study examines the objective values that the
non-dominated individuals of each algorithm yield at the last generation.

4.4 The number of non-dominated individuals in the population
Tables 3 and 4 show the number of non-dominated individuals that individual algorithms
produces at the last generation. Its average and standard deviation results are obtained based
on 20 independent experiments. A bold font face is used to indicate the best result(s) in each
noise level case of each problem.
Tables 3 and 4 demonstrate that NSGA-II-A and NSGA-II consistently yield the best and
worst results, respectively, in both cases with normal and uniform distribution noises. Under
normal distribution noise, NSGA-II-A produces 95 or more non-dominated individuals, while
NSGA-II produces only 32.2 in the high noise case of lin318. Under uniform distribution noise,
NSGA-II-A evolves all individuals to be non-dominated in all cases, while NSGA-II produces
only 49.7 non-dominated individuals in the high noise case of lin318. Tables 3 and 4 illustrate
that the α-dominance operator successfully retains a high pressure to evolve and converge

Problem Noise level NSGA-II-A NSGA-II NSGA-II-N NSGA-II-U
Avg Sd Avg Sd Avg Sd Avg Sd

ch130
Low 100 0 74.7 9.89 100 0 100 0

Medium 99.2 2.8 52.5 9.1 98.8 2.7 93.2 3.9
High 98.9 0 34.1 9.3 90.1 8.9 89.5 2.1

pr226
Low 100 0 68.2 6.9 100 0 94.2 5.1

Medium 99.0 12.5 42.3 4.7 93.2 8.2 86.5 7.9
High 97.1 5.87 30.1 7.6 89.5 5.9 80.4 13.5

lin318
Low 100 0 66.3 9.5 99.5 7.8 96.5 3.5

Medium 99.5 1.8 49.35 8.6 90.4 5.2 83.8 16.5
High 95.0 12.5 32.2 7.2 85.3 4.6 80.1 12.4

Table 3. The Number of Non-dominated Individuals at the last Generation when Normal
Distribution Noise is injected to Objective Functions

Problem Noise level NSGA-II-A NSGA-II NSGA-II-N NSGA-II-U
Avg Sd Avg Sd Avg Sd Avg Sd

ch130
Low 100 0 96.9 5.7 100 0 100 0

Medium 100 0 56.2 10.4 98.1 2.1 100 0
High 100 0 43.3 9.9 92.3 4.5 98.4 2.1

pr226
Low 100 0 83.8 11.1 100 0 100 0

Medium 100 0 56.5 9.9 86.5 5.4 100 0
High 100 0 46.3 7.9 80.6 10.2 90.0 4.8

lin318
Low 100 0 73.4 9.1 100 0 100 0

Medium 100 0 58.4 6.9 89.9 8.7 98.4 1.1
High 100 0 49.7 8.7 69.6 11.6 89.3 8.1

Table 4. The Number of Non-dominated Individuals at the last Generation when Uniform
Distribution Noise is injected to Objective Functions
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individuals even in a harder problem (lin318) with a high level of noise. On the contrary,
NSGA-II significantly loses the pressure as a given problem becomes harder and a given noise
level becomes higher because its dominance operator does not handle noise at all.
In Table 3, NSGA-II-N produces 100 non-dominated individuals in two cases and yields
better results than NSGA-II and NSGA-II-U because it assumes normal distribution noise
beforehand. However, NSGA-II-A outperforms NSGA-II-N as a given problem becomes
harder and a given noise level becomes higher. A similar observation is made in Figure 4;
NSGA-II-A outperforms NSGA-II-U even when uniform distribution noise is injected to
objective functions, as a given problem becomes harder and a given noise level becomes
higher.

4.5 Optimality evaluation with hypervolume
Figures 6 to 11 show the hypervolume measures that individual algorithms yield in each
problem with different noise distributions. NSGA-II-A yields the best hypervolume results
in most cases (except in ch130 with uniform distribution; Figure 7). NSGA-II yields the worst
results in most cases (except in pr226 with normal distribution; Figure 9), which is reasonable
because its dominance operator does not handle noise in objective functions.
In Figure 6 (ch130 with normal distribution noise), NSGA-II-A performs similarly to
NSGA-II-N, which outperforms NSGA-II and NSGA-II-U, because it designed to handle
normal distribution noise. As a given problem becomes harder with normal distribution noise,
NSGA-II-A yields better hypervolume measures than NSGA-II-N. (See Figures 8 and 10.) A
similar observation is made in Figures 7, 9 and 11. In Figure 7, NSGA-II-A is outperformed by
NSGA-II-U, which is designed to handle uniform distribution noise. However, it outperforms
NSGA-II-U in harder problems (Figures 9 and 11). These results demonstrate that the
α-dominance operator allows NSGA-II-A to successfully seek quality solutions toward the
Pareto-optima regardless of problems and noise distributions.
In general, all algorithms yield smaller hypervolume measures as the amount of noise
increases. However, the hypervolume measures of NSGA-II-A do not vary largely under
different noise levels. It can maintain the hypervolume of 0.6 or higher in all the cases.
NSGA-II, NSGA-II-N (under uniform distribution noise) and NSGA-II-U (under normal
distribution noise) significantly decrease their hypervolume measures as given noise levels
increases. In the pr226 problem with the highest normal distribution noise, NSGA-II-A
performs 32.8% better than NSGA-II-U, 50.8% better than NSGA-II and 67.2% better than
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NSGA-II-N. These results demonstrate that the α-dominance operator is less sensitive against
noise levels than existing noise-aware dominance operators in NSGA-II-U and NSGA-II-N.

4.6 Evaluation of optimality and noise canceling with D1R
Figures 12 to 17 show the D1R measures that individual algorithms yield in each problem with
different noise distributions. As Figures 12, 14 and 16 depict, when normal distribution noise is
injected to objective functions, NSGA-II-U performs poorly. This is understandable because it
does not expect normal distribution noise at all. The other three algorithms perform similarly.
Although NSGA-II-A is outperformed by NSGA-II-N and NSGA-II in the cs130 problem
(Figure 12), it outperforms them in the other harder problems (the pr226 and lin318 problems;
Figures 14 and 16). In the lin318 problem, which is hardest in the three test problems in this
evaluation study, NSGA-II-A exhibits its superiority over NSGA-II-N and other algorithms.
When uniform distribution noise is injected to objective functions, NSGA-II-A outperforms
the other three algorithms in all problems, although all algorithms perform similarly,
particularly in the ch130 problem (Figures 13, 15 and 17). NSGA-II-A exhibits its superiority
in the lin318 problem than the other two problems. These results illustrates that the
α-dominance operator allows NSGA-II-A to successfully suppress the impacts of noise on the
evolution/convergence of individuals and seek quality solutions toward the Pareto-optima.
As Figures 12 to 17 show, D1R measures grow in all algorithms when the amount of injected
noise increases. This means that the evolution/convergence of individuals suffers a higher

286 Evolutionary Algorithms



D
1
R

Fig. 12. D1R (ch130, Normal Dist. Noise)

D
1
R

Fig. 13. D1R (ch130, Uniform Dist. Noise)

D
1
R

Fig. 14. D1R (pr226, Normal Dist. Noise)

D
1
R

Fig. 15. D1R (pr226, Uniform Dist. Noise)

D
1
R

Fig. 16. D1R (lin318, Normal Dist. Noise)

D
1
R

Fig. 17. D1R (lin318, Uniform Dist. Noise)

interference by a higher noise level. This trend is consistent with the results of hypervolume
measures (Section 4.5). However, the D1R measures of NSGA-II-A do not vary largely under
different noise levels. NSGA-II-A can maintain the D1R measure of approximately 0.2 or lower
in all the cases except the ch130 problem with normal distribution noise (Figures12). This
contrasts with, for example, NSGA-II-U that significantly increases D1R under higher noise
levels in all problems. In the lin 318 problem with normal distribution noise, NSGA-II-A’s D1R
is under 0.2 under the highest noise level while NSGA-II-U’s D1R exceeds 0.8. These results
demonstrate that the α-dominance operator is less sensitive against noise levels than existing
noise-aware dominance operators in NSGA-II-U and NSGA-II-N.
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4.7 Diversity evaluation with U-metric
Figures 18 to 23 show the U-metric measures that individual algorithms yield in each problem
with different noise distributions. The four algorithms perform more similarly to each other
in the problems with uniform distribution noise than normal distribution noise. In all cases,
NSGA-II-A yields the best U-metric measures under the highest noise level. Considering
that all algorithms perform the same (NSGA-II’s) crowding distance operator for diversity
preservation among individuals, the α-dominance operator produces the lowest interfere to
diversity preservation based on crowding distance.
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Noise C(NSGA-II-A, C(NSGA-II, C(NSGA-II-A, C(NSGA-II-U, C(NSGA-II-A, C(NSGA-II-N,

Level NSGA-II) NSGA-II-A) NSGA-II-U) NSGA-II-A) NSGA-II-N) NSGA-II-A)

ch130
Low 4.23e− 03 1.05e-03 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Medium 2.28e− 03 0.00e+00 3.21e− 03 1.25e-03 0.00e+00 0.00e+00
High 1.20e− 03 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

pr226
Low 5.01e− 03 0.00e+00 5.23e− 03 1.11e-03 0.00e+00 0.00e+00

Medium 0.21e− 03 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
High 3.10e− 03 1.01e-03 0.00e+00 0.00e+00 0.00e+00 0.00e+00

lin318
Low 8.27e− 03 1.10e-03 2.01e− 03 0.00e+00 0.00e+00 0.00e+00

Medium 2.22e− 03 0.00e+00 1.00e− 03 0.00e+00 0.00e+00 0.00e+00
High 9.36e− 03 2.01e-03 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Table 5. C-metric Measures under Normal Distribution Noise

4.8 Algorithm comparison with C-metric
Tables 5 and 6 show the C-metric measures to compare individual algorithms with each other
under normal distribution noise and uniform distribution noise, respectively.
With normal distribution noise injected to objective functions (Tables 5), C(NSGA-II-A,
NSGA-II) > C(NSGA-II, NSGA-II-A) in all of nine cases. (A bold font face is used to indicate a
higher C-metric measure between C(NSGA-II-A, NSGA-II) and C(NSGA-II, NSGA-II-A).) This
means that NSGA-II-A outperforms NSGA-II in all the cases. In five of nine cases, NSGA-II
produces no individuals that dominate the ones produced by NSGA-II-A. In comparison
between NSGA-II-A and NSGA-II-U, C(NSGA-II-A, NSGA-II-U) > C(NSGA-II-U, NSGA-II-A)
in three of nine cases. This means that NSGA-II-A outperforms NSGA-II-U in the three cases
and the two algorithms tie in the other six cases. In seven of nine cases, NSGA-II-U produces
no individuals that dominate the ones produced by NSGA-II-A. In comparison between
NSGA-II-A and NSGA-II-N, the two algorithm tie in all nine cases. Even though NSGA-II-N
is designed to handle normal distribution noise, it produces no individuals that dominate the
ones produced by NSGA-II-A. Note that NSGA-II-A often outperforms NSGA-II-N in harder
problems with higher normal distribution noise in terms of the number of non-dominated
individuals (Section 4.4), hypervolume (Section 4.5) and D1R (Section 4.6).

Noise C(NSGA-II-A, C(NSGA-II, C(NSGA-II-A, C(NSGA-II-U, C(NSGA-II-A, C(NSGA-II-N,

Level NSGA-II) NSGA-II-A) NSGA-II-U) NSGA-II-A) NSGA-II-N) NSGA-II-A)

ch130
Low 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.01e-03 2.01e− 03

Medium 1.11e− 03 0.00e+00 4.01e− 03 0.00e+00 2.10e− 03 1.30e-03
High 0.00e+00 0.00e+00 0.00e+00 0.00e+00 2.58e− 03 0.00e+00

pr226
Low 1.22e− 03 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Medium 4.29e− 03 0.00e+00 1.01e− 03 0.00e+00 6.07e− 03 3.12e-03
High 5.18e− 03 2.14e-03 0.89e− 03 0.00e+00 1.00e− 03 0.00e+00

lin318
Low 0.00e+00 0.00e+00 0.00e+00 0.00e+00 2.01e− 03 0.00e+00

Medium 12.28e− 03 0.00e+00 0.00e+00 0.00e+00 6.31e− 03 0.00e+00
High 2.33e− 03 0.00e+00 5.14e− 03 1.02e-03 1.08e− 03 0.00e+00

Table 6. C-Metric Measures under Uniform Distribution Noise

With uniform distribution noise injected to objective functions (Tables 6), NSGA-II-A
outperforms NSGA-II in six of nine cases. In eight cases, NSGA-II produces no individuals
that dominate the ones produced by NSGA-II-A. In comparison between NSGA-II-A and
NSGA-II-U, which assumes uniform distribution noise in advance, NSGA-II-A outperforms
NSGA-II-U in four of nine cases, and the two algorithms tie in the other five cases. In eight
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cases, NSGA-II-U produces no individuals that dominate the ones produced by NSGA-II-A.
A general observation is that NSGA-II-A outperforms NSGA-II-U in harder problems with
higher uniform distribution noise. It is consistent with the observations made with the number
of non-dominated individuals (Section 4.4), hypervolume (Section 4.5) and D1R (Section 4.6).
In comparison between NSGA-II-A and NSGA-II-N, NSGA-II-A outperforms NSGA-II-N in
seven of nine cases. In six cases, NSGA-II-N produces no individuals that dominate the ones
produced by NSGA-II-A.
As Tables 5 and 6 illustrate, NSGA-II-N performs better under normal distribution noise
than uniform distribution noise. This is reasonable because it anticipates normal distribution
noise in advance. However, it never outperforms NSGA-II-A in Table- 5). On the contrary,
NSGA-II-U performs poorly under both normal and uniform distribution noise. It never
outperforms NSGA-II-A in Tables 5 and 6. These results demonstrate that, although the
α-dominance operator assumes no noise distribution in advance, it performs under both
normal and uniform distribution noise. Moreover, it exhibits higher superiority under higher
noise levels.

4.9 Optimality evaluation with objective values
Tables 7 and 8 show the objective values that each algorithm’s individuals yield at the last
(the 500th) generation under normal and uniform distribution noise, respectively. L, M and H
mean that low, medium and high levels of noise. Each table shows the average and standard
deviation results that are obtained from 20 independent experiments. A bold font face is used
to indicate the best average result among four algorithms on an objective by objective basis.
An asterisk (*) is placed for an average result when the result is significantly different (worse)
than the best average result based on a t-test with 19 degrees of freedom and 95% confidence
level.
Table 7 depicts that, in the ch130 problem, NSGA-II-A is the best among four algorithms in cost
under the low noise level, in profit under the medium noise level, and in both objectives under
the high noise level. Under the high noise level, NSGA-II-A exhibits statistical significance
over NSGA-II and NSGA-II-N in cost and over NSGA-II and NSGA-II-U in profit. In the
pr220 problem, NSGA-II-A is the best among four algorithms in cost under all noise levels.
It is also the best in profit under the low and high levels of noise. Under the high noise
level, NSGA-II-A exhibits statistical significance over NSGA-II-N and NSGA-II-U in cost and
over NSGA-II-R and NSGA-II-U in profit. Moreover, NSGA-II-A yields the lowest standard
deviation in both objectives in all noise levels. This means that the variance of it’s objective
values is the lowest among different experiments. In the lin318 problem, NSGA-II-A yields
the best objective values and the best standard deviation values in both objectives under all
noise levels. Under the high noise level, it exhibits statistical significance over NSGA-II and
NSGA-II-U in cost and over all the other three algorithms in profit. Table 7 demonstrates that
the α-dominance operator allows NSGA-II-A to outperform the other algorithms more often
in more metrics as a given problem becomes harder and a given noise level becomes higher.
Table 8 shows qualitatively similar results to the ones in Table 7. In the lin318 problem with the
highest noise level, NSGA-II-A yields the best objective values and the best standard deviation
values in both objectives under all noise levels. It exhibits statistical significance over NSGA-II
and NSGA-II-N in cost and over all the other three algorithms in profit.
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ch130 pr220 lin318
Cost profit Cost profit Cost profit

Avg Sd Avg Sd Avg Sd Avg Sd Avg Sd Avg Sd

L
A 2533.8 174.6 3129.0* 34.2 92236.2 181.2 6828.3 82.4 45353.2 204.3 8852.7 111.0
R 2890.5* 167.9 3124.3 46.4 116225.3* 192.5 6826.9 95.3 47927.6 248.2 8748.9 118.3
N 2646.2* 186.7 3208.8 49.4 104295.2* 188.7 6806.4 107.4 48918.3* 212.2 8398.4* 152.2
U 2760.1* 214.3 2958.6* 39.2 114219.1* 214.0 6485.0* 111.0 50688.4* 302.3 8539.0* 185.8

M
A 3471.6 244.8 3855.1 79.2 132637.8 242.4 7077.6 93.1 45894.5 402.3 8740.5 185.4
R 3280.9 272.2 3768.2 76.4 136017.3 290.4 7153.1 142.6 56162.1* 499.8 8520.8* 321.0
N 3971.8* 266.1 3685.7* 76.9 135070.4 345.7 6944.9* 112.6 56649.0* 461.0 8522.2* 201.8
U 3698.3* 291.9 3602.3* 85.8 139797.3* 293.2 6920.4* 150.2 61204.3* 481.4 8622.2 342.4

H
A 4564.2 312.5 3734.6 84.1 148905.8 243.2 6752.2 101.0 56227.3 527.4 8504.8 385.1
R 4740.3* 248.5 3534.6* 93.1 150162.1 277.8 6557.8* 161.4 70204.6* 599.4 8361.9* 414.4
N 4702.5* 324.2 3656.2 89.4 171468.0* 267.3 6733.6 143.3 56450.7 582.2 8292.8* 442.1
U 4615.1 352.8 3593.6* 98.7 171936.6* 391.0 6436.6* 165.0 66661.1* 701.3 8258.3* 499.5

Table 7. Objective Values at the Last Generation under Normal Distribution Noise

ch130 pr220 lin318
Cost profit Cost profit Cost profit

Avg Sd Avg Sd Avg Sd Avg Sd Avg Sd Avg Sd

L
A 2368.5 242.4 3139.9 183.1 99782.9 144.2 6949.3 131.0 41937.1 309.7 9010.6 119.9
R 2777.2* 223.6 3167.6 184.1 105385.1* 214.0 6566.0* 152.1 43865.8 351.9 9000.9 134.7
N 2466.0 265.9 2895.2* 100.3 122022.7* 183.5 6779.7* 141.1 53194.4* 408.6 8937.6* 177.4
U 2860.1* 281.2 3252.0 78.6 110096.8* 188.3 6920.4 158.8 50819.3* 469.5 8805.6* 102.4

M
A 2976.3 203.2 3117.2 146.3 97879.5 248.3 7137.8 136.8 48109.6 677.9 8829.7 87.7
R 3705.6* 296.2 2666.7* 145.6 110639.5* 321.0 6925.2* 148.5 53918.6* 686.5 8374.6* 123.6
N 3573.3* 210.3 2709.3* 163.5 119108.1* 295.4 6680.0* 146.1 53346.2* 707.5 8442.0* 118.4
U 3368.7 189.3 3344.5 135.3 122815.9* 274.1 6816.6* 148.5 53640.5* 706.9 8519.1* 171.0

H
A 4384.6 404.1 3838.0 137.7 151578.5 381.1 7022.4 132.2 61174.5 439.8 8887.9 114.8
R 4463.5* 426.7 2798.0* 142.6 164282.2* 458.4 6523.2* 139.8 66035.3* 647.3 8152.2* 267.4
N 4992.5* 445.8 2730.0* 152.8 178198.2* 422.2 6830.6* 136.9 62668.5* 553.8 8566.8* 168.0
U 4299.3 499.1 3330.0* 163.6 166907.1* 461.9 6711.4* 142.5 61701.4 520.3 8285.4* 189.1

Table 8. Objective Values at the Last Generation under Uniform Distribution Noise

5. Related work

pTSP and TSPP have been studied extensively and used to model many real-world
applications in different fields (Feillet et al., 2005). Early pTSP studies adopted heuristics
that were modified from the heuristics to solve TSP (e.g., nearest neighbor, savings heuristic,
k-opt exchanges, 1-shift) (Bertsimas, 1988; Birattari et al., 2007). Recent studies often focus on
meta-heuristics, such as ant colony optimization algorithms (Branke & Guntsch, 2004) and
evolutionary algorithms (Liu, 2008; Liu et al., 2007), in favor of their global search capabilities.
However, these algorithms are not applicable for pTSPP because pTSP is a single objective
optimization problem and pTSPP is a multiobjective optimization problem as described in
Section 2..
TSPP is a multiobjective optimization algorithm; however, a number of existing work have
attempted to solve it as a single objective optimization problem by aggregating multiple
objectives into a single fitness function as, for example, a weighted sum of objective values
or considering extra objectives as constraints with given bounds (Awerbuch et al., 1999;
Laporte & Martello, 1990). These algorithms are not designed to seek the optimal tradeoff
(i.e., Pareto-optimal) solutions among conflicting objectives. Moreover, it is not always
straightforward to manually tune weight values in a fitness function that aggregates multiple
objective values.
A very limited number of existing work have attempted to solve TSPP with multiobjective
optimization algorithms (Jozefowiez et al., 2008b). These algorithms better address the
characteristics of pTSPP; however, they never consider noise in objective functions.
The α-dominance operator is designed to aid seeking the Pareto-optimality of solution
candidates in multiobjective optimization problems with noisy objective functions. In the
area of evolutionary multiobjective optimization, there exist several existing work to handle
uncertainties in objective functions by modifying NSGA-II’s classical dominance operator
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(Beyer, 2000; Jin & Branke, 2005). All of them assume particular noise distributions in advance.
For example,Babbar et al. (2003); Eskandari et al. (2007); Goh & Tan (2006) assume normal
distribution noise. Teich (2001) assume uniform distribution noise. Delibrasis et al. (1996);
Wormington et al. (1999) assume Poisson distribution noise. Given a noise distribution,
each of existing noise-aware dominance operators statistically estimates each individual’s
objective value by collecting its samples. In contrast, the α-dominance operator assumes no
noise distributions a priori because, in general, it is hard to predict and model them in
most (particularly, real-world) multiobjective optimization problems. Instead of estimating
each individual’s objective values, the α-dominance operator estimates the impacts of noise
on objective value samples and determines whether it is confident enough to compare
individuals.
Another line of relevant research is to handle uncertainties in decision variables (Deb & Gupta,
2006; Deb et al., 2009; 2006). These work proposes the notion of robust individuals, and the
robustness quantifies the sensitivity of noise in the decision space on the objective space. They
also assume normal distribution noise in advance. Unlike these work, α-dominance focuses
on uncertainties in the objective space and assumes no noise distributions in advance.

6. Conclusions

This chapter formulates a noisy multiobjective optimization problem, the Probabilistic
Traveling Salesman Problem with Profits (pTSPP), which contains noise in its objective
functions. In order to solve pTSPP, this chapter proposes an evolutionary multiobjective
optimization algorithm (EMOA) that leverages a novel noise-aware dominance operator,
called the α-dominance operator. The operator takes objective value samples of given two
individuals, estimates the impacts of noise on the samples and determines whether it is
statistically confident enough to judge which individual is superior/inferior to the other.
Experimental results demonstrate that the α-dominance operator allows the proposed EMOA
to effectively obtain quality solutions to pTSPP and it outperforms existing noise-aware
dominance operators.
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1. Introduction 
In the works [5,16] there is presented a possibility of application of critical chain scheduling 
/buffer management methodology (CCS/BM) in investment enterprise and construction 
planning. The completion of a civil structure or a building complex is an undertaking 
consisting of the following factors: fulfilling the requirements (quality), cost, time of 
execution, range and resources [7]. In the article there are presented the outcomes of the 
tests concerning an improvement of methods used for investment scheduling and 
construction project with the implementation of mementic algorithm (i.e. hybrid 
evolutionary, HEA, [1]). The aim of the work was finding an optimal (for a taken goal 
function) level of workers’ employment that is minimization of a divergence from the 
average level of employment with the implementation of CCS/BM methodology [5]. 
Scheduling of investment and construction project is connected to an optimization task. It is 
related to finding the best solution fulfilling the constraining conditions and taking into 
consideration the goal function.  There are many known methods of optimization applied in 
specific cases.  
Among others, there can be mentioned, for instance, for continuous tasks – methods of 
linear simplex, tasks of global optimization – when a goal function in the field of accepted 
solutions has more than one local minimum, discrete tasks with a greater complexity of 
calculations based most commonly on division or constraint methods, non – determined 
methods using  random generating of solutions, a simulated annealing method as a 
modification of random walk with the improvement of quality of goal function, tabu search, 
that is with a list of revised variants and others.  
There are also techniques applied with the use of biological systems – evolutionary 
algorithms, genetic, evolutionary strategies, evolutionary programming and genetic 
programming ([3],[18]). The general scheme of evolutionary algorithm’s operation resides in 
creating a loop embracing reproduction, genetic operations, evaluation and succession. The 
classic scheme of operation of evolutionary algorithm is presented below according to [3].  
This paper is a continuation of the topic presented in work [15], concerning the application of 
genetic algorithms [7] to steering of a level of an employment in investment and construction 
projects. Treating the evolutionary algorithm as a typical method of proceeding concerning 
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searching for better solutions, taking into consideration the closest environment, there was a 
slightly different approach proposed than the one applied in modeling of evolution with a 
application of a binary genetic code. The new one consists in replicating of randomly chosen 
variants (individuals) with a possibility of multiple copying of the same solution, in which the 
random choice takes into account a better adaptation of a variant (individual). 
Solving practical issues of operational tasks, including scheduling of investment and 
construction project requires a selection of such an optimization method which leads to the 
best solution with the minimal cost. It is assumed [3], that one of the most efficient 
optimization algorithms is the evolutionary algorithm with strategy, constituting 
frameworks for an idea of a mementic algorithm HEA, [1]. 

2. Defining the problem 
An optimization task refers to planning of regularity of workers’ employment level 
[8,17,14,11,10] during realization of construction undertaking with regard towards 
CCM/BM methodology [5,16]. Time buffers introduced to scheduling task increase space of 
accepted variations of realizing the project and an extent of a task. 
In order to solve an optimization task a hybrid evolution algorithm HEA created by Bożejko 
and Wodecki [1] was applied. The idea of a algorithm HEA consists of creation of a start-up 
population in which for every individual there is a permutation applied in order to find a 
local minimum. Then, there is a passing towards separate populations with defining a 
number and position in a set of individuals.  
Theory of Constrains (TOC) by Goldratt [2,3,4,5,6] and its practical application in managing 
of projects known as Critical Chain Scheduling (CCS) and Buffer Management (BM), in 
short defined as CCS/BM Method [7], stays in the center of interest of many scientific 
goups. Precursors of this methods were Giffler and Thomson [8] together with Wiest [17] 
who introduced the concept of critical sequences determined not only by technological 
sequencing and adjusting the time of tasks’ completion but also by constraints of resources 
in creation of schedules. Creating and steering of schedules is one of the aims of managing 
building projects. High level of simplification of the two systems: Critical Path Method 
(CPM) together with Program Evaluation and Review Technique (PERT) led to their 
popularizing and common use all over the world. Changing standards, growing 
expectations, cost cutting, minimizing fines and the extent of investment projects, clearness 
of expressions led to undertaking of many works aiming at increasing the effectiveness of 
scheduling treated in relation to traditional CPM/PERT methods. 

2.1 Theory of constrains framework 
Theory of Constraints (TOC) can be applied in all projects which aim at reaching revenue. 
TOC is based on five basic steps: 
1. Identification system constraints. 
2. Decision of maximum utilization of constrained resources. 
3. Subordination of all processes to above decision. 
4. Increasing number of constraints created as a result of a liquidation of a constraint 

defined in the first step as a bottleneck of the system. 
5. Identification of new constraints of resources created as a result of bottleneck 

elimination in point 4; if constraint in point 4 is eliminated then return to step one in 
order not to allow any internal factors to constraint the whole system.  



Scheduling of Construction Projects with a Hybrid Evolutionary Algorithm’s Application 

 

297 

The proposed system aims at ongoing production improvement in order to gain bigger 
profit in current and future undertakings through identifying and eliminating bottlenecks in 
production. TOC can be used in realization of building projects.  Let us assume that in the 
first step a tower crane is identified as a constrained resource. Thus, in the second step we 
take a decision of maximum utilization of crane’s capacity shifting work schedule from 8 to 
16 working hours [14]. In the third step, as a consequence of the taken decision, we must 
subordinate all teams and machines which cooperate with the crane. In the fourth step we 
analyze whether the resources pose a threat of becoming bottlenecks of the system. In case 
when internal factors constrain the whole system, we must return to step one and identify 
constraints one more time. While implementing a production improvement in accordance 
with TOC we can expect an increase of profits. The example of practical application of 
Theory of Constraints is a project management method – scheduling method using critical 
chain and buffer management CCS/BM.  

2.2 CCS/BM methodology 
Chronic problems appearing in realization of construction tasks which cannot be removed 
even with the use of advanced technologies became a reason for development of CCS/BM 
methods [11]. Classic scheduling methods used in construction projects CPM/PERT are 
characterized by utilization of time used for completing separate activities with regard to 
time limits resulting from valid, approximate, standard data. Goldratt perceives such 
reasoning as inappropriate and in his work [2] even calls this process ‘a thief of time’, 
whereas Turner [16] analyzes the influence of  time reserve dispersion on revenue gained 
from undertaking. He assumes that a project consists of  n tasks and each of them is afflicted 
with a contingency (randomness). Moreover, on the assumption that there is an even 
scheduling of time needed for task completion, it has a standard  σ deviation. Thus, an 
overall contingent reserve equals nσ. The rights to manage it are dispersed. Every 
participant of the project can manage their time reserve. From the point of view of a project 
manager an optimal situation would be if he could manage the time himself for the 
following reasons: reserves not utilized by separate participants of activities would not get 
wasted and total  time reserve could be smaller than in the first case. From the calculations 
presented by Turner it results that a total time reserve should equal  (n)1/2σ  which is a much 
smaller value than nσ.  
Implementation of a method of time reserve aggregation results in a significant reduction of 
project costs. Moreover, lack of time reserve for a project manager often leads to a failure in 
meeting the deadlines. Goldratt recalls some known examples: a tunnel under British 
Channel or drilling towers in the North Sea. The size of time reserves and duration of 
separate activities (not taking into consideration its internal reserves) is one of the basic 
problems of CCS/BM. During developing of CCS/BM method Goldratt was basing on the 
following psychological assumptions: 
• Student Syndrome – ‘do not begin work before all possibilities and time limits are 

used’; 
• Parkinson’s Law – ‘every work will be done in a assigned time or longer’;   
• roadrunner mentality – ‘real race against time’, [7]; 
• Conkling’s Roadunner – Geococcyx californianus is the quickest runner among its species 

reaching the speed of 30 km/h, it never moves slowly; 
• Murphy’s Law – ‘anything that can go wrong, will go wrong’. 
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Goldratt proposes time reduction for a completion of an individual processes together with 
informing tasks executors only about due dates. A schedule including time buffers is 
accessible exclusively for a project manager. Participants, not possessing any time reserves, 
try to complete their tasks as quick as possible (roadrunner mentality), start their job with a 
full capacity (Student Syndrome), in case of threat of falling behind the deadline (Murphy’s 
Law & Parkinson’s Law) the project manager has time reserves to modify and steer the 
course of works. 
Goldratt solves the problem of time reserves in an arbitrary manner. Namely, he introduces 
reduction of an activity duration by half (50%) and creates time buffers of a 50% value of a 
new, shortened activity duration. In reference to sub-critical chains Goldratt calls it a 
feeding buffer FB, whereas behind a critical chain he places a project buffer PB. According to 
the following assumptions: 
• Project buffer PB is a time reserve placed at the end of critical chain, staying to project 

managers disposal, introduced in order to protect completion of a project, calculated on 
the basis of critical chain time duration (according to Goldratt a project buffer is 25% of 
critical chain duration), there is only one project buffer in scheduling.     

• Feeding Buffer FB is a time reserve placed at the end of non-critical chain (feeding 
chain) staying to managers disposal in order to protect tasks placed in a critical chain, 
introduced as a protection of deadline of critical tasks, calculated on the basis of non-
critical chain duration (in Goldratt’s method a feeding buffer equals 25% of non-critical 
chain duration), there are as many feeding buffers as the number of non-critical chains 
(FB appears always when a non-critical chain links with a critical chain). 

• Resource buffer RB is a time reserve placed in schedule before entering of a new 
resource into a critical chain, calculated on the basis of logistic dependences and 
possibilities, introduced in order to ensure initiation of a process in a critical chain, in a 
planned due date. 

• Critical chain CC is a set of processes appearing in front of a project buffer, determined 
by: activities’ duration time,, their technical sequence of completion, accessibility and 
resource requirements; processes in a critical chain are deprived of time reserves taken 
into consideration in CPM/PERT (according to Goldratt the length of a critical chain is 
calculated as 50% of critical path CP); in a critical chain cannot appear any processes not 
having a direct influence on due task time (owing to time, technical or resource 
constraints); in case of appearing of more than one critical path one must choose one of 
them and transform a critical chain  (there can be only one critical chain). 

Figure 1 presents a graph of activities 1-2-3-4-5 lasting adequately 16,4,8,8,4 time units. There 
are dependences between activities shown and their sequence has been marked in figure 1. 
According to CCS/BM methodology and applying Goldratt’s assumption concerning a 
duration of time of processes and length of feeding (FB) and project buffer (PB) we obtain a 
graph depicted in figure 2.   
An individual assessment, based on system analysis of shortening separate processes, 
creation of critical chain and size of feeding and project buffers allows for creation of 
rational schedule including not only technical  but also resources, organizational, financial 
constraints. Dependencies between process duration time, critical chain buffer and optimal 
utilization of resources with application of mementic algorithm (HEA) to calculations have 
been thoroughly examined. Expansion of implemented in financial calculations method of 
contingency onto area of scheduling of construction projects with application of TOC and 
CCS/BM methods accompanied by HEA might lead to shortening of time and costs of a 
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building process. Works concerning this problem will be continued in the future by the 
authors.   
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Fig. 1. Graph of activities and times of their duration in a classic formulation. 
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Fig. 2. Graph of activities and time of their duration according to CCS/BM including project 
(PB) and feeding buffers (FB). 

3. Hybrid Evolutionary Algorithm 
Hybrid evolutionary algorithm was proposed by Bożejko and Wodecki [1] and it is a general 
method of solving discreet optimization problems. Therefore some elements of the 
algorithm have to be addressed in detail to use it for solving automation problems in 
construction, especially the method of the problem’s code for HEA, determining of set of 
fixed elements and  local optimization approach. 
The algorithm starts by forming residual population 0P  (which can be randomly formed). 
The best element of population 0P is adopted as suboptimum solution *π . Let i be the 
algorithm iteration number. New population i+1 (i.e. set 1iP + ) is generated as follows. For 
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current population iP  a set of local minima iLM  is fixed (by carrying out procedure 
( )LocalOpt π  for each element iPπ ∈ ). Elements occupying the same positions in the local 

minima are fixed (procedure ( , )i iFixeSet LM FS ), forming a set of fixed elements and 
positions 1iFS + . Each permutation of new population 1iP +  has fixed elements (in fixed 
positions) from set 1iFS + . Free elements are randomly assigned to the remaining 
(unoccupied) positions. If there is a permutation iLMβ ∈  and *( ) ( )F Fβ π< , then β  is 
adopted as permutation *π . The algorithm stops when it has generated a predetermined 
number of generations. 
We apply following notation: 
 

*π : sub-optimal solution determined by the algorithm, 
η : number of elements in population (the same in each generation), 

iP : population in the iteration i of algorithm, 1 2{ , , ... , }iP ηπ π π= , 

( )LocalOpt π : local optimization algorithm to determining local minimum, 
where π  is a starting solution of the algorithm, 

iLM : 
a set of local minima in iteration i, 1 2ˆ ˆ ˆ{ , , ... , }iLM ηπ π π=  where 

ˆ ( ),j jLocalOptπ π=    , 1,2, ... , .i
j P jπ η∈ =  

iFS : 
a set of fixed elements and position in permutations of 
population iP , 

( , )i iFixSet LM FS : a procedure which determines a set of fixed elements and 
positions in next iteration of evolutionary algorithm, , 

( )iNewPopulation FS : 
a procedure which generates a new population in next iteration 
of the algorithm, 1 ( )i iP NewPopulation FS+ = . 

The code of the proposed hybrid evolutionary algorithm is given below and figure 3. 
 
 Algorithm (HEA) 
        Initialization:  
                             randomly formed population 0

1 2{ , , ... , }P ηπ π π= ; 

                             *π = the best element of population 0P ; 
                              Iteration number  i=0;     
                             0FS = ∅ ; 
  repeat 
          Determine a set of local minima 1 2ˆ ˆ ˆ{ , , ... , }iLM ηπ π π= , where 

   ˆ jπ = LocalOpt( jπ ),  ;i
j Pπ ∈  

           for  j:=1  to  η   do    
                                                if *ˆ( ) ( )jF Fπ π<   then  * ˆ ;jπ π←  

           1 ( , )i i iFS FixSet LM FS+ = ;  {fix set} 

                                        1 : ( )i iP NewPopulation FS+ = ; {generate new population} 
                                        i=i+1; 
  not until Stop Criterion (exceeding time or a number of iterations). 
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Fig. 3. Hybrid evolutionary algorithm. 

4. Problem coding and notation 

The problem can be defined as follows. There are: a set of n jobs J={1,2,…,n}, a set of m 
machines M={1,2,…,m}. Job j∈J, consists of a sequence of m operations Oj1, Oj2,…, Ojm. 
Operation Ojk corresponds to the processing of job j on machine k during an uninterrupted 
processing time pjk. We want to find a schedule such that the maximum completion times is 
minimal. Such a problem is known as a flow shop problem in literature. 
Let π =(π(1), π(1),…,π(n)) be a permutation of jobs {1,2,…,n} and Π be the set of all 
permutations. Each permutation π∈Π defines a processing order of jobs on each machine. 
Completion time of job π(j) on machine k can be found using the recursive formula: 

Cπ(j)k=max{Cπ(j-1)k, Cπ(j)k-1}+pπ(j)k}, 

where π(0)=0, C0k=0, k=1,2,...,m  and  C0j=0, j=1,2,...,n.  
Local optimization (procedure LocalOpt) 

The local search (LS) method is a metaheuristic approach designed to find a near-optimal 
solution of combinatorial optimization problems. The basic version of LS starts from an 
initial solution 0x . The elementary step of the method performs, for a given solution ix , a 
search through the neighborhood ( )iN x  of ix . The neighborhood ( )iN x  is define by move 
performed from ix . A move transforms a solution into another solution. The aim of this 
elementary search is to find in ( )iN x  a solution 1ix + with the lowest cost functions. Then the 
search repeats from the best found, as a new starting solution. 

Start 
iter := 0 

Random population

Local optimization Descent Search 
or Tabu Search 

Auto-tune of the 
parameters

Changing of the 
element’s age 

Deleting the 
oldest elements

Inserting the 
new elements

Determining 
free elements 
and positions

iter > Max_iter

No

Yes

iter:= iter+1

End
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          Local search algorithm  
 Select a starting point: x ;    
          : ;bestx x=  
 repeat 
        Select a point ( )y N x∈  according to the given criterion  
                   based on the value of the goal function ( )F y ; 

    : ;x y=  
                        if  ( ) ( )bestF y F x>  then  : ;bestx y=  
 until  some termination condition is satisfied. 
 
A fundamental element of the algorithm, which has a crucial influence on quality and time 
of computation, is a neighborhood. A neighborhood is generated by the insert moves in the 
best local search algorithms with the permutation representation of the solution. 

A set of fixed elements and position (procedure FixSet) 

A set of fixed elements and positions iFS  (in i-th iteration of the algorithm) consists of 
quads ( , , , )a l α ϕ , where a is an element of the set N ( a N∈ ), l is a positions in a solution 
( 1 l n≤ ≤ ) and ,α ϕ  are attributes of a pair ( , )a l . Parameter α  means „fitness” and decides 
on belonging to the set, ϕ  is an „age” – element is removed from the set after exceeding 
some number of iterations (here: 3 iterations). 
In every iteration of the algorithm, after determining the local minima (procedure LocalOpt), 
a new set FSi+1 = FSi is established. Next, a FixSet(LMi, FSi) procedure is called, in which 
there are executed the following operations :  
a. changing of the age of each element,  
b. deleting the oldest elements,  
c. inserting the new elements. 
Inserting elements 

Let Pi = {π1, π2, ..., πη} be a population of η elements in iteration i. For each permutation πj 

from Pi, applying the local search algorithm (LocalOpt(πj) procedure), a set of local minima 
1 2ˆ ˆ ˆ{ , , ... , }iLM ηπ π π=  is determined. Each permutation  

ˆ ˆ ˆ ˆ( (1), (2), ... , ( ))j j j j nπ π π π= , 1,2, ...j η= . 
 

Let  

ˆ ˆ( , ) { : ( ) }i
j jnr a l LM l aπ π≥ ∈ = . 

 

It is a number of permutations from the set LMi, in which there is an element a in the 
position l. If a N∈ is a free element and  

( , ) ( )nr a l iα
η

= ≥ Φ  

then the element a is fixed in the position l.  
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A new population (procedure NewPopul) 

To generate a new population Pi+1, randomly drawn free elements are inserted in remaining 
free positions of the elements of population Pi. 
 
            NewPopulation( iFL ) 
                   1 ;iP + ←∅  
                   Determine a set of free elements:  
                         1{ : ( , , , ) }iFE a N a l FSα ϕ += ∈ ∃ ∈   
                   and a set of free positions  
                         1{ : ( , , , ) }iFP l a l FSα ϕ += ∃ ∈ ; 
    for j:=1 to η  do   {Inserting of fixed elements} 
    for each  1( , , , ) ia l FSα ϕ +∈   do 
                         ( ) : ;j l aπ =  

                         ;W FE←  
     for s:=1 to n do     {Inserting of free elements} 
  if s FP∉  then  
                                     ( )j s wπ = , where ( )w random W=  and \{ }W W w← ; 

  1 1 { }i i jP P π+ +← ∪ . 

 
Function random generates from a uniform distribution an element of the set W. 
Computational complexity of the algorithm is O(η n). 

5. Case study 
The subject matter of the analysis is a network model of an investment and construction 
project (ICP) according to [9,13], containing of n = 16 of linked building processes. There has 
been a computational test carried out in order to prove the possibility of time buffers 
influence on regularity of workers’ employment in an enterprise schedule. With regard to 
taken constraints the values of a objective function F were adopted as follows:  

 
1 1

1( ) ( )
T n

j i i
j i

f x q x d r
T= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑  (1) 

where: 
nx R∈ , 

x=(x1, x2,…, xn) – vector of moments of initiating tasks’ execution,  
xi ∈ [ai, bi], 
ai – earliest moment of task beginning, 
bi – latest moment initiating tasks’ execution,       
qj(x) – number of workers employed on a j day, j = 1,2,…,T, 
T – time horizon,  
di – time of process duration, 
ri – number of workers employed in order to carry out the process. 
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Below there is presented a network model of an exemplary enterprise taking into 
consideration time buffers; feeding FB [12] and project buffer PB. There is information 
concerning a number of activities, time of activities according to Goldratt method [4] and 
forecasted resources (number of employees). 
 

 
Fig. 4. The graph of ICP  

 

Process 
number 

Duration 
time 

Earliest term 
of initializing

Earliest 
term of 

finishing 

Latest term of 
begginning 

Latest term 
of 

finishing 

Number 
of 

workers 

1 4 0 4 0 4 2 
2 8 4 12 4 12 5 
3 16 12 28 12 28 8 
4 8 28 36 28 36 6 
5 12 36 48 36 48 5 
6 4 48 52 48 52 4 

PB 26 52 78 52 78 0 
7 4 12 16 16 20 6 
8 4 16 20 20 24 7 

FB 4 20 24 24 28 0 
9 4 12 16 18 22 8 
10 8 16 24 22 30 10 
FB 6 24 30 30 36 0 
11 4 28 32 40 44 6 
12 4 32 36 44 48 6 
FB 4 36 40 48 52 0 

Table 1. The data of activities 
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Table 1 includes basic information concerning a construction project modeled by network. 
Basic time parameters forecasted to carry out construction works were counted. Numerical 
data necessary in order to carry out optimization calculations are presented below: 
 
 

 

 
 

Fig. 5. The Gantt Chart, value of objective function for earliest terms f=320.15 for latest terms 
f=288.77. 

Figure 5 depicts The Gantt Chart together with a graph of workers’ employment for earliest 
and latest terms of works’ beginning. For these extreme terms the values of goal function 
were calculated, i.e. f=320.15 and f=288.77 adequately.  
Figure 6 shows Gantt’s linear graph presenting an optimal schedule of a construction 
enterprise, for a taken goal function.  Placement of a critical path does not change, whereas 
non-critical activities were put on a time scale taking into account time buffers (FB), in an 
optimal way with regard to a minimal value of a goal function. 
Below Gantt’s linear graph there is a graph of workers’ employment corresponding to 
planned tasks. It shows the best solution concerning a minimal average divergence from an 
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average level of workers’ employment. A striped line shows time buffers which are in fact a 
time reserve enabling its utilization for an optimal placement of tasks on a time axis of 
construction works, so that the possible level of workers’ employment can be kept regular. 
 
  
 

 
Fig. 6. The Gantt Chart after optimization, minimal value of objective function f=274.00. 

In an analyzed example there has been a genetic algorithm (GA) applied ensuring after 
1000000th iteration the result of f= 274.00, whereas after application of hybrid evolutionary 
algorithm (HEA) the result of f=274.00 just after 100 iterations. The calculations were carried 
out on a Pentium IV computer with a clock of 3 GHz. The time of calculations in the first 
case was 2 seconds whereas in the second – below 1 millisecond, i. e. over 2000 times faster.  

6. Summary  
The calculations have been based on an elaborated optimization programs with application 
of a genetic algorithm GA a hybrid evolutionary algorithm. For a presented optimization 
task of n = 16 size, achieved values of a goal function equal: in case of application of a 
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genetic algorithm (GA), fmi=274.00 whereas for a hybrid evolutionary algorithm (HEA) also 
fmin=274.00. While analyzing the results in case a genetic algorithm (GA) from an example 
[13], hybrid evolutionary algorithm (HEA) and after introduction of time buffers according 
to CCS/BM methodology one can state that application of time buffers of a zero load of 
resources (team workers) increases the extend of a optimization task and ensures the 
smallest value of a total divergence from an average level of employment. 
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1. Introduction 
The Traveling Salesman Problem (TSP) is a classic Combinatorial Optimization problem. 
Given a graph G=(N,M), where N={1,...,n} is the set of nodes and M={1,...,m} is the set of 
edges, and costs, cij, associated with each edge connecting vertices i and j, the problem 
consists in finding the minimum length Hamiltonian cycle. The TSP is NP-hard (Garey & 
Johnson, 1979) and one of the combinatorial optimization problems more intensively 
investigated. The size of the larger non trivial TSP instance solved by an exact method 
evolved from 318 cities in the 80’s (Crowder & Padberg, 1980), to 7397 cities in the 90’s 
(Applegate et al., 1994) and 24978 cities in 2004. The best mark was reached in 2006 with the 
solution of an instance with 85900 cities (Applegate et al., 2006). The TSP has several 
important practical applications and a number of variants (Gutin & Punnen, 2002). Some of 
these variants are classic such as the Peripatetic Salesman (Krarup, 1975) and the M-tour 
TSP (Russel, 1977), other variants are more recent such as the Colorful TSP (Xiong et al., 
2007) and the Robust TSP (Montemanni et al., 2007), among others. 
A new TSP variant is introduced in this chapter named The Car Renter Salesman Problem 
(CaRS). It models important applications in tourism and transportation areas and represents 
a complex variant that challenges the state of the art. In this paper the new problem and 
some variations are presented, its complexity is analyzed and some related problems are 
briefly overviewed. A memetic algorithm is proposed for the problem and it is compared to 
a hybrid GRASP/VND algorithm. 
CaRS Problem is introduced in Section 2, where several conditions under which this variant 
can be presented are introduced. Section 3 presents two metaheuristic methods for the 
investigated problem. In order to compare the performance of the proposed approaches, a 
set of instances introduced for the new problem, named CaRSLib. This set contains 
Euclidean and non-Euclidean symmetric instances with number of cities ranging from 14 to 
300 and number of cars between 2 and 5. A set of 40 instances is used in the computational 
experiments. The heuristics proposed in Section 3 establish the first upper limits for 
solutions of CaRSLib of instances. The results of computational experiments comparing the 
performance of the proposed approaches are presented in Section 4. Statistical tests are 
applied to support conclusions on the behavior of the proposed algorithms. According to 
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those results, the Memetic Algorithm is pointed as the best approach for CaRS considering 
the tested cases. Final conclusions and future directions for the research of algorithms for 
CaRS and its variations are addressed in Section 5. 

2. The car renter salesman problem 
2.1 The rental car industry 
Today over 90 significant economic size car rental companies exist in the world market (Car, 
2008). The importance of the car rental business can be measured both by the enterprise 
turnover as by the size of the companies that provide the service. For example, Hertz is a 
company in the car rental segment with wide accessibility of providing the services at 
approximately 8,000 locations in approximately 145 countries (Hertz, 2009). The Enterprise 
has more than 878,000 vehicles in its rental and leasing fleet and operates across 6,900 local 
markets (Enterprise, 2009). Avis operates in more than 3,800 locations all over Europe, 
Africa, the Middle East and Asia. In December 2007, the company operated an average fleet 
of 118,000 vehicles (Avis, 2009). Avis Budget Group Inc. earned $ 5.1 billion dollars in 2009 
(Avis, 2010). In 2009, the Enterprise Holdings Inc. which owns today the National Car 
Rental, Alamo Rent A Car and WeCar earned about 12.1 billion dollars (Conrad & Perlut 
2006; Wikipedia, 2010). These numbers represent only part of the market that also has other 
major car rental networks such as Dollar and Hertz. The world market in 2012 is estimated 
at 52.6 billion dollars (Car Rental, 2008). 
Besides being itself a major business, spending on car rentals may represent a significant 
portion of the activities involving tourism and business. Currently the rental options are 
becoming increasingly diversified with the expansion of the companies, justifying the search 
for rent schemes that minimize the total cost of this form of transport. 

2.2 Models of combinatorial optimization in the car rental industry 
Among the various logistical problems of this branch of activity, the literature describes 
specific studies of combinatorial optimization in the Fleet Assignment Problem (Lia &Tao, 
2010), the Strategic Fleet Planning and Tactical Fleet Planning (Pachon et al., 2003), the 
Demand Forecast (Edelstein & Melnyk, 1977) and the car fleet management problem with 
maintenance constraints (Hertz et al. 2009). Logistic problems that occur in the car rental 
industry are reviewed by Yang et al. (2008). These studies focus on the viewpoint of the car 
rental industry, however, the customer’s point of view has not yet been the subject of 
published research. 

2.3 The car renter salesman problem 
In general, under the viewpoint of a user of rented cars, the goal is to minimize the costs to 
move from a starting point to a destination.  On the other hand, when someone rents a car, it 
is assumed that it meets the requirements of comfort and safety. During the travel, in 
addition to the costs of renting the car, at least the costs of fuel and the payment of fees to 
travel on the road should be considered. Let G=(N, M, W) be a graph where N={1,...,n} 
represents the set of vertices, M ={1,...,m} is the set of edges and W={1,...,w} is the set of 
distances between the vertices or the length of the edges of the set M. The problem 
described in this paper has the following features: 
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1. Several types of cars are available for rent, each of them has own characteristics, that is, 
specific operational costs. These costs include fuel consumption, fees that have to be 
paid to travel on roads and the value of the rent. The fees that have to be paid to travel 
on the roads may depend on the type of the car and on the specific roads chosen for the 
route. The value of the rent can also be associated with a cost per kilometer. Thus, 
without loss of generality, these costs can be considered as a function of each car on a 
value associated to the edges (i,j) of graph G. The operational cost of a given car k to 
traverse an edge (i,j) is denoted by k

ijc . 
2. A car rented in a given company can only be returned in a city where there is an agency 

of the same company. It is therefore not allowed to rent a car of a given company to 
travel on a certain segment of the route, if that car cannot be returned on the last city of 
the segment – there is not an agency of this company in the last city of the segment. 

3. Whenever it is possible to rent a car in a city i and return it in city j, i≠j, there is an extra 
for returning the car to its home city. The variable k

ijd  represents the expense to return 
car k to city j when it was rented in city i, i≠j. 

4. The tour begins and ends in the city where the first car is rented, the city that is the 
basis for the CaRS. 

5. The return cost is null in case the tour is completed with a single car which is delivered 
in the same town it was rented. This case corresponds to the classic TSP considering the 
cost of other conditions associated only with the selected car. 

6. Cars with the same characteristics rented in a single rental car company can be hired 
under different costs, depending on the city they where rented or on the contract 
negotiation. Therefore, without loss of generality, the designation of rent can be 
efficiently controlled by decisions related to cars, not considering the companies. The 
set K={1,...,k}, |K|=k is the set of different cars that can be in the solution. 

7. The costs of returning the rented car may be strictly associated with the path between 
the city where the car is delivered and the city where the car was rented or these costs 
can be a result of independent calculation. 

The objective of the proposed problem it to find the hamiltonian cycle that, starting on an 
initial vertex previously known, minimize the sum of total operating costs of cars in the 
tour. The total operating costs are composed of a parcel that unifies the rent and other 
expenses in a value associated to the edges, and a parcel associated to return the car to a city 
that is not its basis, calculated for each car and for each pair of cities origin/return in the 
cycle. The CaRS cycle may also be understood as obtained by the union of up to t 
Hamiltonian paths developed on up to t disjoint subsets of vertices of G. Each of the paths is 
accomplished with a different car or a car different from those used for the neighboring 
paths in the cycle. Therefore the cities that compose the cycle can be grouped into up to t 
different subsets of vertices of G that are covered by cars at least distinct from each other in 
the neighboring paths in the cycle. 
Figure 1 illustrates, in a complete graph with six vertices, a typical instance of CaRS. In the 
example there are three different rental cars. Figures 1(a), (b) and (c) show the accounting of 
the costs involved in the displacement of each type of car. Note that, unlike the classical 
traveling salesman cycle, the solution of CaRS depends on the city chosen to be the starting 
point of the tour, the basis of the salesman. This fact is due to the rate of return is linked 
both to the starting city and the direction of devolution.  In the example this city is 
represented by vertex F. 
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Fig. 1. Costs associated to each car 
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(a) Costs to return car 1 when 

rented on city F 
(b) Costs to return car 2 when 

rented on city B 
(b) Costs to return car 3 
when rented on city C 

Fig. 2. Return costs 

Figure 2 shows, for the example in Figure 1, some of the costs of returning the cars to their 
bases. Delivery costs appear as underlined numbers next to vertices. Figure 2(a) shows the 
graph of return of car 1 when rented on vertex F. Figure 2(b) shows the graph of return of 
car 2 when rented on vertex B and Figure 2(c) the return of car 3 when rented on vertex C. In 
the general case return costs are known of all cars when rented in any of the cities. 
A solution of the problem exemplified in Figures 1 and 2 is exhibited in Figure 3. This 
solution considers a case where all available cars are rented and no car is rented more than 
once. The cost of the cycle, according to the solution shown in Figure 3, corresponds to the 
cost of path F-A-B for car 1, added to the cost of path B-E-C for car 2, added to the cost of 
path C-D-F of car 3, in a total of 6 unities. To this value it is necessary to add the cost of 
returning the car to their bases. For car 1, the cost of the return from B to F is one unity. For 
car 2, the cost of the return from C to B is two unities and, for car 3, the cost to return to C 
when the car is delivered in F is two unities. Thus, the cost of the final solution is 11 unities. 
The CaRS Problem has several variants in accordance with the real conditions of the 
problem. The problem can be classified according to the availability of cars, the alternatives 
of return, the existence of symmetry of the cost matrix and the existent links between the 
cities, etc. 
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Fig. 3. Costs of the route of the exemplified problem 

2.4 Variants of the car renter salesman problem 
The Renter Salesman admits several specific situations being classified according to: 
1. Availability of rental cars 
Since there is no guarantee that the rental companies are present in all cities of the tour, it 
may not necessarily be assumed that any car can be rented in any city. The case in which all 
cars can be rented in all cities is called total. In any other case the problem is called partial. In 
this study, when no observation is made otherwise, the problem is considered total. 
2. Alternatives to return the car to its basis 
Since there is no guarantee that the rental companies operate services for receiving cars in all 
cities, it may not necessarily be assumed that any rental car can be returned in any city. To 
distinguish these different situations, the case in which all cities can receive all cars is called 
unrestricted. In any other situation the problem is called restricted. In this paper, when no 
observation is made otherwise, the problem is considered unrestricted. 
3. The integrity of the contract 
When the problem does not allow the same type of car is rented more than once on the tour, 
the problem is called without repetition, in this case k≥t. The case without repetition where all 
cars have to be rented is called exact, in this case k=t. In any other situation the problem is 
called with repetition. In this paper, when no observation is made otherwise, the problem is 
considered without repetition. 
4. Calculation of the costs of returning a rental car 
The costs of returning the cars may be made of values independent of the topology or 
network restrictions. In this case the problem is called free. In the event that the cost of 
returning a car is calculated taking into account the route used by the car to return to its 
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base, the problem is said to be bonded. In this paper, when no observation is made otherwise, 
the problem is considered free. 
5. Symmetry of the distances between the cities 
When k

ijc = k
jic  for 1 ≤ i,j ≤ n, 1≤ k ≤ ncars, where ncars denotes the number of cars available in 

a given problem instance, the problem is said to be symmetric, otherwise the problem is said 
to be asymmetric. 
6. Existence of links in the connection graph that models the problem 
When the graph that models the problem is complete, the problem is called complete, 
otherwise the problem is called incomplete.  

2.5 The difficulty of solving CaRS 
The problem basically consists in determining a Hamiltonian cycle in a graph G by 
composition of paths developed on the vertices of G. Let T={1,...,t} denote the set of indices 
of up to t subgraphs Hr of G, r∈T. Calling V(Hr) the vertices of Hr, the subgraphs Hr of CaRS 
have the following properties. 

 ( )
2

t

r
r

V H N
=

=∪  (1) 

 ( ) ( ) 1s rV H V H ≤∩      ,r s∀  (2) 

Constraint (1) determines that the union of all paths visits all vertices of G. Constraints (2) 
implies that two different subgraphs never have more than one vertex in common, a 
condition to prevent formation of subcycles. Note that the constraints (1) and (2) are not 
sufficient to guarantee the cycle of the CaRS. It is also necessary that the t subgraphs 
considered three to three, four to four, and so on, until t-1 to t-1, do not have more than one 
vertex in common. 
Once this problem deals with Hamiltonian paths, each path done by a car in one subgraph 
Hr visits all vertices of Hr. The path of subgraph Hr has to be assigned to a car different from 
the cars assigned to neighbor paths during the construction of an Hamiltonian cycle in G. 
The costs of the edges of each subgraph correspond to the operation costs of the car 
traversing Hr. Furthermore, when t≥2 the total cost considers the return cost of each car 
rented in city i and returned in city j, i≠j. Hamiltonian cycle and Hamiltonian path problems 
are well known NP-complete problems (Garey & Johnson, 1979). Due to what was 
previously exposed, the difficulty of solving CaRS is at least the same as the TSP. 
Nevertheless, although some solutions of the TSP are also solutions of CaRS, the latter has a 
number of feasible solutions greater than the former and incorporates all the requirements 
of the TSP, like other several classes of vehicle routing problems which are known to be 
more difficult than the TSP (Ralphs et al., 2003). 
The Traveling Salesman Problem is a particular case of CaRS in the situation where there is 
only one vehicle available for rent. Note that the solution space of CaRS is exponentially 
greater than the solution space of the Traveling Salesman Problem. Considering G =(N,M) a 
complete graph and that CaRS is total, unrestricted and without repetition, any permutation 
of the vertices of G is a feasible solution for the rental car problem considering only one of 
the k possible cars. Once there are k cars available for rent, there are k.n! different feasible 
configurations that meet the condition of use of only one different car in CaRS. From k ≥2 
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each hamiltonian cycle of the car renter salesman can be partitioned in up to k-subpaths in 
sequence and to each possibility of composition of such partitions a distinct cost for the 
route can be assigned. The possibility of this single value is guaranteed due to the 
composition of the costs related to the return fee of the rented cars with the costs of the 
trajectories of independent costs of each car. The number of possible partitions associated to 
each hamiltonian cycle in G is equal to the number of different ways the set of n cities of the 
cycle can be divided in s groups of cities that are visited by s different cars, k ≥ s ≥ 2. The 
number that counts this process of division of a set in disjoint sets that go from 2 to k is the 
Stirling number of the second type. In this way, the number of configurations of the space of 
solutions of CaRS is at least O(2n) greater than the space of solutions of the Traveling 
Salesman Problem, since that for k = 2 the associated number of Stirling is O(2n) 
(Amdeberhan et al. 2008). For a general case of CaRS the dimension of the space of solutions 
is still greater once there is not a theoretical limit for the number of different cars to be 
considered in the problem. 

3. Metaheuristic algorithms 
This section presents two heuristics for the investigated problem. The first one is a Greedy 
Randomized Adaptive Search Procedure (GRASP) (Feo & Resende, 1995) combined with 
Variable Neighborhood Descent (VND) (Mladenović & Hansen, 1997) in the local search 
phase. The second heuristics is a Memetic Algorithm (Moscato, 1989).  

3.1 GRASP with VND 
This algorithm has a pre-processing phase where nCar optimal TSP solutions are obtained 
with the Concorde TSP Solver (Applegate et al., 2001), one for each available car, where nCar 
is the number of cars available for the instance being considered. The constructive phase of 
the GRASP hybridized with VND, named GVND, starts with a random selected car at the 
home city. A path is built each iteration between two cities: a known origin and a 
destination city randomly chosen among the cities yet not considered by the algorithm. A 
Restricted Candidate List (RCL), with size α, is built with the cities that have the cheapest 
return rates for the car being considered in the current iteration. The destination city is 
selected at random, based on a roulette wheel, from the RCL and a path between the origin 
and the destination city is built. Except for the last iteration, the path is built based on the 
tours built in the pre-processing phase. In the first iteration the path between the origin and 
destination cities is obtained in the optimal solution correspondent to the first selected car. 
The path of the i-th car, 1 < i < nCar, is also obtained from the optimal solution that 
corresponds to the i-th car, but in this case a procedure to remove cities already considered 
in paths constructed in previous iterations may be necessary. Suppose that city b, between 
cities a and c in the path built in the i-th iteration, is already in a path built in iteration j, j < i. 
Then the procedure removes city b from the i-th path and includes a link between cities a 
and c. The initial starting city is the origin of the first iteration. The origin city of iteration i, 
i > 1, is the destination city of iteration i-1. The destination city of the last iteration is the 
initial starting city. In the last iteration, the nearest neighbor heuristic is used to build the 
path of the last considered car.   
In the local search phase a VND metaheuristic was used to explore the search space of three 
neighborhood structures named InvertSol, Insert&Saving and Shift. InvertSol is a simple low 
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time consuming heuristics that reverses the sequences of cities of an input solution. With the 
reversal, though the same cars traverse the same sets of cities, the cost of rent and fees for 
returning the car to where they were rented change. The Insert&Saving procedure searches 
for a car insertion in a given solution that yields a decreasing of its cost. Let s be a solution in 
which there is at least one car that is not assigned to a path in s. Insert&Saving method 
randomly chooses a not assigned car and searches the best position to insert it in s. The 
procedure verifies the cost of the insertion of the new car in every point of s. If any of these 
insertions produces a solution with a cost lower than the cost of s, the new solution is set as 
the current solution in the local search. The procedure continues until all non-assigned cars 
have been considered for insertion. In the third procedure, Shift, a neighboring solution s’ of 
a solution s is generated by exchanging two cities within the path of one car of s. The whole 
neighborhood of each solution is searched in the local search procedures.  

3.2 Memetic algorithm  
Algorithm 1 shows the pseudo-code of the Memetic Algorithm (MA) developed for CaRS. 
The input parameters are: number of generations (nOffspring), population size (sizePop), 
recombination rate (txCros) (the number of individuals that reproduce in each generation), 
mutation rate (txMuta) and renewal rate of the population (txRenw).  
 

Algorithm 1 – Main Procedure of Memetic for CaRS 

1. main(nameInstance,sizePop,nOffspring,txCros,txMuta,txRenw) 
2.   instanceRead(nameInstance) 
3.   Pop[] ← generateInitPop(sizePop) 
4.   VNDlocalSearchPhase(Pop) 
5.   for i of 1 to nOffspring do 
6.     for j of 1 to sizePop*txCros do 
7.       dad,mom ←   parentsSelection() 
8.       son1, son2 ←  Crossover(dad,mom) 
9.       son1, son2 ←   carsMutation(son1,son2,txMuta) 
10.       VNDlocalSearchPhase(son1,son2) 
11.       if son1,son2 < Pop[dad],Pop[Mom] 
12.          Pop[dad] ←  son1, Pop[mom] ←  son2 
13.   generateNewIndividuals(sizePop*txRenw) 
14. return(Pop[0]) 

 

Chromosomes are represented in 2-dimensional arrays with n elements as illustrated in 
figure 4 for an instance with n = 11 and 5 cars. The second row corresponds to the sequence 
of cities visited in the tour. The elements in the first row correspond to cars. Let car c be 
assigned to the cities in the second row corresponding to indices i1 to im, that is, car c goes 
from city i1 to city im, then  the elements of the first row corresponding to indices i1 to im-1 are 
equal to c. The last city visited by a car is not assigned to that car in the chromosome, since 
the car is returned on that city and another car is rented there to continue the tour. The 
starting city (city 0) is not represented in the chromosome as the final destination. In figure 4 
four of the five available cars are used. The tour begins at city 0 with car 2 which passes 
through cities 6, 4, 3, 10 and is delivered in city 7 where car 1 is rented. Car 1 proceeds to 
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city 9 passing through city 1. Car 5 is rented in city 9, passes through cities 2 and 5 and is 
delivered in city 8 where the last car, 4, is rented. Car 4 is delivered in the starting city. The 
fitness of each chromosome is given by the inverse of the objective function, which means 
that the lower the value of the objective function the fittest the chromosome is. 
 

 
Fig. 4. Chromosome 

The initial population is generated with a version of the nearest neighbor heuristics adapted 
for CaRS in procedure generateInitPop( ) which receives the size of the population as input 
parameter. Let nCar be the number of available cars of a given instance. The algorithm 
randomly selects a car c and a destination city j for c, j ≠ 0. Then a path between cities 0 and j 
is built with the nearest neighbor heuristic. City j is set as the new origin and a new car and 
a new destination city are randomly selected. The procedure continues until all cities are 
added to the tour or until there is only one car available. In the latter case, the last available 
car is assigned to a path built with the same heuristics between the previous destination city 
and the starting city, closing the tour. In step 4, each individual of the initial population is 
subjected to the same VND procedure used in GVND. 
Parents for recombination are selected with the roulette wheel method. A multi-point 
recombination operation adapted for CaRS is used to generate two children. The 
recombination operator is illustrated in Figure 5, considering an instance with n = 11 and 3 
cars. Two parent chromosomes, A and B, generate offspring C and D. In Figure 5 a 2-point 
operator is used. The first and third parts of chromosomes A and B are inherited by 
chromosomes C and D, respectively. A restoration procedure may be necessary to restore 
feasibility regarding the routes and car assignments. For example, after recombination the 
route of chromosome C is [0 3 1 8 10 1 9 4 5 10 6] which is not feasible since cities 1 and 10 
appear twice each and cities 2 and 7 are missing. Thus the route of chromosome C is 
replaced by [0 3 1 8 10 * 9 4 5 * 6] with asterisks replacing the second time cities 1 and 10 
appears. Each asterisk is then replaced at random by cities 2 and 7. The row corresponding 
to the car assignment of chromosome C after recombination is [1 1 1 1 2 3 3 2 2 2 2 3] which 
is not feasible for the problem considered in this paper, since each car can be rented only 
once. Thus, the car assignment of chromosome C is replaced by [1 1 1 1 2 3 3 * * * * 3] and 
each asterisk is replaced by car 3. Chromosome D is analyzed similarly. 
 

 
Fig. 5. Recombination operator 
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The solutions resulting from the recombination are subjected to mutation. The mutation 
operator verifies which vehicles are not in the solution represented in the chromosome. Each 
of these vehicles is inserted in the chromosome in a given segment defined in advance. The 
maximum size of each segment is defined as the mutation rate. The mutation operator is 
illustrated in figure 6 considering an instance with n= 11, 5 cars, and the mutation rate sets the 
size of the segments to 3. Cars 3 and 4 are not used in the solution shown in chromosome A of 
figure 6. The mutation operator inserts the missing cars in the solution, resulting on 
chromosome B. Cities 10 and 5 are chosen at random to be the starting cities of cars 3 and 4, 
respectively. Therefore, vehicle 5 is replaced by vehicle 3 in cities 10, 7 and 1 and car 4 replaces 
car 1 in cities 5 and 8, since these are the last two cities of the tour.   The sequence of cars is the 
resulting chromosome is [2 2 2 5 3 3 3 5 1 4 4]. A repairing function has to be utilized to restore 
the feasibility of the resultant chromosome, since car 5 appears in two different paths. The 
second time car 5 appears in the solution is removed, resulting on [2 2 2 5 3 3 3 * 1 4 4]. The 
asterisks are replaced by the car that appears in the city immediately before to the ones which 
the asterisks are assigned. In this example, the asterisks are replaced by car 3.     
 

 
Fig. 6. Mutation operator 

After crossover and mutation, the offspring is subjected to the VND method presented at 
GVND. The resulting solutions are compared with their parents and the best two 
individuals survive. Finally, part of the current population is replaced by new solutions 
generated with the constructive method used to create the initial population. The number of 
new individuals created with that procedure is given by the renewal rate and the 
individuals chosen to be replaced are those with the worst values of fitness. This renewal 
process promotes diversification and prevents premature convergence. 

4. Computational experiments 
This section presents the comparison between the performance of the GRASP/VND and the 
Memetic Algorithm, called GVND and MA, respectively. Since the problem introduced in 
this paper is new, a library of instances, named CaRSLib, was created with the purpose of 
testing the proposed algorithms. These instances have the following features: total (all cars 
can be rented in all cities), unrestricted (all cars can be delivered in any city), without repetition 
(each type of car can be rented at most once), free (the return costs are not correlated with 
instance topology), symmetric (costs to go from city i to city j and vice-versa are equal) and 
complete (the graph that models the instance is complete). The set consists of Euclidean and 
non-Euclidean instances. For each set, three groups of instances were created, the first is 
based on real maps, the second was formed with randomly generated data and the third one 
is based on the TSPLIB instances. The dataset, the description of each group of instances and 
file formats are available at http://www.dimap.ufrn.br/lae/en/projects/CaRS.php. 
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An exact backtracking algorithm was developed and adapted to CaRS. This method 
enumerates all possible configurations utilizing permutations of the available cars for each 
instance. The results were used to evaluate the solutions generated by the metaheuristic 
algorithms on the instances solved by the exact method. The algorithm was implemented in 
C++ and executed on an Intel Core Duo 1.67 GHz, 2GB RAM running Linux. The algorithm 
solved eighteen Euclidean and non Euclidean instances with n between 10 and 16 and 2 cars. 
Table 1 presents the results for the backtracking algorithm (column Backtrack) and the best 
results obtained by GVND and MA. Columns gap show the deviation of the best solution 
(Best) found by the metaheuristic algorithm from the optimum (#Opt). 
Table 1 shows that the performance of the memetic algorithm is satisfactory for small 
instances, obtaining the optimum for all investigated instances. The success rate of GVND is 
78% and the maximal deviation from the best solution is 3%. 
 

INSTANCE BACKTRACK GVND MA 
Name City Car T(s) #Opt T(s) Best GAP T(s) Best GAP 

Mauritania10e 10 2 1 540 1 540 0.00 1 540 0.00 
Mauritania10n 10 2 1 571 1 571 0.00 1 571 0.00 
Colombia11e 11 2 19 620 1 620 0.00 1 620 0.00 
Colombia11n 11 2 14 639 1 640 0.00 1 639 0.00 
Angola12e 12 2 266 719 1 719 0.00 1 719 0.00 
Angola12n 12 2 144 656 1 656 0.00 1 656 0.00 
Peru13e 13 2 1953 672 1 672 0.00 1 672 0.00 
Peru13n 13 2 1847 693 1 693 0.00 1 693 0.00 
Libia14e 14 2 31273 730 1 730 0.00 1 730 0.00 
Libia14n 14 2 28331 760 1 764 0.01 1 760 0.00 
BrazilRJe 14 2 44104 294 1 297 0.01 1 294 0.00 
BrazilRJn 14 2 35263 167 1 170 0.02 1 167 0.00 
Congo15e 15 2 455788 756 1 756 0.00 1 756 0.00 
Congo15n 15 2 412212 886 1 886 0.00 1 886 0.00 
Argentina16e 16 2 7603200 955 1 955 0.00 1 955 0.00 
Argentina16n 16 2 7612310 894 1 894 0.00 1 894 0.00 
BrasilRN16e 16 2 7609203 375 1 375 0.00 1 375 0.00 
BrasilRN16n 16 2 7613217 188 1 194 0.03 1 188 0.00 

Table 1. Results of Backtrack, GVND, MA 

The results shown in the following tables for GVND and MA were obtained on a PC Intel 
Xeon QuadCore W3520 2.8 GHz, 8G of RAM running Scientific Linux 5.5 64bits. The results 
refer to 40 CaRS instances, 20 of them are Euclidean and 20 are non Euclidean. Each group 
of instances is formed with 10 instances based on real maps, 5 random instances and 5 
instances based on TSPLIB (Reinelt, 1995). Thirty independent executions of each algorithm 
were performed for each instance. Two groups of experiments were performed with fixed 
processing times. In the first group the average processing times spent by GVND to find its 
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best solution for each instance was given to both algorithms.  In the second group the 
average processing times of the MA for each instance was fixed for both algorithms. 
Preliminary tests to tune the parameters of the proposed algorithms were executed on a set 
of 20 CaRSLib instances, with number of cities ranging from 14 to 300 and 2 to 5 vehicles. 
Twenty independent executions were performed for each instance. Two groups of tests were 
performed with the GVND. First, the algorithm was executed without the VND method and 
then the VND was included. The parameter α was set to 0.25. The maximum number of re-
starts was set to 300. An additional stopping criterion fixed 90 re-starts without 
improvement of the best current solution. The parameters chosen for the Memetic 
Algorithms are: nOffspring = 20, sizePop = 30, txCros = 0.60, txMuta = 0.40 and txRenw = 0.15. 
The stopping criterion was maxGen = 0.30nOffspring generations without improvement of 
the best current solution.  
 

INSTANCE GVND MA 
Name City Car #Best Avg SD Best Freq Avg SD Best Freq 

T(s) p-
value 

BrasilRJ14e 14 2 294 297 0 297 0 294 0 294 29 1 0 
BrasilRN16e 16 2 375 375 0 375 30 375 2 375 29 1 0.85 
BrasilPR25e 25 3 510 510 0 510 29 515 5 510 16 2 1 
BrasilAM26e 26 3 467 495 1 495 0 485 9 469 0 3 0 
BrasilMG30e 30 4 563 603 2 595 0 599 7 575 0 5 0 
BrasilSP32e 32 4 611 633 5 626 0 621 4 611 2 8 0 
BrasilRS32e 32 4 510 537 9 529 0 522 6 510 1 8 0 
BrasilCO40e 40 5 779 807 2 805 0 822 10 779 1 18 1 
BrasilNO45e 45 5 886 1008 0 1008 0 978 34 886 1 23 0 
BrasilNE50e 50 5 822 963 5 940 0 954 27 822 1 43 0.08 
Betim100e 100 3 1401 1723 8 1708 0 1692 89 1410 0 78 0.99 
Vitoria100e 100 5 1598 1802 75 1642 0 1891 87 1598 1 155 1 
PortoVelho200e 200 3 2827 3142 29 3041 0 3149 129 2827 1 466 0.98 
Cuiaba200e 200 3 3052 3379 88 3212 0 3414 80 3217 0 686 1 
Belem300e 300 4 4031 4635 121 4563 0 4425 76 4031 1 1804 0 
berlin52eA 52 3 8948 9020 35 8991 0 9081 72 8948 4 20 1 
eil76eB 76 4 1940 2228 42 2158 0 2077 43 1940 1 87 0 
rat99eB 99 5 3339 3439 42 3351 0 3513 75 3365 0 194 1 
rd100eB 100 4 9951 10107 81 9951 1 10364 172 10054 0 103 1 
st70eB 70 4 2037 2201 44 2085 0 2151 46 2042 0 77 0 

Table 2. Results with time determined by GVND for Euclidean instances  
With the aim of comparing the algorithms on a fair basis, the same maximum processing 
time is given for both algorithms. These processing times were obtained in preliminary 
experiments with the stop conditions afore mentioned. The results are reported in Tables 2-
5. These tables show the name of the instance (Name), the number of cities (City), the number 
of available cars (Car), the best solution found (#Best), the average (Avg) solution, the best 
solution obtained by one of the tested algorithms (Best), the standard deviation (SD), the 
number of times (Freq) the best known solution, reported in column #Best, was found by 
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each algorithm, the maximum processing time in seconds (T) and the p-value obtained in 
the statistical U-test (Conover, 2001). Considering level of significance 0.05, values less than 
0.05 in the last column indicate that the performance of MA is significantly better than the 
performance of GVND and values greater than 0.95 indicate that GVND produced better 
results than MA. 
Tables 2 and 3 refer to Euclidean instances and show the results with the maximum 
processing time fixed by the stop conditions of GVND and MA, respectively. Similarly, 
Tables 4 and 5 show results for non Euclidean instances with the maximum processing time 
fixed by the stop conditions of GVND and MA, respectively. 
 

INSTANCE MA GVND 
Name City Car #Best Avg SD Best Freq Avg SD Best Freq 

T(s) p-
value 

BrasilRJ14e 14 2 294 294 1 294 25 297 0 297 0 1 0 
BrasilRN16e 16 2 375 376 4 375 27 375 0 375 30 1 0.96 
BrasilPR25e 25 3 510 515 5 510 17 510 0 510 30 2 1 
BrasilAM26e 26 3 467 481 10 467 3 495 0 495 0 4 0 
BrasilMG30e 30 4 563 596 10 563 1 602 2 595 0 6 0 
BrasilSP32e 32 4 611 624 5 615 0 632 4 626 0 8 0 
BrasilRS32e 32 4 510 523 7 512 0 536 9 529 0 8 0 
BrasilCO40e 40 5 779 824 7 801 0 806 2 806 0 17 1 
BrasilNO45e 45 5 886 993 27 897 0 1008 0 1008 0 25 0 
BrasilNE50e 50 5 822 963 2 953 0 962 11 908 0 31 0.43 
Betim100e 100 3 1401 1642 110 1401 1 1720 7 1708 0 128 0.30 
Vitoria100e 100 5 1598 1922 29 1814 0 1859 77 1676 0 98 1 
PortoVelho200e 200 3 2827 3134 117 2871 0 3128 22 3041 0 766 0.61 
Cuiaba200e 200 4 3052 3415 96 3052 1 3365 56 3334 0 701 1 
Belem300e 300 4 4031 4434 30 4282 0 4621 125 4563 0 2016 0 
berlin52eA 52 3 8948 9094 65 8948 4 9013 24 8991 0 27 1 
eil76eB 76 4 1940 2069 43 1986 0 2226 56 2129 0 61 0 
rat99eB 99 5 3339 3525 71 3339 1 3468 54 3348 0 128 1 
rd100eB 100 4 9951 10385 209 9994 0 10055 54 9951 1 161 1 
st70eB 70 4 2037 2158 67 2037 1 2212 31 2137 0 54 0 

Table 3. Results with time determined by Memetic Algorithm for Euclidean instances 

Provided that the same computational effort (processing time) is fixed, throughout this 
section a statistical test for proportions comparison is applied. The test proposed by Taillard 
et al. (2008) compare success rates between two methods. In this paper, given two methods 
A and B, success of method A is stated when A achieves a better result than B for the same 
problem instance. The values for this test presented here were calculated with the tool 
available at http://qualopt.eivd.ch/stats/?page=stats with the one-tailed Taillard Test. 
Column p-value of Table 2 shows that MA and GVND outperforms one another on 9 
instances each, considering level of significance 0.05. With the processing time of MA fixed 
for both algorithms, column p-value of Table 3 shows that MA presents the best performance 
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on 9 instances and the GVND on 8 instances. These results show that the algorithms present 
similar performance concerning the number of instances each of them is significantly better 
than the other. If hitting the lowest value solution is set as a target for the algorithms, then 
Table 2 and 3 show that MA hits this target 19 and 17 times, respectively, whilst GVND hits 
the target 3 and 5 times. For these results, the test to compare success rates between two 
methods (Taillard et al., 2008) shows that the confidence level of the hypothesis that MA has 
success rate higher than GVND is 1 and 0.999968 when the maximum processing times are 
fixed by the GVND and the MA, respectively. 
 

INSTANCE GVND MA 

Name City Car #Best Avg SD Best Freq Avg SD Best Freq 
T(s) p-

value 

BrasilRJ14n 14 2 167 171 0 171 0 167 0 167 4 1 0 

BrasilRN16n 16 2 190 203 0 203 0 194 2 192 0 1 0 

BrasilPR25n 25 3 235 311 9 305 0 255 7 239 0 5 0 

BrasilAM26n 26 3 204 242 6 239 0 213 4 206 0 5 0 

BrasilMG30n 30 4 279 375 11 352 0 330 14 298 0 11 0 

BrasilSP32n 32 4 285 336 16 298 0 295 5 285 1 12 0 

BrasilRS32n 32 4 297 372 15 344 0 337 14 297 1 15 0 

BrasilCO40n 40 5 655 826 42 755 0 718 37 655 1 39 0 

BrasilNO45n 45 5 664 889 42 770 0 753 39 664 1 55 0 

BrasilNE50n 50 5 707 1044 60 874 0 844 43 761 0 81 0 

Londrina100n 100 3 1450 1783 80 1629 0 1564 51 1450 1 192 0 

Osasco100n 100 4 1150 2000 60 1910 0 1443 109 1265 0 191 0 

Aracaju200n 200 3 2467 3686 212 3223 0 2802 136 2588 0 903 0 

Teresina200n 200 5 2192 3793 144 3261 0 2480 143 2192 1 1407 0 

Curitiba300n 300 5 3676 6125 202 5680 0 4081 202 3749 0 3388 0 

berlin52nA 52 3 1480 1777 82 1661 0 1640 51 1543 0 41 0 

ch130n 130 5 2487 4706 307 3855 0 2940 245 2487 1 478 0 

d198n 198 4 4807 7138 333 6529 0 5332 269 4807 1 1330 0 

kroB150n 150 3 3824 5368 434 4414 0 4312 194 3824 1 464 0 

rd100nB 100 4 1890 2953 169 2623 0 2274 118 2083 0 205 0 

Table 4. Results with time determined by GRASP/VND for non Euclidean instances  

Column Freq of Table 2 shows that, on average, 15% and 10% of the best solutions generated 
by one of the tested algorithms on the two experiments with fixed processing times are 
found by MA and GVND, respectively. Data presented in column Freq of Table 3 show that, 
on average, 13.5% and 10% of the best solutions are found by MA and GVND, respectively. 
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INSTANCE MA GVND 

Name City Car #Best Avg SD Best Freq Avg SD Best Freq 
T(s) p-

value 

BrasilRJ14n 14 2 167 167 0 167 2 171 0 171 0 1 0 

BrasilRN16n 16 2 190 195 3 190 1 203 0 203 0 1 0 

BrasilPR25n 25 3 235 256 10 235 1 316 12 305 0 4 0 

BrasilAM26n 26 3 204 212 4 204 1 242 5 239 0 5 0 

BrasilMG30n 30 4 279 328 15 279 1 378 14 352 0 8 0 

BrasilSP32n 32 4 285 296 7 287 0 331 14 300 0 13 0 

BrasilRS32n 32 4 297 340 16 304 0 378 18 344 0 9 0 

BrasilCO40n 40 5 655 743 33 668 0 839 41 710 0 20 0 

BrasilNO45n 45 5 664 764 39 667 0 919 43 814 0 32 0 

BrasilNE50n 50 5 707 861 61 707 1 1068 57 924 0 46 0 

Londrina100n 100 3 1450 1592 50 1471 0 1767 85 1629 0 146 0 

Osasco100n 100 4 1150 1442 139 1150 1 2046 80 1817 0 125 0 

Aracaju200n 200 3 2467 2744 135 2467 1 3594 236 3106 0 922 0 

Teresina200n 200 5 2192 2551 182 2233 0 3866 126 3611 0 836 0 

Curitiba300n 300 5 3676 4076 216 3676 1 6050 160 5647 0 2384 0 

berlin52nA 52 3 1480 1642 78 1480 1 1748 63 1661 0 38 0 

ch130n 130 5 2487 3020 228 2493 0 4863 345 3813 0 237 0 

d198n 198 4 4807 5449 318 4887 0 7407 378 6250 0 823 0 

kroB150n 150 3 3824 4259 208 3845 0 5313 272 4871 0 418 0 

rd100nB 100 4 1890 2271 143 1890 1 2962 180 2685 0 140 0 

Table 5. Results with time determined by Memetic Algorithm for non Euclidean instances  

The analysis of columns p-value of Tables 4 and 5 shows MA outperforms GVND on all non 
Euclidean instances, regardless the maximum processing time fixed for the experiments. All 
best results are found by MA. On average, MA finds approximately 2% of the best solutions 
on the 30 executions of each one of the 40 tested instances.  

5. Conclusion 
This chapter presented the Car Renter Salesman Problem (CARS), a new generalization of 
the classic Traveling Salesman Problem. An experimental investigation was carried out to 
compare two metaheuristic approaches proposed for this new problem: GRASP (Greedy 
Randomized Search Procedure) hybridized with VND (Variable Neighborhood Descent) 
and Memetic Algorithms. The algorithms were applied to 40 Euclidean and non Euclidean 
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instances of the CaRSLib benchmark which is proposed for this problem. An exact 
procedure established the optimal solutions of 4 from the 40 instances, whilst the proposed 
heuristics established the first upper limits for the remaining 36 instances. Statistical tests are 
applied to the results generated by the proposed algorithms in order to support conclusions 
on their behaviors concerning quality of solution. 
To establish a fair basis of comparison for the proposed algorithms, the effect of the 
computational effort demanded by each algorithm is neutralized by comparing the 
performance of each algorithm according to fixed processing times. These execution times 
are established in accordance to the requirements of each algorithm for its best performance. 
Therefore, the proposed algorithms are tested twice, first with the processing times fixed by 
the best performance of one algorithm and then with the processing times fixed by the best 
performance of the other. Thus, a superior qualitative behavior can be considered conclusive 
when it holds for both processing time conditions. 
The results of the computational experiments showed that for Euclidean instances the 
proposed algorithms present similar behavior with some advantage for MA concerning the 
number of best solutions found. For the set of non Euclidean instances, MA outperformed 
GVND on the whole set regardless the maximum processing time fixed for both algorithms. 
The MA also presented the best solution values for all non Euclidean instances. 
This chapter presented also other six variants for the introduced problem, opening up the 
topic for future research.  
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1. Introduction 
In this chapter, the single-machine scheduling problem (SMSP) is addressed by adopting a 
multi-objective perspective. A finite set of independent jobs has to be scheduled on a single 
server that is continuously available and has the ability to process only one job at a time. 
Once a job has started its processing it cannot be interrupted and no idle time between 
successive jobs is allowed. Each job is characterized by its processing time and due date, 
both integer numbers. 
Job scheduling considering only one criterion can be thought of as an over-simplification of 
the problem, since there are several objectives related to this problem, namely sum of 
earliness/tardiness, max earliness/tardiness and so forth. There is a growing trend in the 
relevant literature to study scheduling problems under multiple objectives. Some indicative 
examples can be found in the works of (Behnamian et al., 2009); (Yagmahan et al., 2010); 
(Loukil et al., 2005); (Moslehi & Mahnam, 2010); (Choobineh et al, 2006) and (Gupta & 
Sivakumar, 2005). 
In this chapter we consider two objectives; sum of earliness and sum of tardiness. In general, 
these objectives are conflicting meaning that a solution that improves one objective function 
will deteriorate the other. In the absence of optimization criteria preferences each one 
objective needs to be dealt with explicitly, giving rise to the concept of Pareto optimality. 
The solution to the bi-objective single-machine scheduling problem is a set of points in 
objective space known as Pareto front and all points along the Pareto front share the 
following property: the value of a certain objective function can be improved only by 
degrading the value of at least one of the remaining objective functions.  
The derivation of the Pareto set using exhaustive search is limited to relatively small instances 
of the problem due to the combinatorial explosion that takes place as the dimensionality 
increases. Consequently, the application of meta-heuristics appears to be well-suited for this 
type of problems. The reader is referred to (Bagchi, 1999) for further information on multi-
objective scheduling using evolutionary techniques. In this chapter, a multi-objective 
algorithm evolutionary algorithm (MOEA) for approximating the Pareto front in single-
machine scheduling problems is described and analyzed. The MOEA is tested in a series of 
randomly generated SMSP instances of various configurations. In order to select appropriate 
parameters for the MOEA we apply techniques from the field of design of experiments (DoE), 
specifically general fractional factorial designs. The solutions found by the MOEA are 
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compared to the true Pareto front and to each other based on four metrics: generational 
distance, non-uniformity of solution distribution, hypervolume and maximum spread.  
The structure of this chapter is presented hereafter. In Section 2 the multi-objective version 
of the SMSP is described. Section 3 is devoted to the presentation of the salient features of 
SPEA2, the MOEA which was applied to solve the underlying optimization problem. Four 
metrics for comparing Pareto sets are presented in Section 4. The numerical results from the 
series of experiments are presented and commented upon in Sections 5 to 5.5. Finally, 
Section 6 contains the concluding remarks and some directions for future research.   

2. Problem description 
The formal description of the problem under consideration is given in this section. Let 

{ }1 2, ,..., nJ j j j=  be a finite set of jobs. The assumptions pertaining to the set J  are the 
following. 
• each job constitutes an indivisible whole, i.e. it cannot be broken down to elementary 

operations. 
• the release time of the i-th job is denoted as ir  and for all i, 0ir = , meaning that all jobs 

are available for processing from 0t = . 
• each job is associated with a non-negative integer processing time ip +∈Ζ .  
• each job has a due date id Z∈ . Due dates can assume negative values and the meaning 

of a negative due date is that the related job is already delayed. 
All jobs in J  have to be processed on a single machine to which, the following assumptions 
apply. 
• the machine can only process one job at a time. 
• once the machine has started processing a job it cannot be interrupted. 
• the machine does not undergo failures nor does it suspend its operation for 

maintenance or other reasons. 
• once a job has completed its processing it exits the system immediately, and as a 

consequence, the machine is never blocked. 
The underlying decision problem is to determine the sequence according to which all jobs 
will be processed on the machine under two additional assumptions: 
• the machine setup time for shifting from one job to another is always zero. 
• no machine idle time between successive job is allowed. 
The sequence of jobs is called a schedule and a possible schedule is a permutation of the 
elements that belong to the set { }1,2,...,n . Clearly, an admissible schedule is a n-
dimensional vector s where is  is the position of the i-th job in the schedule and the number 
of all plausible schedules is !n . For a given schedule, the completion time of the i-th job is 

i i ic w p= +  where iw  is the waiting time related to that job. The waiting time of job ij  is the 
sum of the processing times of all jobs that were completed up to the point that ij  starts its 
processing: 

 
p
i

i k
J

w p= ∑ , { }:p
k k iiJ j J s s= ∈ <  (1) 

The earliness of the i-th job is { }max 0,i i ie d c= −  and the tardiness of job ij  is 
{ }max 0,i i it c d= − .  
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The single-objective approach to compare two alternative schedules s  and ′s  is to define an 
objective metric f  that would assign a numerical value ( )f s  to every S∈s , where S is the 
set of possible schedules. However, as stated in the introduction, more that one objective 
functions can be associated with the problem under consideration. In this chapter  
two objective functions are considered simultaneously, forming the objective vector 
described in (2). 

 1 2 1 1[ , ] [ , ]n n
i ii if f e t= == = ∑ ∑f  (2) 

The first element of the objective vector is the sum of earliness values of all jobs whereas the 
second objective element is the sum of all tardiness values. Both of these two quantities are 
to be minimized. The adoption of the two objective functions for quantifying the system’s 
performance is compatible with the philosophy of Just In Time manufacturing, according to 
which an end-item should be ideally complete its processing exactly at the time when it is 
needed.  In the total absence of objective function preferences each objective must be dealt 
with explicitly. The concept of Pareto dominance can be used to compare two candidate 
solutions in the multi-objective setting where each objective component is treated 
separately. In the minimization problem treated in this chapter, an objective vector af  
dominates another vector bf , iff 

 { }, , , 1,2a i b if f i≤ ∀ ∈  (3) 

                                                    and   

 { }1,2j∃ ∈  such that , ,a j b jf f<  (4) 

Pareto dominance in this case is denoted by fa ≺ fb. Using the notion of Pareto dominance, 
the objective functions that constitute the objective vector are characterized as partially 
conflicting, meaning that there is at least one decision vector s  dominated by some other 
vector that belongs to S .  
The solution to the multi-objective optimization problem stated in this section is the global 
Pareto optimal set P, that is, the set of objective vectors which are not dominated by any 
other feasible objective vector. 

3. SPEA2 
Some examples of popular multi-objective evolutionary algorithms (MOEAs) are PESA (Corne 
et al. 2000), PESA-II (Corne et al., 2001), SPEA (Zitzler & Thiele, 1999), SPEA2 (Zitzler et al., 
2001), NSGA-II (Deb et al., 2002), MOEA (Tan et al., 1999), ESPEA (Everson et al. 2002), 
DMOEA (Lu & Yen, 2002) and μGA2 (Pulido and Coello Coello, 2003). The performance of a 
MOEA is typically assessed on the basis of its ability to approximate effectively the true global 
Pareto front and to produce a uniformly distributed set of solutions in addition to its 
consistency and robustness. The SPEA2 algorithm has been shown in (Tan et al, 2005) and 
(Zitzler et al., 2002) to perform very well in comparison to other MOEAs in a variety of 
different test problems and under several MOEA-specific performance metrics, and was 
therefore adopted as the search algorithm for the purposes of this investigation. The key 
features of SPEA2 are outlined in the remaining of this section. For a detailed description of 
the SPEA2 algorithm the reader is referred to (Zitzler et al., 2002). 
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The SPEA2 algorithm evolves a population of candidate solutions while maintaining an 
external population called archive where non-dominated individuals found during the 
evolutionary process are stored. The population is initialized with randomly generated 
individuals and its size remains constant throughout the execution of the algorithm. Initially 
the archive is empty but after the first generation of candidate solutions is evaluated the 
archive is resized to contain a pre-specified number of individuals and its size is kept fixed 
hereinafter. In each iteration, all individuals in the population and the archive are assigned a 
fitness value. The SPEA2 algorithm employs a sophisticated fitness assignment scheme, 
where the fitness of an individual is given by the sum of the strengths of its dominators plus 
its density. The strength of an individual represents the number of solutions that it 
dominates, while the density of an individual is the inverse of the distance from its k-th 
nearest neighbour (another individual) in objective space. After all elements in the 
population and the archive have been assigned a fitness value, the non-dominated 
individuals are copied to the temporary archive. If the size of the temporary archive exceeds 
the pre-specified threshold then it is truncated, whereas if the size of the archive is smaller 
than the threshold then it is expanded by adding to it the best (in terms of fitness value) 
dominated individuals from the population and the archive. For the truncation of the 
temporary archive a sequential procedure is applied, where in each pass of the procedure 
the element with minimum distance (in objective space) to another individual is deleted. 
Ties are broken by considering the second smallest distance, the third etc. After the 
temporary archive reaches the specified size, all of its contents are stored in the archive and 
the temporary archive is deleted. Subsequently, the selection operator is applied on the 
archive and the selected individuals are subjected to standard genetic operations in order to 
produce the next population. The algorithm terminates when the stopping criterion is 
satisfied and returns the archived non-dominated set of solutions. The pseudo-code for the 
SPEA2 algorithm is presented below, where ⋅  denotes cardinality of set and S symbolizes 
the size of the archive: 
1. generate initial population Pop and empty archive Arc 
2. assign fitness values to all individuals in Pop and Arc 
3. copy all non-dominated solutions in Pop and Arc in temporary archive TempArc 

a. IF TempArc S>   
       apply truncation procedure on TempArc 
b. IF TempArc S<  
       add dominated individuals from Pop and Arc to TempArc based on fitness 

4. set Arc TempArc← , delete TempArc 
        a.     IF _STOPPING CRITERION TRUE=  

        return Arc. Terminate 
b.     ELSE 
        go to Step 5 

5. apply selection operator on Arc. Apply genetic operators on the selected individuals 
and store the offspring in Pop. Go to Step 2   

In the remaining of this section we discuss the implementation of the key features of the 
SPEA2 algorithm that was applied to the problem addressed in this chapter, namely the 
encoding of candidate solutions and the selection strategy/genetic operators in Step 5 of the 
algorithm.  
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All individuals in the population are encoded as vectors of random keys. A random key is 
simply a real number which assumes values in the range [0,1] . In order to translate a vector 
of random keys to a schedule the elements of the chromosome are sorted in descending 
order. An example of this decoding scheme involving 4 jobs is depicted below. 
 
jobs:    1j            2j            3j            4j   
chromosome: 0.98 0.12 0.56 0.78 
 
sorted genes: 0.98 0.78 0.56 0.12 
schedule:  1 4 3 2 
 
The major advantage of random key encoding is that every possible chromosome decodes to 
a feasible schedule and therefore, there is no need for customized initialization routines and 
genetic operators. Tournament selection is responsible for selecting individuals from the 
archive for recombination. According to this selection scheme TourSize individuals are 
chosen with the same probability from the archive and the fittest individual from that subset 
is chosen to constitute a parent which will be recombined with another individual to 
produce offspring. Parameter TourSize is commonly known as the tournament size and 
tournament selection mechanisms with 2TourSize =  are referred to as binary tournaments. 
The procedure is iterated until the required number of individuals has been selected. The 
selected individuals are recombined according to the intermediate recombination technique. 
The i-the element of the offspring is computed according to the following equation: 

 1 2(1 )p po
i i ii ic u c u c= + −  (5) 

where 1p
ic  and 2p

ic  are the i-th elements of the two parents and iu  is a random variable 
uniformly distributed in [ ,1 ]δ δ− + . Parameter δ determines the hypercube to which the 
produced offspring is possible to fall in. The fraction of the new population which consists 
of individuals generated via recombination is determined by parameter RecFrc, whereas the 
remaining individuals are produced using migration, i.e. they are generated at randomly. 

4. Performance metrics for non-dominated sets 
A number of metrics for comparing non-dominated sets have been proposed in the relevant 
literature. These metrics largely fall into two categories: i) performance metrics that require 
the true Pareto front to be known and, ii) performance measures that do not involve the true 
Pareto front in the computation and can be used to compare two or more non-dominated 
sets directly. In this investigation we consider the following four measures: a) the 
generational distance GD (Tan et al., 2005), b) the metric of non-uniform distribution of solutions 
U, c) the maximum spread MS of the obtained solutions and, d) the hyper-volume HV (Tan et 
al., 2005). The rest of this section briefly describes these performance metrics. 
The metric of generational distance reflects the “distance” between a Pareto optimal set A 
and the true Pareto front P. It is defined as: 

 
1

2
2

1
1 A

iiGD d
A =

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

∑  (6) 
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where A is the cardinality of A and id  is the Euclidean distance between the i-th element of 
A and the nearest element that belongs to P.  
The metric of non-uniform distribution of solutions U +∈ℜ  measures how uniformly the 
individual solutions are distributed in a Pareto optimal set A. It is defined as:   

 
( )21

, 11 1

1

A
i ii d d

U
A

−
+= −

=
−

∑
 (7) 

where A  is the cardinality of A, , 1i id +  symbolizes the Euclidean distance between two 
successive members in A and d  is the average distance. Large deviations of the distances 

, 1i id +  from the average distance result in high values of U, therefore a Pareto front with a 
lower value of this metric is preferable to another front with higher U value.   
The performance measure called max spread is an indicator of the range in objective space 
covered by a Pareto optimal set A. Its formal definition is given in Equation (8): 

 ( )21 11
1 max minA AN i i

j ji ijMS f f
N = === −∑  (8) 

where A  is the cardinality of A, N is the number of objective functions and i
jf  is the value 

of the j-th objective yielded by the i-th element in A. Higher values of MS signify better 
performance  
Hyper-volume HV measures the size of the objective space that is dominated by the 
elements of a non-dominated set A. It is defined as ( )1

A
iiHV volume v== ∪ , where iv  is the 

hypercube with diagonal corners the objective vector 1 2[ , ,..., ]i i i i
Nf f f=f of the i-th element in 

A and the anti-optimal objective vector max max max max
1 2[ , ,..., ]Nf f f=f , where max

1max A i
j jif f== . 

Again, A  denotes the cardinality of A, N is the number of objective functions and i
jf  is the 

value of the j-th objective for the i-th element in A.  

5. Results 
Section 5 and its subsections are devoted to the presentation of the results that were obtained 
from the application of the SPEA2 algorithm to twelve instances of the single-machine 
scheduling problem described in Section 2. The randomly generated instances of the problem 
which drive the experimental investigation are given in the following subsection. 

5.1 SMSP instances 
All instances were selected at random from an extensive set of SMSP instances which was 
generated by (Valente & Goncalves, 2009) and can be found online at 
http://www.fep.up.pt/docentes/jvalente/benchmarks.html. An SMSP instance is simply a 
set of processing time-due date pairs and it is identified by using the naming convention 
adopted by (Valente & Goncalves, 2009) specifically PV-N-T-R, where PV symbolizes the 
processing time variability, N is the number of jobs, T is the tardiness factor and R is the due 
date range. All twelve instances considered in this chapter are of type H-10-x-y, meaning 
that they consist of ten jobs with high (H) processing time variability, i.e. the processing 
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times are uniformly distributed in the interval [ ]1 100− . Each job has a due date which is 
drawn from the uniform distribution defined on the interval [ ](1 2), (1 2)P T R P T R− − − + , 
where P is the sum of the processing times of all jobs for a particular instance and 
parameters P and R assume non-negative real values. In this study we consider three levels 
for the tardiness factor T, specifically 0.4, 0.6, and 0.8.  
 

H-10-0.4-0.2 H-10-0.4-0.4 H-10-0.4-0.6 H-10-0.4-0.8 

ip  id  ip  id  ip  id  ip  id  

73 439 9 236 37 144 64 473 

51 411 35 290 65 254 82 290 

69 411 59 296 34 206 88 159 

82 356 47 180 9 239 9 447 

51 353 46 294 18 118 23 378 

59 363 38 295 39 226 47 144 

41 475 44 291 7 206 30 525 

85 390 83 225 47 184 97 388 

86 377 61 218 21 162 30 461 

89 461 12 222 44 124 67 287 

Table 1. Instances H-10-0.4-y 

Additionally, for each tardiness factor level four due date range levels (0.2, 0.4, 0.6, 0.8) are 
examined. The parameters of the twelve SMSP instances are shown in Tables 1 to 3.  
 

H-10-0.6-0.2 H-10-0.6-0.4 H-10-0.6-0.6 H-10-0.6-0.8 

ip  id  ip  id  ip  id  ip  id  

36 135 62 248 53 310 85 117 

54 168 45 228 96 75 32 114 

84 115 25 105 71 149 13 197 

24 137 21 128 81 332 44 135 

34 168 78 127 26 61 60 348 

33 146 42 161 13 245 100 282 

20 129 14 127 2 314 15 198 

31 133 38 91 33 323 3 65 

5 162 38 150 97 70 84 240 

50 126 53 200 36 190 38 183 
 

Table 2. Instances H-10-0.6-y 
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H-10-0.8-0.2 H-10-0.8-0.4 H-10-0.8-0.6 H-10-0.8-0.8 

ip  id  ip  id  ip  id  ip  id  

53 108 4 107 85 212 50 -44 
89 90 99 160 98 94 70 -52 
59 147 41 115 13 7 45 68 
31 70 89 116 46 8 79 168 
56 171 45 112 99 9 73 196 
91 163 41 216 28 73 68 60 
73 191 99 51 36 220 28 44 
81 132 49 157 6 211 39 192 
54 193 73 94 100 250 12 321 
57 182 39 83 19 84 94 118 

Table 3. Instances H-10-0.8-y  

5.2 Configuration of MOEAs 
The parameters of the multi-objective genetic algorithm (SPEA2) which was used to 
approximate the true Pareto front for each instance are  
• the population size 
• the chromosome length 
• the maximum number of iterations 
• the size of the archive 
• the tournament size (selection operator) 
• the recombination fraction  
• parameter δ (recombination operator) 
Since each instance consists of ten jobs and individuals are encoded as sequences of random 
keys, the chromosome length is equal to 10 in all executions of the algorithm. The exhaustive 
search algorithm used to find the true Pareto fronts conducts 10! 3,628,800=  feasible 
schedule evaluations for each problem instance. We selected the total number of evaluations 
performed by the MOEA in each instance to be fixed to the level of 35,000, which is 
approximately 1% of the number of the exhaustive search evaluations. As a consequence, 
the adjustment of the population size implicitly determines the maximum number of 
iterations too. The size of the archive was set to be equal to the size of the true Pareto front 
for each instance. Moreover, the recombination fraction determines the fraction of 
individuals created by recombination in a new generation, where the remaining individuals 
are generated by the migration operator.  
As a consequence, the parameters which participate to the fractional factorial experiments 
conducted for each problem instance are 
i. the population size (PopSize) 
ii. the tournament size (TourSize) 
iii. the recombination fraction (RecFrc) 
iv. the parameter delta (δ) 



Multi-Objective Scheduling on a Single Machine with Evolutionary Algorithm 

 

335 

The levels for factor i were set to be 50 and 100, whereas the levels for factor ii were 2 
(binary tournament) and 10, or in the case were the arc consisted of less than ten elements, 
the high level of parameter ii was equal to the arc size. 0.6 was the low level for factor iii 
(recombination fraction) and 0.8 the high level. Finally, the two levels of parameter δ were 0 
and 0.25. After the levels of the factors had been defined a 4 12 −  fractional factorial design of 
resolution IV was generated by employing the Franklin-Bailey algorithm (Box et al., 2005). 
This type of design separates main effects and requires 8 treatments (parameter sets) to be 
evaluated, i.e. it is considerable more economical than the corresponding full 42  factorial 
experiment which requires 16 runs. The resulting experimental designs are presented in 
Table 4. For every design the evolutionary algorithm is executed 3 times and the non-
dominated set which has the highest number of elements identical to that of the 
corresponding true Pareto front is selected.  
 

 PopSize TourSize RecFrc δ 
design 1 50 2 0.6 0 
design 2 50 2 0.8 0.25 
design 3 50 10(archive size) 0.6 0.25 
design 4 50 10(archive size) 0.8 0 
design 5 100 2 0.6 0.25 
design 6 100 2 0.8 0 
design 7 100 10(archive size) 0.6 0 
design 8 100 10(archive size) 0.8 0.25 

Table 4. Experimental designs 

5.3 Comparative evaluation – instances H-10-0.4-y 
The cardinalities of the true Pareto fronts for instances H-10-0.4-0.2, H-10-0.4-0.4, H-10-0.4-
0.6 and H-10-0.4-0.8 are 2, 10, 6 and 3, respectively. For all of these four instances the best  
 

 
Fig. 1. True Pareto fronts, archives in first/last iteration – instances H-10-0.4-0.2 and H-10-
0.4-0.4 
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Fig. 2. True Pareto fronts, archives in first/last iteration – instances H-10-0.4-0.6 and H-10-
0.4-0.8 

design for the MOEA was found to be the third which corresponds to 50PopSize = , 
0.6RecFrc = , 0.25δ =  and TourSize set to the high level. The non-dominated sets returned 

by the MOEAs initialized with that parameter set were identical to the true Pareto fronts for 
all problem instances examined in this subsection. The non-dominated sets related to 
executions of the MOEA with different parameter sets were not globally Pareto optimal and 
therefore further comparisons between the various sets using the metrics presented in 
Section 4 is redundant. Figures 1 and 2 illustrate the true Pareto fronts of the four instances 
of this subsection, and the individuals (in objective space) that populate the archive in the 
first and last iteration of the best evolutionary algorithm execution.   

5.4 Comparative evaluation – instances H-10-0.8-y 
The true Pareto fronts for instances H-10-0.8-0.2, H-10-0.8-0.4, H-10-0.8-0.6 and H-10-0.8-0.8 
consist of 5, 8, 5 and 7 elements, respectively. Similarly to the previous four instances the  
 

 
Fig. 3. True Pareto fronts, archives in first/last iteration – instances H-10-0.8-0.2 and H-10-
0.8-0.4 
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Fig. 4. True Pareto fronts, archives in first/last iteration – instances H-10-0.8-0.6 and H-10-
0.8-0.8 

best parameter set for the MOEA was 50PopSize = , 0.6RecFrc = , 0.25δ =  and TourSize set 
to the high level. Executions of the MOEA with those parameters managed to deliver the 
true Pareto fronts in all four cases whereas executions with alternative parameter sets failed 
to do so. Figures 3 and 4 present the actual Pareto fronts of the four instances of this 
subsection, and the individuals that constitute the archive in the first and last generation of 
the best evolutionary algorithm execution. 

5.5 Comparative evaluation – instances H-10-0.6-y 
The sizes of the non-dominated sets related to the last four instances of this experimental 
investigation are generally higher than those of the eight instances discussed in the previous 
two subsections. More specifically, the actual Pareto fronts for instances H-10-0.6-0.2, H-10-
0.6-0.4, H-10-0.6-0.6 and H-10-0.6-0.8 have 13, 10, 14 and 9 elements, respectively. In this 
subset of problem instances, the true Pareto fronts corresponding to instances H-10-0.6-0.4 
and H-10-0.6-0.8 were computed exactly by the MOEA. The parameter values related to the 
third design of the fractional factorial experiment were found to be the best for this series of 
problem instances too. In the case of instance H-10-0.6-0.2 the MOEA returned a set of  
 

 
Fig. 5. True Pareto fronts, archives in first/last iteration – instances H-10-0.6-0.2 and H-10-
0.6-0.4 
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Fig. 6. True Pareto front, archive in first/last iteration – instance H-10-0.6-0.8 

non-dominated solutions that is differentiated from the actual Pareto front only in one 
element, where the globally Pareto optimal element is [49,670]  and the corresponding 
element of the MOEA front is [49,672] . It is reasonable to argue that the approximation of 
the actual Pareto front by the MOEA is excellent in this problem instance too.  
However, in instance H-10-0.6-0.6 the actual Pareto front was not obtained exactly from any 
execution. In addition to that, all eight non-dominated sets related to different combinations 
of parameter values of the MOEA were under-populated, i.e. none of them consisted of 14 
elements as the true Pareto front because some elements were repetitions of others. This 
effect can be largely attributed to the random key encoding scheme which does not exclude 
the possibility that two or more seemingly different chromosomes decode to the same 
schedule. For example, both [0.7,0.2,0.1]  and [0.6,0.35,0.05]  decode to [1,2,3] . The true 
Pareto front and the fronts returned by the MOEA for each one of the eight parameter sets 
are displayed in Figures 7 and 8. Note that the actual Pareto front can be obtained if the non-
dominated sets related to experimental designs 2, 4 and 6 are combined. Since no locally 
Pareto optimal set is clearly superior to the others, the metrics described in Section 4 can 
assist in establishing a ranking of the eight non-dominated sets of solutions. The 
performance of the eight fronts regarding the metrics of generational distance (GD), 
hypervolume (HV), non-uniformity of solutions (U) and maximum spread (MS) are 
presented in Table 5. We reiterate that for the metrics of hypervolume and maximum spread 
high values are preferable, whereas the opposite holds for the non-uniformity of solutions 
and the generational distance. The information contained in Table 5 is somewhat hard to 
interpret and in order to facilitate a clearer presentation of the results we transform the 
elements of each row to the interval [0,1]  and construct the spider graphs displayed in Figure 
9. Note that design 3 corresponds to the minimum values of all four performance metrics and 
is therefore depicted as a single point in the left pane of Figure 9. By observing Figure 9 one 
can sees that the local Pareto front of the third design is the best regarding the measures of U 
and GD but in the same time exhibits the worst performance in terms of MS and HV. On the 
other hand, the non-dominated set linked to the seventh design achieves the highest values of 
HV and MS but is also the worst when it comes to minimizing GD. All other locally Pareto 
optimal sets correspond to different trade-offs between the four metrics under consideration.  
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Fig. 7. True Pareto front, archives in last iteration of designs 1 and 2 – instance H-10-0.6-0.6  

 

 design 
1 

design 
2 

design 
3 

design 
4 

design 
5 

design 
6 

design 
7 

design 
8 

GD 19.85 17.44 7.85 26.18 29.76 16.33 39.61 17.76 
HV 18059 16948 12248 19288 20568 18323 24300 17690 
U 0.67 0.75 0.45 0.49 0.59 0.54 0.65 0.56 

MS 174.04 170.3 139.36 185.93 193.17 174.04 215.37 172.88 

Table 5. Non-dominated sets performance metrics, instance H-10-0.6-0.6 

 

 
Fig. 8. Archives in last iteration of designs 3 to 8 – instance H-10-0.6-0.6  
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Fig. 9. Normalized performance metrics of non-dominated sets (designs 1-8) – instance H-10-
0.6-0.6 

6. Conclusion 
The application of a MOEA to the multi-objective single-machine scheduling problem was 
investigated experimentally. The objective functions of interest were the total tardiness and 
the total earliness. For the purposes of this investigation the true Pareto fronts of 12 random 
problem instances were computed using exhaustive search. All instances consisted of ten 
jobs but the sizes of the Pareto fronts varied from one instance to another, indicating that the 
structure of the Pareto fronts does not depend only on the dimensionality of the problem. In 
order to tune the parameters of the MOEA to each problem instance we conducted 12 
fractional factorial experiments. The use of methods from the field of Design of Experiments 
to select parameters for the evolutionary algorithm is appealing because they offer the 
ability to select an efficient parameter set with limited computational cost. The MOEA 
returned the actual Pareto front in ten out of twelve problem instances and computed a very 
good approximation of the true Pareto front in one instance. However, it exhibited a rather 
mediocre performance in a specific problem instance. An important advantage of the 
evolutionary approach to the underlying problem is that in all cases, the MOEA conducted 
only 1% of the number of evaluations performed by the exhaustive search algorithm. A 
possible direction of future research would be to apply evolution to problems with high 
dimensionality where the true Pareto front cannot be obtained exactly and compare the 
results with those from other meta-heuristic algorithms.   
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1. Introduction 
Functional decomposition is a logic synthesis method that has recently gained much 
recognition. The main reason is the evolution of field programmable gate-arrays (FPGAs) as 
a new technology for digital system implementation. Architecture of FPGA is based on the 
lookup table (LUT) as basic building block. An n-input LUT is capable of implementing any 
Boolean function of up to n variables. Thus, logic synthesis for LUT-based FPGAs must 
transform a logic network into network that consists of nodes with up to n inputs only. Each 
node of such network can be then implemented by a single LUT. For this reason, for the case 
of implementation targeting FPGA structure, decomposition is a very efficient method. 
Modern FPGA devices have very complex structure. Today's FPGAs are entire 
programmable systems on a chip (SoC) which are able to cover an extremely wide range of 
applications. The Altera Stratix III and Xilinx Virtex-5 families of devices, both using a 65 
nm manufacture process, can be used as examples of contemporary FPGAs. The basic 
architecture of FPGAs has not changed dramatically since their introduction in the 1980s. 
Early FPGAs used a logic cell consisting of a 4-input lookup table and register. Present 
devices employ larger numbers of inputs (6-input for Virtex-5 and 7-input for Stratix III) and 
have other associated circuitry. Another enhancement extensively used in modern FPGAs 
are specialized embedded blocks, serving to improve delay, power and area if utilized by 
the application, but waste area and power if unused. Early embedded blocks included fast 
carry chains, memories, phase locked loops, delay locked loops, boundary scan testing and 
multipliers. More recently, multipliers have been replaced by digital signal processing (DSP) 
blocks which add support for logical operations, shifting, addition, multiply-add, complex 
multiplication etc. Some architectures even contain hardware CPU cores. This greatly 
extends the space of possible solution during the process of mapping the design into FPGA 
structure with such embedded blocks. Unfortunately such heterogeneous structure of 
available logic resources greatly increases the complexity of mapping algorithms. The 
existing CAD tools are not well suited to utilize all possibilities that such modern 
programmable structures offer due to the lack of appropriate logic synthesis methods. 
Functional decomposition is perceived as one of the best logic synthesis methods targeted 
FPGAs. It relies on breaking down a complex system into a network of smaller and 
relatively independent co-operating subsystems, in such a way that the original system’s 
behavior is preserved. A system is decomposed into a set of smaller subsystems, such that 
each of them is easier to analyze, understand and synthesize. Decomposition allows 
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synthesizing the Boolean function into multilevel structure that is built of components, each 
of which is in the form of LUT logic block specified by truth tables.  
Since the Ashenhurst-Curtis decomposition have been proposed, the research has been 
focused in forming new decomposition techniques (Łuba & Selvaraj, 1995; Sasao et al., 2001; 
Scholl, 2001; Brzozowski & Łuba, 2003; Rawski, 2007a). The researchers have developed 
many types of decompositions, but they are still based on Ashenhurst’s ideas. Thanks to the 
fact that the functional decomposition gives very good results in the logic synthesis of 
combinational circuits, it is viewed for the most part, as a synthesis method for 
implementing combinational functions into FPGA-based architectures (Wurth et al, 1999; 
Scholl, 2001; Rawski et al., 2007). However, the decomposition-based method can be used 
beyond this field. Decomposition-like synthesis methods are not limited only to logic 
synthesis of digital circuits. The strong motivation for developing decomposition techniques 
comes recently from modern research areas such as pattern recognition, knowledge 
discovery and machine learning in artificial intelligence (Perkowski  et al. 1997).  
The practical usefulness of functional decomposition for very complex systems is limited by 
the lack of an efficient method for the construction of the high quality subsystems. In the 
subsystem construction process the following three factors play an extremely important 
role: an appropriate input support selection for subsystems, decision which (multi-valued) 
function will be computed by a certain subsystem and encoding of the subsystem’s function 
with binary output variables. For large functions the solution space is so huge that heuristic 
method for solving this problem has to be used. This is an NP-hard problem and thus 
heuristic methods have to be used to efficiently and effectively search for optimal or near-
optimal solutions. 
There are two types of algorithms solving input variable partitioning problem. The 
algorithms finding decompositions without using any search heuristics. The basic idea of 
these algorithms is to limit the search to some input variable partitions. This is done by 
using different functional methods to choose which partitions will be evaluated. These 
methods select partitions through Reed-Muller expansions, Fourier transforms, binary 
difference equations, and technology-based mappings (Łuba et al., 1995; Perkowski, 1994; 
Steinbach & Stokert, 1994). The second type of algorithms utilize different heuristic 
methods. In (Rawski et al., 2001) input variable partitioning method based on information 
relationship measures was presented, which produced optimal or sub-optimal results for 
factions of considerable size. 
In recent years the use of the genetic algorithms has received widespread attention. An 
evolutionary computing is inspired by Darwin's theory of evolution. In other words, problems 
are solved by an evolutionary process resulting in the best (fittest) solution (survivor) – the 
solution is evolved. ‘Genetic algorithm’ term was introduced by John Holland (Holland, 1975). 
The evolutionary algorithm is one of heuristics, which not necessarily provides the best 
possible solution. However, these sub-optimal solutions are considered as acceptable, because 
in many problems it is not possible to find the best solution in reasonable time. It means that 
evolutionary algorithms are especially useful for problems with a vast search space and non-
polynomial time algorithms solving the given problem. 
The evolutionary algorithms need individuals that represent a solution attempt to the 
problem they are trying to solve. The population needs to be tested to find how well 
individuals perform, and new individuals are created that are combinations of existing good 
solutions with some occasional variations. The cycle of testing and creation of new 
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individuals is repeated until a suitable solution is found, all the individuals represent the 
same solutions, or the search is abandoned.  
This approach has been used to find approximate solutions to NP-complete optimization 
problems (Khuri, 1994). There have been attempts to apply genetic algorithms to functional 
decomposition (Noviskey et al., 1994). In (Rawski et al., 2004) the application of 
evolutionary algorithms was proposed to solve input support selection problem for 
functional decomposition based on blanket calculus. The solution has been extended to 
decomposition based on BDDs (Morawiecki  & Rawski, 2008) 
In this chapter an application of evolutionary algorithm for functional decomposition-based 
logic synthesis will be discussed. First an introduction to functional decomposition  based 
on cubes and BDDs will be given. Next basics of evolutionary algorithms will be outlined. 
Subsequently the heuristic input partitioning method will be presented. Following that 
some experimental results will be discussed. The experimental results demonstrate that the 
proposed method is able to construct optimal or near optimal decompositions efficiently, 
even for large systems.  

2. Basic information 
In this section, only information that is necessary for an understanding of this chapter is 
reviewed. More detailed description of functional decomposition based on partition calculus 
can be found in (Brzozowski & Łuba, 2003), functional decomposition based on BDD in 
(Scholl, 2001). 

2.1 Functional decomposition 
The set X of input variables of Boolean function is partitioned into two subsets: free variables 
U and bound variables V, such that U ∪ V = X. Assume that the input variables x1, ..., xn have 
been relabeled in such a way, that: 
U = {x1, ..., xr} and  
V = {xn–s+1, ..., xn}. 
Consequently, for an n-tuple x, the first r components are denoted by xU and the last s 
components are denoted by xV. 
 

 
Fig. 1. Schematic representation of the functional decomposition. 
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Let F be a Boolean function with n inputs and m outputs and let (U, V) be the pair of sets 
defined above. Assume that F is specified by a set of the function’s cubes. Let G be a 
function with s inputs and p outputs, and let H be a function with r + p inputs and m 
outputs. The pair (G, H) represents a serial decomposition of F with respect to (U, V), if for 
every minterm b relevant to F, G(bV) is defined, G(bV) ∈ {0, 1}p, and F(b) = H(bU, G(bV)). G and 
H are called blocks of the decomposition (Fig. 1). 

2.2 Functional decomposition based on blanket calculus 
A Boolean function can be specified using the concept of cubes (input patterns) representing 
some specific sub-sets of minterms (Tab. 1.). In a minterm, each input variable position has a 
well-specified value. In a cube, positions of some input variables can remain unspecified 
and they represent “any value” or “don’t care” (–). A cube may be interpreted as a p-
dimensional subspace of the n-dimensional Boolean space or as a product of n – p variables 
in Boolean algebra (p denotes the number of components that are ’–’). For function from 
Table 1 truth table with 24 = 16 rows would be required to describe the function using 
minterms. Since cube represents a set of minterms, application of cubes allows for much 
more compact description in comparison with minterm representation. For example cube 
10–0 from row 2 of truth table from Table 1 represents set of two minterms {1000, 1010 }. 
 

 x1 x2 x3 x4 y 
1 0 0 – 0 1 
2 1 0 – 0 1 
3 – 0 0 – 1 
4 – – 1 1 0 
5 – 1 1 0 0 
6 1 1 – 1 0 
7 0 – 0 1 1 
8 – 1 0 0 0 

Table 1. Example function. 

For pairs of cubes and for a certain input subset B, we define the compatibility relation 
COM as follows: each two cubes S and T are compatible (i.e. S, T ∈ COM(B)) if and only if 
x(S) ~ x(T) for every x ⊆ B. The compatibility relation ~ on {0, –, 1) is defined as follows [1]: 0 
~ 0, – ~ –, 1 ~ 1, 0 ~ –, 1 ~ –, – ~ 0, – ~ 1, but the pairs (1, 0) and (0, 1) are not related by ~. The 
compatibility relation on cubes is reflexive and symmetric, but not necessarily transitive. In 
general, it generates a “partition” with non-disjoint blocks on the set of cubes representing a 
certain Boolean function F. The cubes contained in a block of the “partition” are all 
compatible with each other. 
”Partitions” with non-disjoint blocks are referred to as blankets (Brzozowski & Łuba, 2003). 
The concept of blanket is a simple extension of ordinary partition and typical operations on 
blankets are strictly analogous to those used in the ordinary partition algebra. 
Definition 1. Blanket 
A blanket on a set S is such a collection of (not necessary disjoint) distinct subsets Bi of S, 
called blocks, that  

 i
i

B   S=∪  (1) 
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Each block Bi of blanket has its cube representative r(Bi) that indicates the value of variables 
inducing blanket corresponding to this block. 
Example 1 (Blanket-based representation of Boolean functions). 
For function F from Table 1, the blankets induced by particular input and output variables 
and by the two-output function on the set of function F’s input patterns (cubes) are as 
follows: 

 1 {1  3,  4,  5,  7,  8; 2,  3, 4,  5,  6,  8},x ,β =  (2) 

 2 {1, 2, 3, 4, 7; 4, 5, 6, 7, 8},xβ =  (3) 

 3 {1, 2, 3, 6, 7, 8; 1, 2, 4, 5, 6},xβ =  (4) 

 4 {1, 2, 3, 5, 8; 3, 4, 6, 7},xβ =  (5) 

 {4, 5, 6, 8 ; 1, 2, 3, 7}.yβ =  (6) 

The product of two blankets β1 and β2 is defined as follows: 

 β1 • β2 = { Bi ∩ Bj | Bi ∈ β1 and Bj ∈β2 }.  (7) 

For two blankets we write β1 ≤ β2 if and only if for each Bi in β1 there exists a Bj in β2 such 
that Bi ⊆ Bj. The relation ≤ is reflexive and transitive. 
For example: 

 2 3 2 3 {1, 2, 3, 7; 1, 2, 4; 6, 7, 8; 4, 5, 6 },x x x xβ β β= • =  (8) 

 2 3 2 .x x xβ β≤  (9) 

Information on the input patterns of a certain function F is delivered by the function’s inputs 
and used by its outputs with precision to the blocks of the input and output blankets. 
Knowing the block of a certain blanket, one is able to distinguish the elements of this block 
from all other elements, but is unable to distinguish between elements of the given block. In 
this way, information in various points and streams of discrete information systems can be 
modeled using blankets. 
Theorem 1. Existence of the serial decomposition (Brzozowski & Łuba, 2003). 
Let F be a Boolean function with n inputs and m outputs and let (U, V) be the pair of sets: 
free variables U and bound variables V, such that U ∪ V = X. Let βV, βU, and βF be blankets 
induced on the function F’s input cubes by the input sub-sets V and U, and outputs of F, 
respectively. 
If there exists a blanket βG on the set of function F’s input cubes such that βV ≤ βG, and  
βU • βG ≤ βF, then F has a serial decomposition with respect to (U, V). 
Proof of Theorem 1 can be found in (Brzozowski & Łuba, 2003). 
As follows from Theorem 1 the main task in constructing a serial decomposition of a function 
F with given sets U and V is to find a blanket βG which satisfies the condition of the theorem. 
Since βG must be ≥ βV, it is constructed by merging blocks of βV as much as possible. 
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Two blocks Bi and Bj of blanket βV are compatible (mergeable), if blanket γij obtained from 
blanket βV by merging Bi and Bj into a single block satisfies the second condition of 
Theorem 1, that is, if βU • γij ≤ βF. Otherwise blocks Bi and Bj are incompatible (unmergeable). 
A subset δ of blocks of the blanket βV is a compatible class of blocks if the blocks in δ are pair 
wise compatible. A compatible class is maximal if it is not contained in any other compatible 
class. 
From the computational point of view, finding maximal compatible classes is equivalent to 
finding maximal cliques in a graph Γ = (N, E), where the set N of vertices is the set of blocks 
of βV and set E of edges is formed by set of compatible pairs. 
The next step in the calculation of βG is the selection of a set of maximal classes, with 
minimal cardinality, that covers all the blocks of βV. The minimal cardinality ensures that 
the number of blocks of βG, and hence the number of outputs of the function G, is as small as 
possible. 
In certain heuristic strategies, both procedures (finding maximal compatible classes and 
then finding the minimal cover) can be reduced to the graph coloring problem. 
Calculating βG corresponds to finding the minimal number k of colors for graph Γ = (N, E).  
Example 2. For the function from Table 1 specified by a set F of cubes numbered 1 through 
8, consider a serial decomposition with U = {x1} and V = {x2, x3, x4}. 
We find  

 1 {1 3 4,5,7,8 2,3 4,5,6,8 },U x , , ; ,β β= =  (10) 

 2 3 4 {1 2 3 3 7;  1,2; 4;  6,7; 5; 4,6 },V x x x , , ; ,β β= =  (11) 

 {4, 5, 6, 8; 1, 2, 3, 7}.F yβ β= =  (12) 

Let βG  be as follows: 

 {1 2,3,7 4,5,6,8 6,7}.G , ; ; β =  (13) 

It is easily verified that βG satisfies the condition of Theorem 1 (more detailed description of 
partition calculus can be found in (Brzozowski & Łuba, 2003)). Thus function F has a serial 
decomposition with respect to (U, V). 
Number of blocks in blanket βG determines the number of outputs of block G: 

 p= ⎡log2(q)⎤, (14) 

where q is the number of blocks in blanket βG. 
Since in example βG has 3 blocks, to encode blocks of this blanket two encoding bits g1 and g2 

have to be used. To define a function G by a set of cubes we calculate cube representatives, 
r(Bi), assigned to each block Bi of βV. The relationship between blocks of βV and their cube 
representatives, r(Bi), relies on containment of block Bi in blocks of βxj from xj ∈ V. Finally, 
the value of function G is obtained on the basis of containment of blocks Bi in blocks of βG. 
To compute the cubes for function H we consider each block of the product βU • βG. Their 
representatives are calculated in the same fashion. Finally, the outputs of H are calculated 
with respect to βF 
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The process of functional decomposition based on blanket calculus consists of the following 
steps: 
- the selection of an appropriate input support V for block G (input variable partitioning), 
- the calculation of the blankets βU, βV and βF, 
- the construction of an appropriate multi-block blanket βG (this corresponds to the 

construction of the multi-valued function of block G), 
- the creation of the binary functions H and G by representing the multi-block blanket βG 

as the product of a number of certain two-block blankets (this is equivalent to encoding 
the multi-valued function of block G defined by blanket βG with a number of binary 
output variables). 

2.3 Functional decomposition based on BDDs 
A Boolean function can be represented using binary decision diagrams. BDDs as a method 
of representation of single-output Boolean functions were introduced by Lee (Lee, 1959) and 
later Ackers (Ackers, 1978).  
Definition 2. Binary decision diagram (BDD)  
Binary decision diagram is a rooted directed acyclic graph Γ = (V, E) with node (vertex) set V 
and arc set E. The graph has terminal nodes called leaves. To each leaf node there is 
assigned a value 0 or 1. Each non terminal node v ∈ V is labeled with a Boolean variable 
var(v) and has arcs directed towards two children: low(v) ∈ V corresponding to the case 
where the variable is assigned 0, and high(v) ∈ V corresponding to the case where the 
variable is assigned 1.  
When a Boolean function is represented by binary decision diagram with a given 
assignment to the variables, the value yielded by the function is determined by tracing a 
path from the root to a terminal vertex, following the branches indicated by the values 
assigned to the variables. The function value is then given by the terminal vertex label.  
Definition 3. Ordered binary decision diagram (OBDD) 
An ordered binary decision diagram is a BDD where an ordering < over set of variables 
is defined, and for any node v and either nonterminal child u, their respective variables must 
be ordered  var(v) < var (u). 
In (Bryant, 1986) Bryant presented algorithms that efficiently manipulated BDDs assuming 
ordering of the variables. He developed a method to reduce the size of BDDs by removing 
‘redundant’ nodes and subgraphs which occur more than once. Bryant also proved that the 
reduced representation is canonical in respect to a given variable ordering.  
Definition 4: Reduced Ordered Binary Decision Diagram (ROBDD) is an OBDD, that  has 
no vertex v such that low(v) = high(v) and for no pair {u, v} sub-graphs rooted in v and u are 
isomorphic. 
Binary decision diagrams made it possible to develop new algorithms for decomposition, 
feasible for much larger functions than previously possible. In a BDD, the decomposition 
can be easily computed by moving the bound variables V to the upper part of the graph and 
counting the number of children below the boundary line, usually called cut line.  
Definition 5. Cut-set 
Let Γ be the ROBDD representing a function F with variable ordering O, let cut_set(Γ,O, l) 
denote the set of nodes whose levels are greater than l and have edges from nodes of level 
lower or equal to l (top node has level 1).  
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Theorem 2. Existence of the serial decomposition. 
Let F be Boolean function and (U, V) be the pair of sets: free variables and bound variables. Let 
Γ be ROBDD representing function F with variable ordering such that bound variables are in 
upper part of Γ.  Let 

 p=⎡log2(|cut_set(Γ,O, l)|)⎤ (15) 

If p < l, there exists decomposition in the form F(X) = H(U, G(V)), where  function G has p 
outputs. 
The size of cut_set from (15) plays the same role in BDD-based function decomposition as 
number of blocks in blanket βG from (14). 
Detailed description of functional decomposition based on BDD can be found in (Scholl, 
2001). 
Decomposition algorithms following a BDD-cut strategy proved to be orders of magnitude 
faster than those based on decomposition charts and cube representations. However, they 
require a reordering of the BDD to move the target set of variables to the top of the graph. 
 

 
Fig. 2. ROBDD for function from Table 1. 
Example 3. The ROBDD diagram Γ presented on Fig. 2 represents function F from Table 1 
for ordering O={ x2, x3, x4, x1}. Let consider two cut-lines: at level 2 (dotted line) and at level 3 
(dashed line). We have: 

 q1=|cut_set(Γ,O, 2)| = 4, (16) 

 q2=|cut_set(Γ,O, 3)| = 3. (17) 
Following (15): 

 p1=⎡log2(q1)⎤=2, (18) 

 P2=⎡log2(q2)⎤=2. (19) 
According to Theorem 2 decomposition with U = {x4, x1} and V = {x2, x3} does not exist since 
p1 does not satisfy condition p1 < l, where l = 2. Block G would require 2 outputs, while 
having 2 inputs. 
However there exists decomposition with U = {x1} and V = {x2, x3, x4}, since p1= 2 and l = 3. 
The size of block G will be 3 inputs and 2 outputs. 
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2.4 Evolutionary algorithms 
An evolutionary computing is inspired by Darwin's theory of evolution. In other words, 
problems are solved by an evolutionary process resulting in the best (fittest) solution 
(survivor) – the solution is evolved. ‘Genetic algorithm’ term was introduced by John Holland 
(Holland, 1975 ). Here an evolutionary algorithm is used, which is more general term.  
The evolutionary algorithm is the heuristics, which not necessarily provides the best 
possible solution. However, these sub-optimal solutions are considered as acceptable, 
because in many problems it is not possible to find the best solution in reasonable time. It 
means that evolutionary algorithms are especially useful for problems with a vast search 
space and non-polynomial time algorithms solving the given problem. 
The evolutionary algorithms need individuals that represent a solution attempt to the 
problem they are trying to solve. The construction of an algorithm starts with mapping a 
problem into a set of chromosome representations. The population needs to be tested to find 
how well individuals perform, and new individuals are created that are combinations of 
existing good solutions with some occasional variations. The cycle of testing and creation of 
new individuals is repeated until a suitable solution is found, all the individuals represent 
the same solutions, or the search is abandoned. The basic steps of an evolutionary algorithm 
are presented on Fig. 3.  
To construct the algorithm following qualities have to be defined:  
• a population of individuals, where each individual represents an encoded form of a 

possible solution to the problem being solved, 
• methods for testing individual solutions and assigning fitness (how good the solution is),  
• methods for selecting suitable parents that will be used to produce new individuals 

(offspring), 
• methods for manipulating the encoded forms of individuals, often called “genetic 

operators”; these operators are used to create new children from parents (for example, 
“crossover” techniques), and for introducing other variations (such as “mutation”) into 
the population, 

• parameters to manipulate the probability and effect of operators. 
 

Evolutionary algorithm()  
begin 

t := 0 
P 0 :=  create_initial_population() 
evaluate_fitnes(P0) 
while  (no_improvement_iterations > threshold) do
begin 

T t  := selection_operator ( P t) 
O t  := crossover_operator ( T t) 
evaluate_fitnes(O t )   
if (mutation_condition) then  

O t := mutation_operator ( O t) 
P t +1 := O t  
t  := t  +1 

end 
end  

Fig. 3. Outline of an evolutionary algorithm. 
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3. Evolutionary algorithm for input variable partitioning 
The practical usefulness of functional decomposition for very complex systems is limited by 
lack of an efficient method for the construction of the high quality subsystems (G function 
from Fig. 1). In the subsystem construction process the following three factors play an 
extremely important role: an appropriate input support selection for subsystems, decision 
which (multi-valued) function will be computed by a certain subsystem and encoding of the 
subsystem’s function with binary output variables. For function F of n input variables and the 
size k of input set of subsystem the number of possible solution is described by formula (20). 

 
n n!l    
k (n k)! k!

⎛ ⎞
= =⎜ ⎟ −⎝ ⎠

 (20) 

For large functions the solution space is so huge that heuristic method for solving this 
problem has to be used.  
 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 

|U| = 10, |V| = 3, |βG| = 5 
1 1 1 1 1 1 0 1 1 1 1 0 0 
1 1 1 1 1 1 0 1 1 1 0 1 0 
1 1 1 1 1 1 0 1 1 1 0 0 1 
1 1 1 1 1 0 0 1 1 1 1 0 1 
1 1 1 1 0 1 0 1 1 1 1 0 1 
1 1 1 1 0 0 1 1 1 1 1 0 1 
1 1 1 0 1 1 0 1 1 1 1 1 0 
0 1 1 1 1 1 1 1 1 1 1 0 0 
0 1 1 1 1 1 1 1 1 0 1 1 0 
0 1 1 1 1 1 1 1 1 0 1 0 1 
0 1 1 1 1 1 1 0 1 1 1 1 0 
0 1 1 1 1 1 1 0 1 1 1 0 1 
0 1 1 1 1 1 1 0 1 0 1 1 1 
0 1 1 1 1 1 0 1 1 1 1 1 0 
0 1 1 1 1 1 0 1 1 1 1 0 1 
0 1 1 1 1 0 1 1 1 1 1 0 1 
0 1 1 1 0 1 1 1 1 1 1 0 1 
0 1 1 0 1 1 1 1 1 1 1 1 0 

|U| = 9, |V| = 4, |βG| = 7 
0 1 1 1 1 1 0 1 1 1 1 0 0 

|U| = 8, |V| = 5, |βG| = 11 
0 1 1 1 1 1 0 1 1 1 0 0 0 
0 1 1 1 1 1 0 1 1 0 1 0 0 
0 1 1 1 1 1 0 0 1 1 1 0 0 

|U| = 7, |V| = 6, |βG| = 17 
0 1 1 0 1 1 0 1 1 0 1 0 0 

Frequency of appearance in V set. 
16 0 0 3 3 3 13 4 0 5 3 16 13 

Table 2. Best input variable partitioning problem solutions of plan example. 
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The analysis of best possible solutions for given Boolean function results in interesting 
observations (Rawski, 2007b). Table 2 presents the best solutions of input variable 
partitioning for plan example Boolean function from standard Microelectronics Center of 
North Carolina benchmark set (Yang, 1991). This function has 13 inputs and 25 outputs.  
Each row of Table 2 describes one partitioning of input variable set X = {x1, …,x13} into 
variables belonging to set U (marked by digit ‘1’) and belonging to set V that leads to 
optimal decomposition (according to the number of blanket βG’s blocks). It presents the best 
solutions for different sizes of sets V and U, as well as the frequency of appearance of given 
input variable in V set. It can be easily noticed that certain  variables appear in bound set 
often than others. For example variable x1 appears in V set for 16 solutions listed in Table 2, 
while x2 does not belong to V set for any of the best solutions. This suggests that some 
variables are more predestined to be included in V and other to be included in U set when 
constructing good input variable partitions. 
There is another interesting observation that can be made analyzing this example. Let us 
assume that the size of V set is 4. Now, let us create an input variable partitioning in such 
way that V set consists of variables that according to Table 2 are least appropriate to be in 
bund set: V = {x2, x3, x4, x9} and U = {x1, x5, x6, x7, x8, x10, x11, x12, x13}. As we could expect, the 
quality of decomposition (according to the number of blanket βG’s blocks) is 16 – the worst 
possible for this size of V set. However let us move “good” variable x1 from set U to set V 
and “bad” variable x2 from set V to set U. The quality of decomposition is now 15, so it has 
improved. If we now swap variables x3 and x12, the decomposition will have quality 11, so 
further improvement has been obtained. 
Let us assume that we have two variable partitioning solution (V1, U1) and (V2, U2). We can 
create another solution by taking part of variables from V1 and part from V2 and construct 
V3 (similarly for U3). Taking observation described above into account we can suspect that 
after such variable exchange it is probable that “good” variables from V1 and V2 will be 
included in V3. This should improve the quality of new solution in comparison to solution 
used as “parents”. If we preserve improved solutions and eliminate worsen solution we can 
apply this approach again. Such behavior is characteristic for evolutionary algorithms. This 
means that evolutionary algorithm may be an efficient way for solving input variable 
partitioning problem.  
In (Rawski et al., 2004) the evolutionary algorithm has been proposed that solves input 
variable partitioning problem for functional decomposition. The evolutionary algorithm 
maintains a population of individuals (chromosomes), that represent potential solutions of a 
given optimization problem (Fig. 3). A survival of the fittest individuals is implemented by 
the selection mechanism. For the next population, as potential solutions, such single 
organisms are chosen, which adaptation to the environment is the best. The adaptation 
(quality) of a specific chromosome is evaluated by a fitness function. The chromosomes are 
evolving through the process of selection, recombination (crossover) and mutation. After a 
given number of algorithm loops (generations), it is expected that the algorithm has found a 
satisfactory solution. Details of the evolutionary algorithm solving input variable 
partitioning problem are discussed below. 

3.1 Chromosome encoding 
The single chromosome (organism) represents one, possible solution of the input variable 
partitioning problem. In the method presented in this paper chromosomes are encoded by 
the integer numbers, each of which represents the number of the input variable assigned to 
the set V (bound variables) of the decomposition.  
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Example 4. 
For 4-input function F from Table 1 a possible solution of the variable partitioning problem 
can be represented by the set U = {x1} and set V = {x2, x3, x3}. 
The corresponding chromosome encoding is {2 3 4}. 

3.2 Fitness function 
In (Rawski et al., 1999) has been shown that there is a strong correlation of number of values in 
the sub-functions of the serial functional decomposition (represented by the number of blocks 
in βG or size of cut_set) with the decomposition's quality. However this number strongly 
depends on the input variable partitioning chosen for the decomposition process. Therefore, 
the number of blocks in the βG blanket or size of cut_set  can be used as a good quality measure 
of the input variable partitioning. In the presented method the fitness function depends on this 
number – the less the number the better fitness of a given chromosome. 
For the chromosome from Example 4 the number of blocks in a blanket βG is k = 3 (Example 2). 

3.3 Initial population selection 
The initial population P 0 is created randomly. Once it is completed, the algorithm checks 
whether all the inputs (single genes) have been chosen at least once. If some are missing, the 
additional organism is created with genes which are not included in other organisms of the 
population. 

3.4 Selection method 
The selection method is combination of tournament selection and elitism. Tournament 
selection chooses randomly two organisms from the population P t, compares them and 
takes the better one to the T t population. The number of times such a tournament has to be 
done to complete whole T t population depends on the population size. Elitism guarantees 
that the best organism from P t is taken to T t population regardless it was taking part at any 
tournaments or not. 

3.5 Crossover (recombination) 
Crossover operator chooses randomly two organism (called ‘parents’) and crosses their genetic 
material (Fig. 4). The crossover probability parameter specifies how often the crossover 
operator is performed. In proposed method this parameter is set to 0.9. The algorithm checks 
whether parents have the same genes or not. If so, the crossover operator is not launched and 
the other potential parents are chosen. If crossover is performed, two new organisms are 
created (and taken to O t population). Otherwise parents are taken to O t population. 
 

 
Fig. 4. Schematic representation of the crossover operator. 
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3.6 Mutation 
Usually, mutation changes a single gene with very small probability (0.001). However, as 
experiments proved, in the case of the variable partitioning problem this kind of mutation 
does not bring any considerable profit for the algorithm performance. 
The main problem with the presented algorithm is that it converges very fast to the local 
optimum. Once the algorithm gets to this area, it is very unlikely to find the better solution 
than this local optimum. To solve this problem, the special kind of mutation was 
implemented. If the average fitness among the population is very close to the best organism 
fitness, it is very likely the algorithm got stuck in the local optimum area. Then the special 
mutation is performed. One gene in each organism is mutated so the mutation probability is 
very high. As a result, the average fitness degenerates rapidly, but the algorithm gets out of 
the local optimum area and in many cases the better solution is found. 

4. Input variable partitioning algorithm for heterogeneous LUTs 
The methods presented in (Rawski et al., 2004), as well as in (Morawiecki & Rawski, 2008) 
were designed to solve the problem of input variable partitioning for given size of bound 
variable set V. In practice, during decomposition process there is a need to check existence 
of functional decomposition for several different sizes of V set before selecting the 
appropriate one. This is the case of applying functional decomposition in logic synthesis for 
FPGA architectures with heterogeneous logic resources. Such architectures are composed of 
adaptive logic elements that can be configured as LUTs of different sizes. In such situation 
application of concept presented in (Rawski et al., 2004) or (Morawiecki & Rawski, 2008) 
comes down to executing the algorithm for every possible LUT size. 
However, the careful analysis of best possible solutions for plan example presented in Tab. 2 
yields in interesting observation. Input variables that are present in bound set of best 
decompositions for set V of size k are often present in bound set of best decompositions for 
set V of size k – 1.  
For example there is only one best solution for decomposition with set V of size 6 where 
V = {x1, x4, x7, x10, x12, x13} and U = {x2, x3, x5, x6, x8, x9, x11 }. If we remove variable x4 from set 
V and move it to set U we will obtain input variable partitioning that is one of 3 best 
solutions  for decomposition with set V of size 5.  
 

extended_evo_ivp( F , VSizeMin , VSizeMax )  
begin 

VVSizeMax  := evo_ivp( F, VSizeMax ) 
for  k from  VSizeMax– 1  downto  VSizeMin do
begin  

for  i from  1  to  k +1  do 
begin  

Vtmp  := VVSizeMax  –  { v i } 
if  (quality( Vtmp ) > best_quality) then

Vbest  := Vtmp  
best_quality := quality( Vtmp ) 

end 
Vk :=  V best  

end 
end  

Fig. 5. Outline of algorithm that solves the problem of input variable partitioning for 
decomposition with V set of different  sizes. 
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This can be used to construct the algorithm that applies evolutionary concept to find 
solution for largest size of set V only, and uses the found solution to construct solutions for 
decomposition with smaller set V. Let assume that we have evolutionary algorithm 
evo_ivp(F, VSize) that solves the problem of input variable partitioning for decomposition of 
function F with the bound set V of size VSize. To find good quality functional 
decompositions for V set of size from VSizeMin to VSizeMax the extended algorithm first 
will find solution (V set) for VSizeMax and then, by removing appropriate variables from 
found V set, it will construct solutions for decompositions with smaller sets V. The outline of 
the algorithm is presented on Fig. 5. The algorithm returns a list of V sets (Vk, where k = 
{VSizeMin, …, VSizeMax}) 

5. Results 
The efficiency of evolutionary algorithm solving input variable partitioning problem for 
functional decomposition has been verified in (Rawski et al., 2004). This method was 
applied for number of combinational functions from MCNC logic synthesis benchmark set 
(Yang, 1991) and results ware compared with those obtained with the method based o 
information relationship measures presented in (Rawski et al., 2001) and with the systematic 
method. The systematic method is based on searching through the whole solution space and 
choosing an input support that produces blanket βG with minimum possible number of 
blocks. All experiments were preformed on the computer with 512 Mbytes of RAM and 
AMD Athlon XP 3200. 
Table 3 shows the comparison of the number of blanket βG blocks for all methods for 
examples from MCNC logic synthesis benchmark set converted to truth table format 
(required by method from (Rawski et al., 2001). The results were obtained for 
decompositions with 3, 4, 5, and 6 input variables in set V. For these experiments the 
number of generations in the method based on the evolutionary algorithm was set to 30 and 
the size of a population was set to 40. Results obtained by the decomposition with the 
systematic search are optimal in the sense of the number of blocks of βG. The method based 
on the evolutionary algorithm despite of its heuristic character produces results similar to 
the systematic method. 
Table 4 present the minimum number of blocks of blanket βG obtained by method based on 
the evolutionary algorithm for few large examples. The comparison with other two methods 
was impossible due to unacceptably long computation time for systematic method and due 
to the fact that method from (Rawski, 2001) accepts only truth table format. However 
examples from MCNC benchmark set are presented in espresso format, which in most cases 
is not truth table format and it is very difficult to convert such description for large multi-
output systems into truth tables. 
In Table 5 the comparison of execution time of the systematic method and the evolutionary-
based algorithm is presented for different sizes of set V. As can be noticed, for large Boolean 
functions, method based on evolutionary algorithm is many times faster than the exact 
method. The difference in processing time between these two methods grows very fast with 
the function size. For the largest functions tried, the heuristic method was many thousands 
times faster.  
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 Size Systematic method
Heuristic based on 

information 
relationship measures

Heuristic based on 
evolutionary 

algorithm 

 inputs outputs terms 3 4 5 6 3 4 5 6 3 4 5 6 

Con1 7 2 20 5 6 6 5 5 7 7 5 5 6 6 5 

Donfl 7 6 64 8 14 25 37 8 14 25 37 8 14 25 37 

z4 7 4 128 4 6 8 12 4 6 8 12 4 6 8 12 

Misex1 8 7 18 4 6 7 9 4 6 7 9 4 6 7 9 

Root 8 5 71 5 9 15 17 5 9 15 17 5 9 15 17 

Sqrt 8 4 53 3 4 7 12 3 4 7 12 3 4 7 12 

Opus 9 10 23 4 6 8 10 4 6 8 10 4 6 8 10 

9sym 9 1 191 4 5 6 7 4 5 6 7 4 5 6 7 

Clip 9 5 430 6 10 14 18 6 10 14 21 6 10 14 18 

Mark1 9 20 27 4 6 8 10 4 6 8 10 4 6 8 10 

Alu2 10 3 391 6 12 24 43 6 12 24 43 6 12 24 43 

Sao2 10 4 60 4 6 9 11 4 6 9 11 4 6 9 11 

Cse 11 11 86 3 4 6 9 3 4 6 9 3 4 6 9 

Sse 11 11 39 4 6 8 11 4 6 8 11 4 6 8 11 

Keyb 12 7 147 6 9 13 19 6 9 13 19 6 9 13 19 

S1 13 11 110 5 8 13 19 6 8 13 19 5 8 13 19 

Plan 13 25 115 5 7 11 17 5 7 11 18 5 7 11 17 

Styr 14 15 140 4 6 9 13 5 7 10 14 4 6 9 13 

Ex1 14 24 127 4 6 8 11 4 6 8 11 4 6 8 11 

Kirk 16 10 304 4 4 5 6 4 5 5 7 4 4 5 6 

Duke2_7 18 1 64 3 4 4 4 4 5 5 5 3 4 4 4 

Vg2_2 25 1 56 3 3 3 3 4 4 4 4 3 3 3 3 

Apex3_3 34 1 208 2 3 4 5 4 4 4 6 2 3 4 5 

Seq_2 36 1 211 2 2 3 –*) 3 4 4 6 2 2 3 5 

Seq_1 37 1 286 2 3 3 3 3 3 3 4 2 3 3 3 

Apex3_7 39 1 227 3 4 4 5 4 5 6 7 3 4 4 5 

Table 3. Comparison of the number of blocks in blanket βG obtained by the systematic 
method, heuristic method based on information relationship measures and heuristic method 
based on evolutionary algorithm for different size of set V. *) – too long computation time. 
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 Size Heuristic based on evolutionary algorithm 

 inputs outputs terms 3 4 5 6 

duke2 22 29 405 4 5 7 8 
misex2 25 18 102 2 2 2 2 
seq 41 35 3137 4 5 5 5 
apex1 45 45 1440 4 5 6 7 
apex3 54 50 1036 4 5 7 8 
e64 65 65 327 4 5 5 7 
apex5 117 88 2849 1 3 4 3 

Table 4. The number of blocks in blanket βG obtained by heuristic method based on 
evolutionary algorithm for different size of set V. 
 

 Systematic method * 
Heuristic based on evolutionary 

algorithm 
[s] 

 3 4 5 6 3 4 5 6 

duke2 31s 2m 40s 10m 58s 34m 56s 37,7 38,9 40,4 58,5 
misex2 10s 40s 4m 4s 13m 52s 10,2 12,4 14,9 24,9 
seq > 2 h > 1 day > 8 days > 59 days 1656,8 1692,9 1704 1712,9 
apex1 > 1 hour > 12 hours > 4 days > 39 days 463,3 506,3 506 524,6 
apex3 > 1 hour > 16 hours > 8 days > 81 days 324 316,5 325 328,7 
e64 31m 53s > 8 hours > 5 days > 68 days 136,5 137,1 79 191,2 
apex5 > 6 days > 185 days > 11 years > 221 years 2849 3772,6 3799,5 3901,8 

Table 5. Comparison of computation time of systematic method and heuristic method based 
on evolutionary algorithm for different sizes of set V. 
In (Morawiecki & Rawski, 2008) the input selection method based on evolutionary 
algorithm was applied for decomposition based on BDDs. For manipulation on decision 
diagrams CUDD package was used. All the experiments were performed on the computer 
with 512 Mbytes of RAM and Pentium4 @ 2.8GHz. 
 
 inputs terms Systematic method Heuristic based on evolutionary algorithm 

duke2_7 18 64 4 5 
vg2_2 25 56 3 3 
seq_2 36 211 2 4 
apex1_16 38 179 2 3 
apex1_23 39 2216 2 3 

Table 6. The  sizes of cut_set obtained by the systematic method and heuristic method based 
on evolutionary algorithm for size of set V equal to 4. 
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Table 6 presents the comparison of results obtained for single-output functions by applying 
the exhaustive search and evolutionary algorithm. The size of V set was 4 (typical value for 
FPGA-based synthesis). The size of cut_set is used as a quality measure. Results provided by 
the exhaustive search method can be considered as optimal. The results obtained by 
applying the evolutionary algorithm are very close to optimal or even optimal. 
 

 Systematic method Heuristic based on evolutionary algorithm 
[s] 

duke2_7 80 sec 70 

vg2_2 6,5 min 90 

seq_2 31,5 min 75 

apex1_16 46 min 120 

apex1_23 49 min 130 

Table 7. Comparison of computation time of systematic method and heuristic method based 
on evolutionary algorithm for sizes of set V equal to 4. 
The comparison of execution time of the exhaustive search method and evolutionary 
algorithm has been presented in Table 7. It can be noticed that advantage of heuristic 
algorithm over exhaustive search grows fast with the size of decomposed Boolean function.  
 

 Evolutionary algorithm Extended evolutionary algorithm 

 3 4 5 6 3 4 5 6 

duke2_7 4 4 5 5 4 4 4 5 

vg2_2 3 3 3 3 3 3 3 4 

seq_2 4 3 4 6 2 3 4 5 

apex1_16 3 5 3 3 2 2 2 2 

apex1_23 3 4 4 3 2 2 3 4 

Table 8. Comparison of results of heuristic method based on evolutionary algorithm and its 
improved version. 

Table 8 presents the comparison of results obtained with evolutionary algorithm and 
extended algorithm (Fig. 5) in case when existence of functional decomposition for several 
different sizes of V set has to be checked. It can be noticed that both methods provide results 
of comparable quality. However improved algorithm does it faster (Table 9). All the 
experiments were performed on the computer with 6 Gbytes of RAM and Intel 
Q9550 @ 2.83 GHz.  
It has to be stressed that the multilevel decomposition consists of many single serial 
decomposition steps. Thus, application of the heuristic methods can speed up the multi-
level decomposition process dramatically. 
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 Evolutionary algorithm 
[s] 

Extended evolutionary algorithm 
[s] 

 3 4 5 6 Total Total 

duke2_7 17.5 16.6 16.7 15.6 66.6 16.0 

vg2_2 21.5 20.9 20.2 20.2 83.0 20.5 

seq_2 15.9 16.0 15.1 16.1 63.3 16.6 

apex1_16 17.1 16.6 15.7 14.6 64.2 16.0 

apex1_23 17.1 15.2 15.1 15.4 63.0 15.5 

Table 9. Comparison of computation time of heuristic method based on evolutionary 
algorithm and its improved version. 

6. Conclusion 
The heuristic method of variable partitioning based on the evolutionary algorithm turns out 
to be very efficient when applied for decomposition method based on cubes (Rawski, 
2007a), as well on ROBDDs (Morawiecki  & Rawski, 2008). The method delivers results of 
similar or comparable  quality to results obtained from the exhaustive search, but does it 
many times faster. The algorithm parameters (the number of generations and the size of 
population) can be used to control the trade-off between the search time and quality of 
solutions. These features make the proposed heuristic method very useful for 
decomposition-based synthesis of large systems.  
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1. Introduction 
Network coding technology is a new communication paradigm that is superior to 
traditional routing in many aspects, especially in terms of the ability of increasing multicast 
throughput (Ahlswede et al., 2000; Li et al., 2003). Traditional routing adopts store-and-
forward data forwarding scheme at every intermediate node that simply replicates and 
forwards the incoming data to downstream nodes. However, the maximum throughput of a 
multicast scenario could not be often achieved under such a scheme (Ahlswede et al., 2000; 
Li et al., 2003). With code-and-forward data forwarding scheme at network layer, network 
coding allows arbitrary intermediate node to combine (or code) the data received from 
different incoming links and output the coded information if necessary, being able to obtain 
a multicast throughput that is maximized according to the MAX-FLOW MIN-CUT theorem 
(Li et al., 2003). 
Fig. 1 shows why network coding performs better than traditional routing in terms of the 
maximum multicast throughput they achieve. Fig.1(a) shows a network with source s and 
sinks y, z. Each direct link has a capacity of 1 bit per time unit. Source s expects to send two 
bits, a and b, to y and z. According to the MAX-FLOW MIN-CUT theorem, the min cut Cmin 
between s and {y, z} is 2 bits per time unit, which means the maximum multicast throughput 
from s to y and z should be 2 bits per time unit. However, if traditional routing is adopted, 
the multicast throughput is 1.5 bits information per time unit since link w x could only 
forward 1 bit, a or b, to x, and thus y and z can not simultaneously receive two bits, a and b, 
as indicated in Fig.1(b). In Fig.1(c), if the intermediate node w is allowed to combine the 2 
bits, a and b, it receives from t and u respectively to 1 bit a⊕b (here, symbol ⊕ is Exclusive-
OR operation) and output a⊕b to x, y and z are both able to obtain {a, a⊕b} and {b, a⊕b}, 
which means two bits information is available at both y and z. Meanwhile, y and z can use 
{a, a⊕b} and  {b, a⊕b} to decode b and a by calculate  a⊕(a⊕b) and b⊕(a⊕b) respectively. 
To the best of our knowledge, most of the network-coding-related research works suppose 
that coding operation should be implemented at all coding-possible intermediate nodes. 
However, to achieve a desired throughput, coding operation may only be necessarily 
performed at a subset of those nodes (Kim et al., 2006; 2007a; 2007b). In Fig.2, there are two 
network coding schemes that could both achieve the maximum multicast throughput. 
Network coding scheme A adopts all coding-possible nodes, m and n, as shown in Fig.2(a). 
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Nevertheless, the same throughput is also obtained by network coding scheme B where one 
of the two coding-possible nodes, m, is required to perform coding operation (see Fig.2(b)). 
Since coding operation consumes computational time and increases date processing 
complexity, it is of vital importance to minimize the amount of coding operations required. 
Unfortunately, such problem is NP-Hard (Kim et al., 2006; 2007a). 
 

 
Fig. 1. Traditional routing vs. network coding. (a) A network topology with maximum 
multicast throughput of 2 bits per time unit. (b) Traditional routing scheme. (c) Network 
coding scheme. 

 

 
Fig. 2. Two different network coding schemes. (a) Network coding scheme A with two 
coding nodes. (b) Network coding scheme B with only one coding node. 
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In order to solve this problem, several algorithms have been proposed, which are mainly 
based on greedy algorithms or evolutionary approaches. In (Fragouli & Soljanin, 2006), a 
minimal subtree graph for a network coding multicast was created. The amount of coding 
operations totally depends on the link traversal order in a corresponding labeled line graph. 
Different link traversal order may result in different utilization of coding resource. Langberg 
et al. (2006) first transformed the given network to a network in which the degree of each 
node is up to 3. Then they checked on links one by one, and remove those which do not 
make contribution to the achievable rate. However, both of the above algorithms assume 
that the nodes with multiple incoming links must carry out network coding. Besides, their 
optimization performance depends on the link traversal order in the corresponding labeled 
line graph. In (Bhattad et al., 2005), linear programming formulations were proposed to 
optimize various network coding resources. Nevertheless, the number of variables and 
constraints grows with the number of sinks. Thus, this method limits itself to the case where 
the number of sinks is not large. Some genetic algorithms (GAs) with both centralized and 
distributed versions have been proposed to minimize the network coding operations 
required (Kim et al., 2006; 2007a; 2007b). The GA based algorithms seem to perform much 
better than the aforementioned minimal algorithms. However, due to the inherent 
shortcomings of GA such as pre-maturity, slow convergence speed, weak global searching 
capability, poor optimal performance is usually achieved.  
Quantum-inspired evolutionary algorithm (QIEA), a combination of quantum computation 
and genetic algorithm, was formally introduced by Han and Kim (Han & Kim, 2002). Unlike 
other evolutionary algorithms, QIEA maintains a population of Q-bit representation based 
individuals, each of which represents a linear superposition of all states in search space 
probabilistically, and adopts various quantum gates, e.g. quantum rotation gate (Han & 
Kim, 2002) and quantum NOT gate (Xing et al., 2009a; 2009b), to drive the individuals 
toward the global optima. As one of estimation of distribution algorithms (EDAs), QIEA 
maintains and incrementally modifies multiple probabilistic models (Platel et al., 2009). 
QIEA is characterized by maintaining a diversified population due to the Q-bit 
representation, being able to explore the search space with a smaller number of individuals 
and exploiting the search space for a global solution within a short computational time (Han 
& Kim, 2004). However, in QIEA, global exploration and local exploitation can be provided 
simultaneously, only if proper evolution parameter values are set. Having a great effect on 
optimization performance of QIEA, how to set proper evolutionary parameters values for 
algorithms must be paid enough attention. However, in most of the existing QIEAs, the 
determination of evolutionary parameters does not take the differences among individuals 
into consideration. In (Han et al., 2001; Han & Kim, 2002; Li & Wang, 2007), fixed rotation 
angle step (FRAS) schemes were put forward. At arbitrary evolutionary generation, the 
algorithms use the same rotation angle step (RAS) strategy to evolve its population. If two 
individuals are under the same case according to the corresponding lookup table, they use 
the same RAS value to update. QIEA with FRAS scheme often results in slow convergence 
since the RAS values of lookup table never change. Later, the dynamic rotation angle step 
(called DRAS below) schemes were proposed (Zhang et al., 2003; Lv & Liu, 2007), where 
new RAS schemes were given at each generation. By using DRAS schemes, the searching 
grid of QIEA varies from large to small, and it is of some help to accelerate the convergence 
and achieve better solutions. However, at each generation, all the individuals under DRAS 
schemes only refer to one lookup table to update, which means DRAS schemes are also 
designed for a population but may be not suitable for every individual. Mutation is an 
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effective operation to prevent premature convergence and raise global search capability. 
Nevertheless, it was not adopted as a basic evolutionary operation in conventional QIEA 
(Han & Kim, 2002). Although, quantum mutation operations was introduced in (Yang et al., 
2003), the differences among individuals were not considered so that the algorithm may 
sometimes be trapped in local search. 
In order to provide an efficient network coding multicast scheme with less coding 
operations occupied and overcome the problems caused by the existing RAS schemes and 
conventional quantum mutation operation, this chapter presents a novel evolutionary 
algorithm called Memory-Storable Quantum-Inspired Evolutionary Algorithm (MS-QIEA). 
MS-QIEA is able to assign its individuals more suitable evolutionary parameter values 
according to their previous searching situations (such as, their fitness and evolutionary 
parameter values of the former generation). Each individual could easily evolve itself to a 
better searching position with respect to its former situation. Individuals, whose current 
searching situations are better than their previous searching situations, are allowed to have 
relatively large rotation angle step (RAS) values to accelerate the exploration speed and 
relatively small quantum mutation probability (QMP) values to survive, while those whose 
current searching situations are worse than their former searching situations are allocated 
with relatively small RAS values to avoid invalid evolution and relatively large QMP values 
to wait for a turn-to-excellent-individual opportunity. We evaluated the performance of MS-
QIEA over a number of multicast scenarios. Simulation results showed that our algorithm 
performs better than some traditional evolutionary algorithms in terms of robustness, 
success ratio, convergence and global search capability. 

2. Problem formulation 
A communication network can be modeled as a directed graph G = (V, E) where V is the set 
of nodes and E is the set of links (Li et al., 2003). Assume that each link e ∈ E has a unit 
capacity. A single-source multicast scenario is considered as a 4-tuple (G, s, T, R) that 
includes a graph G (V, E), a source node s ∈ V, a set of sinks T = {t1, t2, ..., td} ⊂ V, and a data 
rate R at which s wishes to transmit to all the sinks T. Rate R is said to be achievable only if 
there exists a transmission scheme that enables all |T| sinks to receive all of the information 
sent at the same rate as R (Kim et al., 2007a). Since linear network coding is sufficient for 
multicast (Li et al., 2003), this chapter only considers linear coding, where the coded 
information is a linear combination of the information from its incoming links. Based on 
linear coding, a network coding based multicast subgraph (called NCM subgraph, denoted 
by GNCM(s,T)) could be constructed if the subgraph guarantees to have R link-disjoint paths 
from s to each sink ti, i = 1, 2, …, d, respectively. A node is required to perform coding 
operation if there are at least two paths, Path(s,tm) and Path(s,tn), that are input to the node 
and have to flow out on the same outgoing link, where tm and tn are two sinks. Fig.3 shows 
how NCM subgraph is constructed and how it works. Fig.3(a) is a target network with 
source s and sinks y and z. All links has a capacity of one bit per time unit. Here, R is set to 2 
bits per time unit. To generate a NCM subgraph, we need to find two link-disjoint paths 
between each source-sink pair, s-y and s-z. As indicated in Fig.3(b), there are two link-
disjoint paths, a red path and a blue path,  between s and y (or z). Meanwhile, node w needs 
to perform coding operation as there are two paths join together at w and both have link 
w x. Fig.3(c) shows the network coding scheme based on the constructed NCM subgraph. 
It is clear that w performs coding operation. 
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For a multicast scenario (G, s, T, R), it is expected to determine a minimal amount of coding 
operations to make the rate R achievable. The number of coding links is a precise estimator 
of the total amount of coding operations required (Langberg et al., 2006). Hence, our 
optimization objective hereafter is to minimize the number of coding links while achieving a 
desired throughput. It is easy to understand that different NCM subgraphs, with different 
amount of coding links but the same multicast throughput, may probably be constructed for 
a given multicast scenario (refer to Fig.2). Let ncl(GNCM(s,T)) be the number of coding links of 
the created NCM tree. Our goal is shown as follows: 

 Min{ncl(GNCM(s,T))} (1) 

Note that no coding is necessary at a node with single incoming link, for such node has 
nothing to combine. According to (Kim et al., 2006; 2007a; 2007b), we refers to a node with 
multiple incoming links as a merging node. To determine whether coding is necessary on an 
outgoing link of a merging node, it is excessively imperative to verify whether the output 
depends on a single input without destroying the achievability of the given data rate. The 
necessity of coding at a link depends on which other links code and thus the problem of 
deciding where to perform network coding in general involves a selection out of 
exponentially many possible choices (Kim et al., 2006; 2007a).  
Consider a merging node with m ≥ 2 incoming links and n ≥ 1 outgoing links. For each i ∈ {1, 
…, m} and each j ∈ {1, …, n}, if the information from incoming link i contributes to the 
linearly coded output on outgoing link j, set aij=1, otherwise set aij=0. We refer to the ‘1’ and 
‘0’ states as active and inactive states, respectively. Network coding is required over link j 
only if two or more link states are active at the same time. Thus, it is meaningful to consider 
aj = {aij|i = 1, …, m, j = 1, …, n} as a data block of length m (Kim et al., 2006; 2007a) (see Fig.4 
for an example). 
 

 
 

Fig. 3. An example of constructing a NCM subgraph and its data transmission scheme. 
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                            (a) Merging node v                   (b) Two blocks for outgoing links 
Fig. 4. A possible input states of node v described by vectors a1= (a11, a21) and a2 = (a12, a22). 

3. An overview of QIEA 
QIEA is a probabilistic algorithm which exploits the power of quantum computation in order 
to accelerate genetic procedures (Han & Kim, 2002). The basic information unit is called 
quantum bit (Q-bit). A Q-bit is a two-level quantum system which may be in the |0> state, in 
the |1> state, or in any superposition of the two. The state of a Q-bit can be represented as 

 |Ψ>=α|0> + β|1>, (2) 

where |α|2+|β|2 = 1, and α and β are complex numbers that specify the probability 
amplitudes of the corresponding states.  
A Q-bit representation of m Q-bits individual is defined as:  

 1 2

1 2
,m

m

α α α
β β β
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (3) 

where |αi|2+|βi|2 = 1, i = 1, 2,…, m. In this way, the m-Q-bit individual can simultaneously 
represent 2m states. Thanks to the Q-bit representation, QIEA has a better characteristic of 
diversity than classical evolutionary approaches, since it can represent a linear 
superposition of many states. For example, whereas the 2-bit binary expression <0, 1> 
represents one state, a 2-bit Q-bit expression, e.g. 
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are probabilities with which the corresponding states emerge. 
For update, suitable quantum gate U(θ) is usually adopted in compliance with practical 
optimization problems. For the problem in this chapter, quantum rotation gate, such as 
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where θ  is rotation angle, is used as a basic gate of QIEA.  
The procedure of QIEA is shown in Fig.5. More details are referred to (Han & Kim, 2002).  
 

 
Fig. 5. Flow chart of QIEA 

In Fig.5, Q(t)={q1t, q2t, ..., qNt} is a population of N Q-bit individuals at generation t, and qjt is 
the j-th (j = 1, 2, …, N) individual defined as  

 1 2

1 2

t t t
j j jmt

j t t t
j j jm

q
α α α

β β β

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (5) 

and P(t) = {X1t, X2t, ..., XNt} is a set of binary solutions of observation states of Q(t), where Xjt 
is the binary solution obtained by observing qjt (j = 1, 2, …, N). In ‘initialize Q(t)’, each pair of 
Q-bit probability amplitudes, αjit and βjit, i = 1, 2, …, m, are initialized with 1 2 , ∀ qjt ∈  
Q(t). The step ‘Make P(t) by observing Q(t)’ generates a set of binary solutions P(t) = {X1t, 
X2t, ..., XNt}, where each bit of Xjt, j = 1, 2, …, N, is formed by determining each explicit state 
of the corresponding Q-bit of qjt, |0> state or |1> state, according to either |αjit|2 or |βjit|2  
of qjt, i = 1, 2, …, m. For example, to form a explicit state of the i-th bit of Xjt (i = 1, 2, …, m), a 
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uniformly distributed variable rand between 0 and 1 is generated randomly. If rand < |βjit|2, 
the i-th bit of Xjt is set to 1, otherwise, it is set to 0. Each solution Xjt ∈ P(t), j = 1, 2, …, N, is a 
binary string of length m, and is evaluated according to the fitness function. The initial best 
solution Xbestt is then selected from the binary solutions P(t) and stored. In the while loop, 
the quantum gate U(θ ) is used to update Q(t-1) so that fitter states of the Q-bit individuals 
are generated. The i-th Q-bit value (αjit, βjit) of qjt is updated as: 

 
1

1
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( )

sin( ) cos( )

t t t t t
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jit t t t t
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 (6) 

Here, θjit is the rotation angle to update the i-th Q-bit of qjt. The best solution among P(t) is 
selected after ‘Evaluate P(t)’. If the best solution of the current generation is fitter than the 
stored best solution Xbestt, the stored best solution Xbestt is replaced by this new solution. 

4. The proposed MS-QIEA 
This section provides an efficient coding resource optimization algorithm which is based on 
quantum-inspired evolutionary algorithm (QIEA) with Memory-Storable RAS (MS-RAS) 
scheme and Memory-Storable QMP (MS-QMP) scheme. At first, MS-RAS and MS-QMP 
schemes are introduced. Then, the individual representation and the fitness function are 
described. Eventually, we show the structure of the proposed algorithm MS-QIEA. 

4.1 Memory-Storable RAS scheme 
As RAS has a great influence on the convergence of QIEA, it is imperative to choose suitable 
RAS (Han & Kim, 2002). Individuals may fail to reach optimum solutions in few generations 
if RAS is excessively small, or they may miss optimum solutions if RAS is excessively large. 
However, most of the existing QIEA algorithms adopt either FRAS or DRAS as their RAS 
determination strategy, ignoring whether the RAS scheme is fit for all individuals. They, 
thus, may eventually result in bad optimization performance. 
In order to improve the optimization efficiency, this chapter proposes an MS-RAS scheme, 
which adaptively allocates each individual a suitable RAS value at each generation. Under 
this scheme, every individual is treated separately according to its own situation. For 
arbitrary individual, if its fitness value at generation t is larger than that at generation t-1, 
the current RAS value is set to be smaller than its last RAS value; If its fitness value is 
smaller than that at last generation, the current RAS value is set to be larger than its last RAS 
value; Otherwise, the current RAS value is set to be equal to its last RAS value. Note that the 
problem concerned is a minimum problem where individuals with large fitness values are 
regarded to be inferior to those with small fitness values (refer to fitness definition in 
subsection 4.4). 
A Q-bit individual qjt can be updated by rotation gate U(θjit), where θjit is the rotation angle 
for updating the i-th Q-bit of qjt, i = 1, 2, …, m, (refer to section 3). Here, θjit is given as S(αjit, 
βjit)⋅Δθjit, where S(αjit, βjit) and Δθjit are the sign and the RAS of θjit, respectively. The general 
updating scheme for the j-th individual at generation t is proposed, as shown in Table 1. The 
symbol f(X) is the fitness value of observation state X, and bi and xi are the i-th bit of the 
stored best solution Xbestt and a current solution X, respectively.  
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S(αjit, βjit) xi bi f(X)≤f(Xbestt) Δθjit 

αjitβjit>0 αjitβjit<0 αjit=0 βjit=0 

0 0 false 0 0 0 0 0 

0 0 true 0 0 0 0 0 

0 1 false 0 0 0 0 0 

0 1 true δjt -1 1 ±1 0 

1 0 false δjt -1 1 ±1 0 

1 0 true δjt 1 -1 0 ±1 

1 1 false δjt 1 -1 0 ±1 

1 1 true δjt 1 -1 0 ±1 

Table 1. MS-RAS scheme for the i-th individual 

We denote by δjt the RAS value of the j-th individual. The principle difference among FRAS, 
DRAS and MS-RAS schemes is shown in Fig.6. At each generation, all individuals under 
either FRAS scheme or DRAS scheme are assumed to use only one RAS value, while each 
individual under MS-RAS scheme is able to use a special RAS value to get updated. The 
expression of δjt is defined as follows: 
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where, we have 
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Here, σ0 and Δσ are two constants initialized at the beginning of the algorithm which affect 
the convergent speed. Besides, Δσ is smaller than σ0. We set Δσ = 0.1σ0 in this chapter. Xjt 
and Xjt-1 are the observation states of the j-th individual at generation t and t-1, respectively. 
Indicating whether an individual evolves to a better or worse searching situation, the value 
of Δ(fjt-1, fjt) is selected from {−Δσ, 0, Δσ} according to whether f(Xjt) is larger than f(Xjt-1). If 
f(Xjt) > f(Xjt-1), Δ(fjt-1, fjt) is set to −Δσ, which means searching ability of the j-th individual is 
becoming worse and δjt is then set to be smaller than δjt-1 to slow down its turn-to-bad 
performance. If f(Xjt) < f(Xjt-1), Δ(fjt-1, fjt) is set to Δσ, which means the j-th individual has 
reached a better searching position than its previous situation and δjt is then larger than δjt-1 
to accelerate its searching speed. If f(Xjt) = f(Xjt-1), it is not clear that the j-th individual 
performs better or worse, so we just reserve its previous RAS value. 
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Fig. 6. Principle comparison of FRAS, DRAS and MS-RAS schemes 

Based on the MS-RAS scheme, all individuals use the same RAS value σ0 for update at the 
first generation. With the evolution continuing, the RAS value δjt of the j-th individual at 
generation t is determined by its previous RAS value δjt-1 and its previous-and-current 
fitness values. When better than their previous searching performance, individuals are 
allowed to have relatively large rotation angle step (RAS) values to accelerate the 
exploration speed. When worse than their previous searching performance, individuals are 
allocated with relatively small RAS values to avoid invalid evolution. Thus, fast 
convergence and high optimization efficiency will be characterized. 
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4.2 Memory-Storable QMP scheme 
Inspired by (Yang et al., 2003), a quantum mutation operation based on quantum NOT gate, 
called MS-QMP scheme, is proposed. Instead of employing only one mutation probability 
for the entire population, MS-QMP scheme assigns each individual a suitable QMP value 
according to the individual’s own searching situation. For arbitrary individual at generation 
t, if its fitness value f(Xjt)  is larger than f(Xjt-1) at last generation, the current QMP value is 
set to be larger than its last RAS value; If its fitness value f(Xjt) is smaller than that of its last 
generation f(Xjt-1), the current RAS value is set to be smaller than its last RAS value; 
Otherwise, the current RAS value is set to be equal to its last RAS value. The quantum 
mutation probability pjt of the j-th individual is defined as: 
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where p0 and Δp are two constants initialized at the beginning of the algorithm. We set  Δp = 
0.1p0 in this chapter. Similar to Δ(fjt-1, fjt), φ(fjt-1, fjt) is to indicate whether f(Xjt) > f(Xjt-1). If 
f(Xjt) > f(Xjt-1), φ(fjt-1, fjt) is set to a positive constant Δp which makes pjt larger than pjt-1 and 
the j-th individual is thus more likely to mutate. If f(Xjt) < f(Xjt-1), φ(fjt-1, fjt) is set to a negative 
constant −Δp  which makes pjt smaller than pjt-1 and the j-th individual thus has a higher 
probability to survive. If f(Xjt) = f(Xjt-1), we just set φ(fjt-1, fjt) = 0. 
The better the individual, the smaller the assigned mutation probability. Based on MS-QMP 
scheme, excellent individuals have more chance to survive while those bad ones are more 
likely to mutate, hence pre-maturity is avoided and global searching capability is enhanced. 

4.3 Individual representation 
Number all merging nodes sequentially from 1 to L, where L is the number of merging 
nodes. Assume the i-th merging node has m(i) incoming links and n(i) outgoing links. There 
are precisely 2m(i)⋅n(i) different ways that an information flow passes by the node. Besides, 
there are 2m(i) possible ways that the information flow from m(i) incoming links may pass by 

the j-th outgoing link of the i-th merging node. Obviously, there are 1 ( ) ( )2
L
i m i n i= ⋅∑  possible 

ways that a multicast passes through all merging nodes. 
Since each Q-bit represents a superposition of states ‘1’ and ‘0’ and it collapses to an explicit 
state after each measurement, i.e. either ‘1’ or ‘0’, it is suitable to represent incoming link 
states active or inactive, of a merging node (refer to section 2). This chapter adopts a m(i)⋅n(i) 
Q-bit individual representation G = {g1, g2, ..., gL}, where gi, i = 1, 2, …, L, is the block of 
incoming link states for the i-th merging node. The segment gi includes n(i) sub-segments, 
each of which represents the block information of the k-th outgoing link of the i-th merging 
node, where k = 1, 2, ..., n(i). After observing gi, a certain block of incoming link states for the 
i-th merging node is achieved (see Fig.7 as an example). 
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Fig. 7. Individual representation 

4.4 Fitness evaluation 
This section provides a penalty-function-based fitness function (PF-FF) definition. Based on 
PF-FF, the fitness value fPF-FF(X) of observation state X of individual q is defined as 
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where, Flag(X) is to show whether the observation state X of individual q is feasible 
(According to (Kim et al., 2007a; 2007b), if the achieved max-flow is no less than the desired 
max-flow, we regard X feasible, otherwise, we regard X infeasible). If Flag(X) = 0, it means X is 
feasible and fPF-FF(X) is set to ncl, where ncl is the number of actual coding links. If Flag(X) = 1, 
X is supposed infeasible and must be punished. Flag(s,ti) is to indicate whether a desired 
max-flow is achieved from s to ti, where s is the source node and ti, i = 1, 2, …, d, is the i-th 
sink node. If Flag(s,ti) = 0, the max-flow from s to ti is achievable and the penalty factor Θ(s,ti) 
is invalid. However, Flag(s,ti) = 1 indicates that the max-flow from s to ti can not be achieved 
and punishment should be added. Here, Γ is a constant that indicates the explicit amount of 
punishment. 
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To verify the feasibility of an observation state X, Graph Decomposition Method, by which 
every merging node in a given network is decomposed into a group of nodes, is adopted to 
calculate the max-flow from the source to the sinks (Kim et al., 2007a). 

4.5 The structure of MS-QIEA 
As each part of the algorithm being already introduced in details, the basic steps of the 
algorithm can be described in Fig.8. 
 

 
Fig. 8. Flow chart of MS-QIEA 
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The procedure of MS-QIEA is similar to that of QIEA except for two differences: (1) instead 
of FRAS and DRAS schemes, MS-RAS scheme is adopted to accelerate the convergence of 
the algorithm, and (2) MS-QMP scheme is introduced so as to enhance the global searching 
capability. 

5. Experimental results and discussions 
In order to evaluate the performance of the proposed algorithm, comparisons of GA (Kim et 
al., 2007b), QIEA with DRAS scheme (called D-QIEA below), and MS-QIEA have been 
carried out over three network topologies with the following parameters: Network-I 
(21nodes, 30links, 4sinks, rate=2), Network-II (20nodes, 37links, 5sinks, rate=3) and 
Network-III (40nodes, 85links, 10sinks, rate=4). Links in Network-I, Network-II and 
Network-III are supposed to have unit capacity. Note that all the above algorithms are based 
on binary link state (BLS) encoding approach (Kim et al., 2007b). However, different from 
(Kim et al., 2007b), no all one vector is inserted to the initial population so that the 
algorithms in this chapter may fail to find feasible NCM subgraphs. The population size nPS 
and terminal iteration nTI of the three algorithms under the cases of Network-I, Network-II, 
and Network-III are set to: nPS(20, 20, 40) and nTI(100, 300, 400) respectively. In GA, the 
crossover and the mutation rates are set to 0.8 and 0.1 respectively. In D-QIEA, the 
initialized RAS value is set to 0.05π. In MS-QIEA, set σ0 = 0.04π, Δσ = 0.004π, p0 = 0.1, Δp = 
0.01 and Γ = 20. Performance comparisons and simulation results obtained in 500 random 
trials for each multicast scenario are shown in table 2 and Fig.9-Fig.11.  
 

Algorithms 
Multicast Scenarios 

GA D-QIEA MS-QIEA 

MSR 100.0% 100.0% 100.0% 

BMNCL 2 2 2 

Network-I 

MMNCL 2.00 2.00 2.00 

MSR 98.7% 99.5% 100.0% 

BMNCL 0 0 0 

Network-II 

MMNCL 0.03 0.01 0.00 

MSR 99.1% 100.0% 100.0% 

BMNCL 0 0 0 

Network-III 

MMNCL 0.12 0.00 0.00 

Table 2. Performance comparisons in three multicast scenarios 

By running an algorithm (GA, QIEA, or MS-QIEA) once, one best NCM subgraph GNCM(s,T) 
can be obtained. So, by running an algorithm 500 times, 500 best NCM subgraphs were 
achieved. Among these subgraphs, some of them cannot achieve the desirable multicast rate 
while others (suppose there are W such subgraphs) are feasible ones. In table 2, MSR 
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represents Multicast Success Ratio, where MSR = W/500. BMNCL is the Best Minimum 
Number of Coded Links achieved among 500 trials, and MMNCL denotes the Mean 
Minimum Number of Coded Links over 500 trials. Table 2 shows that MS-QIEA 
outperforms D-QIEA and GA in each case since MS-QIEA always gets the highest MSR and 
the lowest BMNCL and MMNCL. The second best algorithm is D-QIEA, and the worst one 
is GA. High MSR indicates that MS-QIEA has higher probability to successfully construct a 
NCM subgraph with less coding links each time, which reflects the robustness of MS-QIEA. 
Furthermore, lower BMNCL and MMNCL demonstrate that MS-QIEA has better 
optimization performance on global searching than QIEA and GA. 
Fig.9, Fig.10, and Fig.11 show the convergent speed of the three algorithms in three 
multicast scenarios. In each figure, note that MS-QIEA distinguishes itself by the fastest 
convergence. This is because MS-QIEA fully considers individual difference and is able to 
allocate suitable evolutionary parameter values to each individual according to the 
individual’s previous searching situation, which makes it more suitable to speed up the 
search and to avoid local optima. As better characteristic of population diversity is achieved 
by the two QIEA algorithms, broader solution space is explored and exploited 
simultaneously so that MS-QIEA and D-QIEA perform better than GA. 
 
 
 

 
 

 
 

 

Fig. 9. Comparisons of convergence performance in Network-I 
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(a) 

 

 
(b) 

Fig. 10. Comparisons of convergence performance in Network-II. (a) Absolute curves 
without obviously identified trends. (b) Curves to indicate evidence in details that MS-QIEA 
is superior to D-QIEA and GA in terms of convergence and global searching capability. 



A Memory-Storable Quantum-Inspired  
Evolutionary Algorithm for Network Coding Resource Minimization 

 

379 

 
Fig. 11. Comparisons of convergence performance in Network-III 

6. Conclusions 
An improved QIEA (MS-QIEA) has been proposed for coding resource optimization 
problem. MS-QIEA updates its individuals with respect to their previous evolution 
situation. Excellent individuals (the ones achieve increasingly better solutions) are allowed 
to have relatively large RAS values to accelerate the exploration speed and relatively small 
QMP values to survive. Inferior individuals (the ones perform worse and worse) are 
allocated with relatively small RAS values to avoid invalid evolution and relatively large 
QMP values to expect a chance to become excellent individuals. The simulation results 
clearly demonstrate the superiority of this algorithm over GA and QIEA in terms of 
robustness, success ratio, convergence and global exploration. 
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1. Introduction 
During several recent years, the performance of computer technology increased enough to 
enable the using of numerical methods in various branches more commonly then in the past 
when mainly analytical methods were used. Numerical methods are utilized both in a 
design and in optimization of various systems. One of the advantages of numerical methods 
is the possibility of meeting more requirements – they are able to solve multi-objective 
(multi-criteria) tasks. 
Of course, numerical methods are applied also in electronics while designing electronic 
circuits. Thanks to these methods, circuits can be designed with more aspect taken into 
account. The aspects are, naturally, primarily main circuit requirements, e.g., a magnitude 
frequency response, then other various features, e.g., a group delay frequency response, a 
dynamic range, consumption etc. However, in addition, also the parameters of used 
components – the tolerance and spread of their values, their real features, circuit 
characteristic sensitivities to their values, and so on – can be taken into consideration. 
If an analytical method shall be applied to satisfy so many requirements, the circuit design 
would become either unfeasible or so complicated that it would be unsuccessful or 
inaccurate. However, numerical methods are able to operate even with a low or at least 
acceptable complicacy rate. On the other hand, numerical methods have disadvantages as 
well. One of the most significant is a higher time consumption to obtain a result compared 
to analytical methods. Nevertheless, this is not such a problem mostly. 

2. Brief description of Evolutionary Algorithms 
Evolutionary algorithms (EAs) also belong in numerical methods (Corne et al., 1999). They 
represent robust and powerful optimization techniques. Their theme is explored in detail 
today and they have been applied many times in various branches. 
Other methods can be also utilized to find the extreme of a function. For instance: searching 
the extreme by means of the differentiations of the function, various gradient methods, simple 
numerical methods, or other optimization methods (Pintér, 1996), but these methods often 
provide not the global but a local extreme. However, the result of an optimization task should 
be always the most advantageous – optimal – state, which corresponds to the global extreme. 
EAs are applied to finding the solution of optimization tasks. This solution has to satisfy 
some determined conditions. The merit of the found solution is evaluated by the value of an 
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objective function (OF), which is necessary for EA operation. EAs aim to optimize the OF 
value, i.e., aim to find its maximal or minimal value – it depends on a particular 
optimization task. Thus, they try to find the global extreme of the OF. The OF has a certain 
number of variables, denoted n here, (which is given by the task) and EAs search for its 
optimal value by finding suitable values of the variables. EAs proceed progressively in 
generations (cycles), in which a better and better OF value is achieved. Every generation is 
composed of a certain number of vectors, denoted N here, whose entries are the OF 
variables. A set in which the values of the variables of the OF, i.e., also the solution of the 
task, can occur (a search space) has to be defined in advance. The set can be identical to the 
definition scope of the OF or it can be its subset. 
EAs feature several advantages compared to other methods for finding a global extreme, 
e.g.: 
• The only property required from the OF is its value for given variable values from its 

definition range (which is obviously fulfilled for every function). Neither the continuity 
nor differentiability of the OF is required. 

• If the OF has more than one global extreme, EAs are able to find them, i.e., they can 
provide more than one solution. 

• They focus on searching for global extreme(s), not for local one(s). 
However, EAs have also disadvantages: 
• They need a longer time for finding the optimization task solution. This is due to their 

robustness. 
• They utilize randomness, thus the optimization time cannot be predicted. Therefore, 

computing times may be different when the same optimization task is solved several 
times. 

EAs are appropriate for solving complicated tasks. Such tasks cannot be usually solved by 
analytical methods. Alternatively, it would be possible but it would not be lucid, 
consequently, errors could arise. 
Several techniques are ranked among EAs: 
• genetic algorithms, 
• evolutionary strategy, 
• genetic programming, 
• evolutionary programming, 
• differential evolution, 
• other algorithms. 
The utilization of EAs is widespread today, both in electronics, e.g., (Dolívka & Hospodka, 
2007 c; Storn, 1996 b; Vondraš & Martinek, 2002; Žiška & Vrbata, 2006) – used the 
differential evolution, (Haseyama et al., 1996) – used genetic algorithms, (Gielen et al., 1990) 
– used simulated annealing, and in other branches, e.g., (Brutovský et al., 1995; Chambers, 
2000; Dasgupta & Michalewicz, 1997). 

3. Optimization of analogue electronic circuits 
EAs are very suitable for an optimization of analogue electronic circuits as well. This is 
thanks to their advantageous features mentioned above. Several aspects of optimizing 
analogue electronic circuits are discussed in this section. 
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3.1 Objective function 
The general form of the OF denoted U is 

 1 2( , , , ): ,nU x x x X →R…  (1) 

where R is the set of real numbers. The set X (a search space) and all the variables x1 to xn of 
the OF are as follows 

 1 2 1 2 ,n nX X X X S S S= × × × ⊆ × × ×" "  (2) 

 , , 1, 2, , ,i i i ix X X S i n∈ ⊆ = …  (3) 

where Si is the set of real, rational, integer, natural, complex, discrete or other numbers. 
Thus, the OF converts an n-dimensional space into a one-dimensional set of real numbers. 
If all the sets Si are the sets of real numbers (i.e., if Si = R for i = 1 to n) – this occurs often, (2) 
is changed into a simpler form 

 n

n
X ⊆ × × × =R R R R"���	��
  (4) 

and all the variables x1 to xn are real numbers. 
In case of electronic circuit optimization, the OF has a special form. The OF includes a 
function O(x0, x1, x2,…, xn), whose shape shall be optimized, i.e., changed so that it satisfies 
requirements. The function O has the same variables x1 to xn as the OF. In addition to them, 
it has a variable x0, which is usually a real number. After the optimization, the values of the 
function O at defined values of the variable x0 should be in defined intervals. The other 
variables x1 to xn of the optimized function O can be regarded as its parameters. The 
required shape of the function O is obtained by finding suitable values for them. Hence, the 
function O after the optimization should meet this condition 

 1 2 D H( , , , , ) ( ), ( ) ,i n i i iO w x x x O w O w w∈〈 〉 ∀…  (5) 

where O(wi, x1, x2,…, xn) is the value of the function O if the variable x0 is substituted by a 
value wi. OD(wi) and OH(wi) are a lower and upper bound of the values of the function O if 
the variable x0 is equal to wi. 
Note that, generally, both of the bounds need not be determined. For some values wi, the 
condition (5) can be changed to one of these forms 

 1 2 H D( , , , , ) ( ) if ( ) ,i n i iO w x x x O w O w≤ = −∞…  (6) 

 1 2 D H( , , , , ) ( ) if ( ) ,i n i iO w x x x O w O w≥ = ∞…  (7) 

 1 2 K D H K( , , , , ) ( ) if ( ) ( ) ( ).i n i i i iO w x x x O w O w O w O w= = =…  (8) 

While using the function O, the OF is expressed by (9), d and h are the number of OD(wi) and 
OH(wi), respectively 

 1 2 D 1 2 H 1 2
1 1

( , , , ) ( , , , ) ( , , , ),
d h

n i n i n
i i

U x x x U x x x U x x x
= =

= +∑ ∑… … …  (9) 
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where the terms UDi and UHi are 
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… …
…  (11) 

It is obvious that if condition (5) is fulfilled, the OF has the zero value, which is its global 
minimum. 
If the optimization shall meet more requirements, the OF can be created by the sum of more 
terms from (9) or terms with another form. Therefore, the OF can contain more than one 
function O. A penalization function can be included into the OF too. The penalization can 
express, e.g., a requirement for the stability of the optimized circuit. 
When the OF is created by more terms, finding the global extreme of the whole OF means 
satisfying all the particular requirements. 
In practise, the variables x1 to xn represent parameters the optimized circuit. The parameters 
can be, e.g., the values of its components or the values of zeros and poles of its transfer 
function. The variable x0 is mostly frequency. The function O means an optimized circuit 
characteristic, e.g., a magnitude frequency response, group delay frequency response. The 
bounds OD(wi) and OH(wi) specify the intervals of the values of this characteristic. For 
instance, if the variable x0 is frequency f and the function O is a magnitude frequency 
response M(f), the bounds OD(wi) = MD(fi) and OH(wi) = MH(fi) determine the range in which 
the value of the magnitude can be at a certain frequency fi. 

3.2 Programs for optimization and analysis 
A program for implementing calculations of an applied optimization algorithm is necessary 
for performing the optimization of a circuit. 
Because mathematical operations have to be made during performing the optimization 
algorithm, a program capable of doing it is necessary for this purpose. Another feature that 
the program should have is the possibility of symbolical calculation. Suitable programs are 
MapleTM (Waterloo Maple) and MATLAB® (MathWorks) – one of the most widespread 
mathematical programs. 
Moreover, it is necessary to carry out the analysis of an optimized circuit during its 
optimization. As a result, a program for the analysis of the optimized circuit is necessary 
besides the program for implementing calculations of the used optimization algorithm. This 
program can be, e.g.: 
• PraCAn (Bičák & Hospodka, 2008): a library of functions for the MapleTM program, which 

facilitates a symbolic and semisymbolic analysis of continuous-working and discrete-
working real linearized circuits. (PraCAn is an acronym for Prague Circuits Analyzer.) 

• WinSpice (Smith): a general-purpose well-known Spice-compatible program for circuit 
simulation. 

• Cadence (Cadence Design Systems) and Mentor Graphics (Mentor Graphics Corp.): 
professional programs (not only) for numerical analyzing circuits. 
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Of course, the most suitable program for analyzing circuits is the one that can be utilized 
directly in a program for implementing the optimization algorithm, otherwise, the 
analyzing program works as an external one, which have to be called from the mathematical 
program. This can lead to lower efficiency of the optimization. Thus, for the MapleTM 
program, the PraCAn library can be recommended. This combination of programs is used 
also by the authors. 

3.3 Optimization methods 
A powerful enough optimization method should be applied for the optimization of 
analogue electronic circuits. According to authors’ experience, the most suitable one is the 
differential evolution (DE). Therefore, the authors applied this method for their 
optimization tasks described below. 
The DE (Corne et al., 1999; Storn & Price, 1997) comes from the first half of the 90s. It is a 
general-purpose powerful algorithm, which has been already used in many applications. It 
was chosen by the authors owing to its several advantageous features (e.g., good 
convergence properties, ease of use, conceptual simplicity, and only a few control variables) 
and because it is able to achieve better results than other EAs (Storn & Price, 1996). The DE 
is controlled by two parameters: 
• CR – a crossover constant, CR = 0 to 1, 
• F – a mutation constant, F = 0 to 2. 
There are a few versions of the DE (Storn & Price, 1997). 
A detailed description of the DE cannot be presented in this chapter because of its limited 
extent. For more information about the DE, refer to the mentioned references. 
From the other EAs, genetic algorithms (GA) (Goldberg, 1989) are not so powerful. 
When the DE is combined with another method, its efficiency is better. The most suited one 
is the simplex method (Nelder & Mead, 1965). 
Five examples of an analogue electronic circuit optimization are shown in the next sections 
to better explain and document the theory of this optimization described above. In the last 
example, several optimization methods are compared to each other. 

4. Examples of optimization of analogue continuous-working circuits 
Analogue continuous-working circuits represent a big group of electronic circuits, e.g., 
filters, power supplies, amplifiers, oscillators, etc. Many publications about optimization of 
analogue continuous-working circuits have been written, e.g., (Gielen et al., 1990; Tichá & 
Martinek, 2005; Vondraš & Martinek, 2002; Žiška & Vrbata, 2006). 
From all the mentioned kinds of analogue continuous-working circuits, filters (i.e., selective 
circuits) were chosen for this section. Filters can be implemented by several techniques. In 
this section, attention is paid to two of them, whose nonideal features are optimized by 
means of an EA. This section describes two optimizations: 
• optimization of an LC filter – a passive filter, 
• optimization of an ARC filter – an active filter. 

4.1 Optimization of LC filter 
4.1.1 Introduction 
The utilization of LC filters in electronics started in the beginning of the previous century. 
However, they are utilized still owing to their several advantages, e.g.: 
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• low sensitivity of their transfer function to component values, 
• the methods of their design are examined thoroughly, 
• they can be applied in a wide frequency range – from tens Hz up to hundreds MHz. 
The design of an LC filter should satisfy a determined magnitude filter specification. In 
some cases, also the ripple of a group delay frequency response should be considered 
besides the magnitude filter specification for a better circuit design. This ripple should be as 
low as possible. This can be done analytically but it can lead to a high filter order – a high 
number of circuit components. If a numerical method (e.g., an EA) is applied, the order of 
filter can be lower. 
The components creating LC filters are inductors L and capacitors C. Hence, the 
nonidealities in these filters are related to the nonidealities of these components. The 
nonidealities of real capacitors can be neglected whereas the nonidealities of real inductors 
are mostly so significant that they should be taken into account. The most important 
nonideality of real inductors is their finite quality factor. In most cases, the effect of this 
nonideality on the filter transfer function has to be eliminated during the filter design. This 
can be accomplished either by means of prewarping the magnitude filter specification 
(usually causing a higher filter order) or by means of optimization. 

4.1.2 Optimized circuit and its required parameters 
The optimized LC filter, depicted in Fig. 1, realizes a band-pass transfer function. 
 

Ro
C4

L4

C3
L3

C2L2

C1
L1Ri

Vi Vo

 
Fig. 1. Eighth-order LC band-pass filter. 

The input and output resistance Ri and Ro are 1 kΩ. 
The transfer function P(f) of the filter is defined as the ratio of the output and input voltage 

 ( ) .o

i

VP f
V

=  (12) 

The magnitude frequency response |P(f)| is denoted M(f). 
The shape of the magnitude frequency response of this filter should be according to a 
required magnitude filter specification in Fig. 2. 

4.1.3 Description of optimization 
The result of optimization should be: 
• the meeting of a required magnitude filter specification – see Fig. 2, 
• achieving the ripple of the group delay frequency response in the pass band not higher 

than 400 ns. 
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These requirements should be fulfilled by means of finding suitable values of the inductors 
and capacitors. The nonideality considered in the filter was a finite quality factor of the 
inductors. Its used value was 50. 
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Fig. 2. Magnitude filter specification for optimization, diamonds: upper bounds MH(fi) of 
magnitude ranges, circles: lower bounds MD(fi) of magnitude ranges. 

The DE was applied as the optimization algorithm in this example. The analytical solving of 
this example is feasible but complicated. The parameters of the optimization process were as 
follows: 
• CR = 0.9, F = 0.5, 
• d = 11, h = 6, 
• N = 80, n = 8 (= the number of all the inductors and capacitors), 
• S1 to S8 = R, 
• X1 to X4 = 〈10−6, 10−3〉 – the values of all the inductances can be from 1 μH to 1 mH, 
• X5 to X8 = 〈10−12, 10−9〉 – the values of all the capacitances can be from 1 pF to 1 nF. 
The optimized function O is the magnitude M. It has a very long form. Therefore, it is not 
presented here. The meaning of the variables of the functions O is as follows: 
• x0 represents frequency f, wi is substituted by fi, 
• x1 to x4 represent L1 to L4, 
• x5 to x8 represent C1 to C4. 
The OF was created by adding a term ZGD to (9) in order to express the group delay 
optimization, τR means the value of the group delay ripple, τRmax is the required maximal 
value of the group delay ripple (400 ns) 

 

R 1 4 1 4 Rmax

Rmax
GD 1 4 1 4

R 1 4 1 4 Rmax

( , , , , , )

( , , , , , )
if ( , , , , , ) ,

0 else.

L L C C

Z L L C C
L L C C

τ τ
τ

τ τ

−⎧
⎪
⎪= ⎨ >⎪
⎪⎩

… …

… …
… …

 (13) 

4.1.4 Result from optimization 
The component values arisen from the optimization are listed in Table 1. The needed 
number of generations was 515. The magnitude frequency response of the circuit using 
these values is displayed in Fig. 3. 
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i 1 2 3 4 
Li [μH] 282.94 18.823 191.71 27.524 
Ci [pF] 15.177 241.51 24.542 164.87 

Table 1. Component values from optimization. 
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Fig. 3. Magnitude frequency response |P(f)| obtained from optimization. 

4.2 Optimization of ARC Filter 
4.2.1 Introduction 
Combining an RC network with a gain element can lead to transfer function with hogh Q 
factor complex poles (Schaumann et al., 1990). These filters are called ARC (active RC). They 
are used instead of LC filter to miniaturize the realization, for example, because inductors 
tend to be large and bulk, especially at low frequencies. ARC filters are often applied in both 
discrete and integrated form – both hybrid and monolithic. The active component can be 
realized by different elements – operational amplifiers, transconductance or transimpedance 
amplifiers, current conveyors, etc.    

4.2.2 Optimized circuit and Its required parameters 
The circuit in Fig. 4 was chosen to demonstrate possibilities of optimization of ARC filters. It 
represents a basic band-pass filter with cascade realization by two 2nd order blocks – 
biquads. They use operational amplifiers as a gain element.  
The nonidealities of the resistors and capacitors are not necessary to be considered whereas 
in case of the amplifiers, their nonidealities have to be respected. 
If the amplifiers are common operational amplifiers, they have these main nonidealities: 
• finite input resistance, 
• nonzero output resistance, 
• finite slew rate, 
• finite unity-gain bandwidth, 
• finite voltage gain. 
The effect of input resistance is usually insignificant, especially when field-effect transistors on 
the operational amplifier inputs are used. The output resistance effect is usually also less 
important. The slew rate can be neglected when signals have low amplitude. However, the 
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remaining two features – unity-gain bandwidth and voltage gain – affect the transfer function 
of ARC filters substantially. 
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Vi Vo Vo

 
Fig. 4. Two-stage ARC band-pass filter. 

Filter transfer functions are defined as follows 

 1 2, .o o

i i

V VP P
V V
′

= =  (14), (15) 

The magnitude frequency response |P1(f)| is denoted M1(f), in the same way M2(f) 
corresponds to |P2(f)|. The symbols P1(f), P2(f), M1(f), and M2(f) are for the filter with ideal 
components. When nonideal components are used, these symbols are changed to P1N(f), 
P2N(f), M1N(f), and M2N(f). 
The circuit (transfer function P2(f)) should implement a band-pass filter with a magnitude 
filter specification  presented in Fig. 7. 

4.2.3 Description of optimization 
During the optimization, these nonidealities were respected: 
• finite unity-gain bandwidth of operational amplifiers, 
• finite voltage gain of operational amplifiers. 
The model in Fig. 5 was used for the operational amplifiers in the filter (Sedra & Smith, 
2004). The input resistance RIN and output resistance ROUT were not considered (see section 
4.2.1). The value of transadmittance g is 1 S and the value of voltage gain a is 1. 
 

Vin Rin

+ in

− in

gVin ROA
COA

VRC

outRout

aVRC

  
Fig. 5. Applied model of operational amplifier. 

The value of the resistor ROA and the capacitor COA depends on the unity-gain bandwidth B1 
and the voltage gain A0 of the applied operational amplifier and they can be calculated 
according to the following formulae 
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1 0
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, .

2π
A

R A C
B A
−

= =  (16), (17) 

In Fig. 6 there is the magnitude frequency response of the filter with component values 
designed for ideal filter. The parameter values of the operational amplifiers were the 
following: B1 = 0.5 MHz, A0 = 2·105. This figure shows the difference between magnitude 
frequency responses with using ideal and real components. 
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Fig. 6. Magnitude frequency responses of the ARC filter with designed component values 
for ideal components, solid line: magnitude M2, for real components, dotted line: magnitude 
M1N and dashed line: magnitude M2N. 

An optimization was applied to remove the difference between the magnitude frequency 
responses M2 and M2N and correct dynamic conditions so that max|M1N(f)|= max|M2N(f)| 
The result of optimization should be: 
• The magnitude frequency response M2N should satisfy a determined magnitude filter 

specification in Fig. 7. 
• The magnitude frequency responses M1N and M2N should have their maximum values 

as similar as possible (because of obtaining an optimal dynamic range). 
Suitable values for the resistors and capacitors in the circuit have to be found to meet the 
requirements. 
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Fig. 7. Magnitude filter specification for optimization, diamonds: upper bounds MH(fi) of 
magnitude ranges, circles: lower bounds MD(fi) of magnitude ranges. 
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The DE was applied with the similar parameters, as in the previous example. Number of 
optimized components values was n = 12, (N = 120). Values of both resistors R (for both 
filter section) were chosen to 1R = 2R = 10 kΩ. 
The OF was created by adding a term UM to (9) in order to express the dynamic conditions 
optimization, where ∆Mmax is the permitted difference of the magnitudes maxima (10−6).  

 
1 2

1 2 maxM

|max( ( )) 1| |max( ( )) 1|
if|max( ( )) 1| |max( ( )) 1| ,( , )

0 else,

N N
i i

N Nx y

M f M f
M f M f MU R C

− + −⎧
⎪ − + − > Δ= ⎨
⎪
⎩

 (18) 

where iRx and iCy represent all resistor and capacitor values of the filter form Fig. 4. 

4.2.4 Result from optimization 
The optimization found the component values shown in Table 2. To find them, the 
optimization required 4831 generations. The magnitude frequency responses corresponding 
to these values (and chosen values of 1R = 2R = 10 kΩ) are plotted in Fig. 8.  
 

Stage R2 [kΩ] R3 [kΩ] R11 [kΩ] R12 [Ω] C1 [nF] C2 [nF] 
First 11.18 78.47 38.38 558.5 7.963 6.370 

Second 8.620 91.52 13.96 630.9 6.125 7.994 

Table 2. Component values from optimization. 
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Fig. 8. Magnitude frequency responses after optimization, dotted line: magnitude M1N, solid 
line: magnitude M2N. 

5. Examples of optimization of analogue discrete-working circuits 
Analogue discrete-working circuits represent a group of electronic circuits utilized for 
circuit implementation nowadays. Two kinds of techniques belong in this group: 
• switched-capacitor technique, 
• switched-current technique. 
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However, the analysis of analogue discrete-working circuits is more complicated than in 
case of classical (continuous-working) circuits due to the discrete character of their operation 
(Bičák & Hospodka, 2003; Bičák & Hospodka, 2005). Consequently, the optimization of this 
kind of circuits is more difficult compared to continuously working ones (since their 
analysis is a necessary part of optimization). 
Two optimizations are included in this section: 
• optimization of a switched-capacitor filter, 
• optimization of a switched-current filter. 
 

5.1 Optimization of switched-capacitor filter 
5.1.1 Introduction 
One of common methods for circuit realization, integrated circuits in particular, is the 
switched-capacitor (SC) technique. This technique is widespread because it has a few 
advantages in comparison with other techniques (Ananda et al., 1995), for instance: 
• The transfer of SC circuits depends not on capacitor values, but on the ratios of them. 

These ratios can be substantially more accurate than the capacitor values. 
• A clock frequency signal fC, which is needed for SC circuit operation, can be used for 

their tuning. 
• SC circuits do not require resistors, whose implementation is difficult in integrated 

form. 
As the switches in SC circuits, field effect transistors are commonly used (Ananda et al., 
1995). However, this switch implementation has several nonidealities: 
• nonzero off-state conductance, 
• nonzero on-state resistance, 
• parasitic capacitances. 
From the mentioned switch nonidealities, one can say that nonzero on-state resistance RON 
shows itself mostly. Its effect on the transfer function of a SC circuit consists in charging a 
capacitor C in the circuit via this resistance. Therefore, the time constant of the charging  
τ = RONC is not zero as in case of an ideal switch with zero on-state resistance. The higher 
on-state resistance is, the higher ratio τ/TC is and the more expressively the nonzero on-state 
resistance shows itself – the stronger effect of on-state resistance on the SC circuit behaviour 
is; TC is the period of a clock frequency fC, TC = 1/fC. 
Another nonideality that can occur in SC circuits is the effect of the features of real 
operational amplifiers. These nonidealities have been discussed in section 4.2.1. 
Both the nonidealities of switches and operational amplifiers affect the transfer function of 
SC circuits negatively. 
The number of publications dealing with the optimization of SC circuits is not large, e.g., 
(Dolívka & Hospodka, 2006; Dolívka & Hospodka, 2007 b; Dolívka & Hospodka, 2008; 
Storn, 1996 a). 
 

5.1.2 Optimized circuit and its required parameters 
The SC circuit chosen for the optimization was an SC biquad (biquadratic section) with 
schematic diagram in Fig. 9 (Bičák & Hospodka, 2005). The symbols φ1 and φ2 stand for 
phase 1 and phase 2, respectively. 
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Fig. 9. Filter implemented in the switched-capacitor technique. 

The transfer function from the input Vi to the output Vo′ is denoted P1 and the transfer 
function from the input Vi to the output Vo is denoted P2. This transfer function labelling is 
for the filter with ideal components. Hence, the following equations are valid for P1 and P2 

 1 2, .o o

i i

V VP P
V V
′

= =  (19), (20) 

The transfer functions of the filter with both ideal and nonideal components are considered 
from phase 1 on the input to phase 1 on the output. 
The magnitude of a transfer P(z) is symbolized by M(f). In case of the transfers P1(z) and 
P2(z), the magnitudes are calculated as follows 

 C C

2π 2π

1 1 2 2( ) , ( ) .
f f

j j
f fM f P e M f P e

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (21), (22) 

For the transfer functions of the filter with nonideal components, labelling P1N and P2N is 
used instead of P1 and P2, respectively. The magnitudes of the transfer functions P1N(z) and 
P2N(z) are denoted M1N(f) and M2N(f), respectively. They are calculated from P1N and P2N in 
the same way as in case of M1 and M2 – according to (21) and (22). 
Four kinds of filters can be implemented by this filter: low-pass, high-pass, band-pass, and 
notch filter. From these types, the band-pass filter was chosen. The filter was required to 
have these parameters: 
• centre frequency: fO = 400 kHz, 
• clock frequency: fC = 6 MHz, 
• gain at fO: GO= 20 dB, 
• quality factor: Q = 10, 
• transfer function implemented from the input Vi to the output Vo. 
If the filter with ideal components is designed according to a common method (Ananda et 
al., 1995), it has magnitude frequency responses depicted in Fig. 10. 
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Fig. 10. Magnitude frequency responses of the SC filter with ideal components, dotted line: 
magnitude M1, solid line: magnitude M2. 

5.1.3 Description of optimization 
These nonidealities were taken into account during the optimization because their effect on 
SC filter characteristics is the most relevant: 
• nonzero on-state resistance of the switches, 
• finite unity-gain bandwidth of operational amplifiers, 
• finite voltage gain of operational amplifiers. 
The model in Fig. 5 was used for the operational amplifiers in the filter. Fig. 11 shows the 
magnitude frequency response of the filter with capacitor values designed for ideal 
components. The filter was analyzed with ideal and real components. The used value of 
switch on-state resistance was 1 kΩ. The parameter values of the operational amplifiers were 
the following: RIN = 1 TΩ, ROUT = 50 Ω, B1 = 20 MHz, A0 = 2·105. From this figure, one can see 
that the magnitude frequency responses are different. 
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Fig. 11. Magnitude frequency responses of the SC filter with capacitor values designed for 
ideal components, dotted line: magnitude M2, solid line: magnitude M2N. 
The effect of the three chosen nonidealities on the magnitude frequency response of the SC 
circuit was eliminated using optimization. The optimization had the following aims, which 
shall have been satisfied by finding suitable capacitor values: 
• The magnitude frequency response M2N should fulfil a defined magnitude filter 

specification (see Fig. 12), which was derived from the magnitude frequency  
response M2. 
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• The magnitude frequency responses M1N and M2N should have their maximum values 
as similar as possible (because of obtaining an optimal dynamic range). 

• The optimized filter should be stable in order to be applicable. (However, this aim is 
evident.) The condition of the stability is well known – all the poles of the transfer 
function in the z plane have to have the absolute value lower than 1. 

The spread of capacitor values was not considered in the optimization. Nevertheless, the 
obtained capacitor values (see Table 3) have a spread, which is acceptable. 
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Fig. 12. Magnitude filter specification for optimization, circles: lower bounds MD(fi) of 
magnitude ranges, diamonds: upper bounds MH(fi) of magnitude ranges, dotted line: 
magnitude frequency response MI. On the right: Detail for a vicinity of the frequency fO. 

The DE was applied as the optimization algorithm in this example. Most probably, this 
example could not be solved analytically. The parameters of the optimization process were 
as follows: 
• CR = 0.9, F = 0.5, 
• d = 9, h = 23, 
• N = 70, n = 7 (= the number of all the capacitors), 
• S1 to S7 = R, 
• X1 to X7 = 〈10−12, 10−10〉 – the values of all the capacitances can be from 1 pF to 100 pF. 
The optimized function O is the magnitude M2N. It has a very long form. Therefore, it is not 
presented here. The meaning of the variables of the functions O is as follows: 
• x0 represents frequency f, wi is substituted by fi, 
• x1 to x7 represent C1 to C7. 
The form of the OF was a modification of (9) – a term for an optimization of a dynamic 
range was added to (9) and a penalization function expressing the requirement of the circuit 
stability was included into (9). The resulting OF was 

 
D 1 7 H 1 7 1N 1 7 2Nmax

1 1
1 7

( , , ) ( , , ) max ( , , )
( , , )

if the biquad is stable,
1000 if the biquad is unstable,

d h
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⎧
+ + −⎪

⎪= ⎨
⎪
⎪⎩

∑ ∑… … …
…  (23) 

where max M1N means the maximal value of the magnitude M1N and M2Nmax means the 
required maximal value of the magnitude M2N, M2Nmax = 10 (= 20 dB = GO). 
The optimization was performed while using the values of the real components listed above. 
However, the parameters RIN and ROUT in the model of the operational amplifiers were not 
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used (so RIN = ∞ Ω and ROUT = 0 Ω). The input and output resistances of the operational 
amplifiers were neglected because of simplifying the analysis of the filter during the 
optimization and thereby speeding it up. This simplification was done since their effect was 
supposed to be not significant. After the optimization, the analyses of the filter with the 
input and output resistances and without them were carried out and these analyses 
confirmed this assumption. The difference between these analyses can be seen in Fig. 14. 

5.1.4 Result from optimization 
The optimization reached the value of the OF of 0.000034 during 1523 generations. Using 
more generations did not improve the OF value (the total number of generations was 4000). 
Table 3 shows the capacitor values arisen from the optimization. 
 

i a b c d e k l 
Ci [pF] 65.319 43.877 69.006 58.628 13.450 4.1664 52.682 

Table 3. Capacitor values from optimization. 

The magnitude frequency responses M1N and M2N with using the resulting capacitor values 
are shown in Fig. 13. The magnitude frequency response M2 is also shown in this figure for 
comparing. The magnitudes M1N and M2N have their maxima on almost the same level; the 
difference between them is only about 0.00025 dB. The difference between the frequencies of 
the maxima occurs even in case of the magnitudes M1 and M2. 
The magnitudes M1N and M2N plotted in Fig. 13 are with RIN = ∞ Ω and ROUT = 0 Ω – these 
parameters were not considered since the optimization was carried out without them (see 
section 5.1.3). However, their effect on the filter magnitude frequency responses is not 
significant. The magnitude frequency responses M1N and M2N with using the RIN and ROUT 
in the model of the operational amplifiers are denoted M1NR and M2NR, respectively. 
In Fig. 14 and 15, there are the difference between the magnitude frequency responses M1NR 
and M1N and the difference between M2NR and M2N. It is apparent from the figure that the 
differences are not high. Higher values (but not too high) are only in the stop-band of the 
difference between M2NR and M2N. 
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Fig. 13. Magnitude frequency responses of the SC filter, dotted line: magnitude M2, dashed 
line: magnitude M1N after optimization, solid line: magnitude M2N after optimization. On 
the right: Detail for a vicinity of the frequency fO. 
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Fig. 14. Difference between magnitude frequency responses M1NR and M1N. 
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Fig. 15. Difference between magnitude frequency responses M2NR and M2N. 
Of course, the optimization could be accomplished including the parameters RIN and ROUT 
but it would take a longer time than without them (about three times). 

5.2 Optimization of switched-current filter 
5.2.1 Introduction 
The switched-current (SI) technique is applied commonly for the implementation of 
functional blocks because it has a few advantages (Toumazou et al., 1993): 
• Suitable for the integrated form of circuits with utilizing VLSI-CMOS technology, i.e., 

possible integration of SI circuits with digital ones. 
• Operation in the current mode – a high dynamic and frequency range. 
• The transfer function of SI circuits depends on the ratios of the transconductances gm of 

the transistors in individual circuit stages, not on the transconductance itself. The ratios 
can be substantially more accurate than the transconductances. 

• No need of floating capacitors, required grounded ones only. 
• Capacitor values do not affect the transfer function. 
The nonidealities that can occur in SI circuits are especially related to the used switches and 
transistors. The transistors in SI circuits operate as controlled current sources. Their main 
nonideal features are finite output resistance and parasitic capacitances. In case of the 
switches, the nonideal features are these: nonzero on-state resistance, finite off-state 
resistance, and parasitic capacitances. These nonidealities are caused by the implementation 
of the switches by field-effect transistors. 
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Other properties of circuits realized by the SI technique that can be optimized to achieve a 
better circuit design are the sum of all transconductance values and the ratio between the 
highest and lowest transconductance value. These parameters should be as small as 
possible. Minimizing the sum of all transconductance values is owing to a small area of the 
chip with the SI circuit. Transconductance gm of a transistor is linearly dependent on the 
ratio W/L, where W is the width of the transistor channel on the chip and L is its length. The 
minimal value of the length is limited by the used technology for circuit implementing. The 
transistor area on the chip is dependent on W·L. Thus, for a given length, the smaller 
transconductance (smaller width) is, the smaller area is occupied by the transistor. 
Moreover, a smaller width causes smaller parasitic capacitances. The ratio between the 
highest and lowest transconductance value – the spread of transconductance values – 
should be minimized because its lower value is more suitable for circuit design. 
The optimization of SI circuits is described in few publications. Authors know only about 
(Erten et al., 1999), which describes the optimization of SI circuits by means of simulated 
annealing. Authors’ publications about the optimization of SI circuits are (Dolívka & 
Hospodka, 2007 a; Dolívka & Hospodka, 2007 c; Dolívka & Hospodka, 2008). 

5.2.2 Optimized circuit and its required parameters 
The SI circuit used in this section was a filter working as a biquad (biquadratic section), 
whose schematic diagram is in Fig. 16 (Toumazou et al., 1993). The symbols φ1 and φ2 stand 
for phase 1 and phase 2, respectively. Every transistor Ti has transconductance gmi and the 
ratio of the currents of any two current sources in the upper part of Fig. 16 is the same as the 
ratio of the transconductances of the transistors connected to these current sources. Only 
one of the current values αiI has to be chosen so that the transistors are in the linear part of 
their output characteristic. 
 

α1I

M1 M2 M3
M4 M5 M6 M7 M8 M9

M10 M11
M12

I i
φ2

φ1

α2I α 3I α 4I (α5 + α6)I α7I (α8 + α9)I α10 I α 11 I α 12 I

+ Vcc

Io

 
Fig. 16. Filter implemented in the switched-current technique. 
The transfer function of the filter from the input Ii to the output Io with using ideal 
components is denoted as PI. All the filter transfer functions (with both ideal and nonideal 
components) in this section are considered from phase 2 on the input to phase 2 on the 
output. The transfer function PI can be express according to (24) and the magnitude MI(f) of 
the transfer function PI(z) according to (25). 
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The transfer function of the filter using the nonideal components is symbolized PN. The 
magnitude of this transfer is symbolized MN(f) and is related to the transfer PN(z) in the 
same manner to MI – in accordance with (25). 
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This filter can realize a few filter types. A low-pass filter was chosen here. Its transfer 
function should have these parameters: 
• pass-band cut-off frequency: fP = 1 MHz, 
• clock frequency: fC = 10 MHz, 
• quality factor: Q = 0.707, 
• gain at 0 Hz: G0 = 20 dB. 

5.2.3 Description of optimization 
Two nonidealities from those listed above were chosen for this optimization: 
• finite output resistance of the transistors working as current sources, 
• nonzero on-state resistance of the switches. 
These nonideal features can be considered as the most important for these components. 
To express the output resistance ROUT of the transistors in the SI filter, the equivalent circuit 
in Fig. 17 (Sedra & Smith, 2004) was used for them. The output resistance ROUT of the 
transistors is connected in parallel to the output resistance of the current sources in the 
upper part of Fig. 16 for alternating input current Ii. The value that was considered for this 
resulting resistance was 20 kΩ. 
 

D

G
S

≡ vgs gm vgs

DG

S

ro

  
Fig. 17. Used equivalent circuit for transistors. 

The nonzero on-state resistance of the switches was represented by a resistor connected in 
series to the ideal switch. The chosen value for the resistance was 1 kΩ. 
Fig. 18 shows the magnitude frequency responses for the SI filter with transconductance 
values designed for ideal components. It is obvious from this figure that the difference 
between the magnitudes MI and MN is not small. Thus, the nonidealities affect the transfer 
function of the filter markedly. 
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Fig. 18. Magnitude frequency responses of the SI filter with transconductance values 
designed for ideal components, dotted line: magnitude MI, solid line: magnitude MN. 
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To remove the undesirable effect of the nonidealities on the filter transfer function, new 
values of transconductances had to be found. This was made by optimization. In addition to 
this requirement, the optimization result had to meet two more aims. Hence, all the three 
requirements for this multi-objective (multi-criteria) optimization result were these: 
• removing the undesirable effect of the nonidealities on the filter transfer function, i.e., 

achieving the shape of the magnitude frequency response MN of the SI filter with the 
nonideal components as similar as possible to the magnitude frequency response MI of 
the ideal filter, 

• achieving the sum of all transconductance values as small as possible, 
• achieving the ratio between the highest and lowest transconductance value as small as 

possible. 
These requirements shall have been met by finding suitable transconductance values. 
Because of the first aim of the optimization, a magnitude filter specification was defined – 
see Fig. 19. 
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Fig. 19. Magnitude filter specification for optimization, circles: lower bounds MD(fi) of 
magnitude ranges, diamonds: upper bounds MH(fi) of magnitude ranges, dotted line: 
magnitude frequency response MI. On the right: Detail for a frequency range of 0 to 
1.3 MHz. 

The DE was applied as the optimization algorithm in this example. Most probably, there is 
not any analytical method capable of accomplishing this optimization task. The parameters 
of the optimization process were as follows: 
• CR = 0.9, F = 0.5, 
• d = 16, h = 16, 
• N = 120, n = 12 (= the number of all the transistor transconductances), 
• S1 to S12 = R, 
• X1 to X12 = 〈10−5, 10−2〉 – the values of all the transconductances can be from 10 μS to 10 mS. 
The optimized function O is the magnitude MN. It has a very long form. Therefore, it is not 
presented here. The meaning of the variables of the functions O is as follows: 
• x0 represents frequency f, wi is substituted by fi, 
• x1 to x12 represent gm1 to gm12. 
To meet the second and third aim of the optimization, two terms were added to (9). This 
form of the OF was applied 
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with this symbol meaning: 
m{1,2, , }

max ( )ii n
g

∈ …
 the maximal value from all transconductance values, 

m{1,2, , }
min ( )ii n

g
∈ …

 the minimal value from all transconductance values, 

bM the weight of the optimization of the magnitude frequency response, 
UM the rate of satisfying the magnitude filter specification by the optimized magnitude 
                frequency response, 
bS the weight of the optimization of the sum of all transconductance values, 
US the sum of all transconductance values, 
bR the weight of the optimization of the ratio between the highest and lowest 
                transconductance value, 
UR the ratio between the highest and lowest transconductance value. 
It is obvious from (26) that the value of the OF U is always higher than 0. Whereas the OF 
term UM can be zero (which expresses that the optimized magnitude frequency response 
meets the magnitude filter specification), the term US is always higher than 0 and the term 
UR is always higher than 1. 
The values of the weights bM, bS, and bR are presented in the following section. 

5.2.4 Result from optimization 
For a satisfactory optimization result, proper setting of the weights in the OF (26) is 
necessary. Table 4 presents various values of the weights and corresponding results of the 
optimization. One of the weights can be always equal to 1 because only the ratios between 
the weights are important for the optimization. 
 

bM bS bR U1G UM US UR U ΔU3000G 
1 1 1 24.9 0.00668 0.0857 3.42 3.51 4.28·10−5 
1 10 1 25.4 0.00376 0.0715 3.48 4.19 6.62·10−5 
1 10 3 46.0 1.64 0.0795 2.76 10.7 1.60·10−3 
1 30 1 26.7 0.349 0.0510 3.57 5.45 2.11·10−4 
4 100 1 74.6 0.0960 0.0477 4.17 9.32 6.04·10−1 
2 30 1 41.2 0.0194 0.0697 3.49 5.62 1.02·10−3 

Table 4. The results of the optimization with various values of the weights bM, bS, and bR in 
the OF, U1G: the value of the OF after the 1st generation, UM, US, UR, U: values after 4000 
generations, ΔU3000G: the improvement (i.e., lowering) of the OF value in the last 3000 
generations, i.e., since the 1000th generation. 
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The last column in Table 4 shows that using more than 1000 generations in this optimization 
yields only a low improvement of the OF value. 
From the values of the weights in Table 4, the most suitable ones are those on the last line 
because then the values of UM, US, and UR are optimized equally, so they are regarded as the 
optimization result here. However, of course it is possible to use another combination of the 
weight values from Table 4 to get a utilizable optimization result. 
Table 5 shows the transconductance values arisen from the optimization with the weight 
values on the last line of Table 4, i.e., bM = 2, bS = 30, and bR = 1. 
 

i 1 2 3 4 5 6 
gmi [mS] 2.4417 2.4417 8.5222 2.4417 8.5222 6.3116 

 
i 7 8 9 10 11 12 

gmi [mS] 8.5222 8.5222 4.8032 6.2199 2.4417 8.5222 

Table 5. Transconductance values from optimization. 

Because the value of UM is not zero, the optimized magnitude frequency response does not 
quite fulfil the magnitude filter specification. The violations of the magnitude filter 
specification occur only at the following three frequencies: 
• 0 Hz: required value: 20 dB, obtained value: 19.99999999995 dB, 
• 4.5 MHz: required values: −31.640 to −31.440 dB, obtained value: −31.6400000007 dB, 
• 4.9 MHz: required values: −59.737 to −59.537 dB, obtained value: −59.3704 dB. 
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Fig. 20. Magnitude frequency responses of the SI filter, dotted line: magnitude MI, solid line: 
magnitude MN after optimization. On the right: Detail for a frequency range of 0 to 1.2 MHz. 

It is apparent that these violations are slight. 
In Fig. 20, there is the magnitude frequency response MN with using the resulting 
transconductance values. The magnitude frequency response MI is also shown in this figure 
for comparing. It is evident from the figure that the difference between the magnitudes MN 
and MI is very little. 
If the terms US and UR were not considered in the optimization (i.e., if the value of the 
weights bS and bR were 0), the obtained sum of all transconductance values would be 0.0737 
and the ratio between the highest and lowest transconductance value would be 4.11. Hence, 
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both of them would be worse than in case of this optimization. Therefore, it is obvious that 
considering these two requirements in optimization leads to a better circuit design. 

6. Comparing several optimization methods 
This section shows the suitability of ten optimization methods for optimization of analogue 
electronic filters. The methods are compared as for their speed of optimization and ability to 
search for the global extreme, not a local one. The chosen methods are: 
a. DE, version best/1/bin 
b. DE, version best/1/bin combined with the simplex method 
c. DE, version EDE 
d. DE, version EDE combined with the simplex method 
e. DE, version rand/1/bin 
f. DE, version rand/1/bin combined with the simplex method 
g. DE, version rand-to-best/1/bin 
h. DE, version rand-to-best/1/bin combined with the simplex method 
i.  GA 
j.  GA combined with the simplex method 
The version EDE of the DE differs from other versions of the DE in the way of generating a 
trial vector (Vondraš & Martinek, 2002). 
The optimization task utilized for this comparing was similar to the one presented in section 
5.1, so it is a common optimization of an analogue electronic filter. 
The value of the applied OF is 0 if the optimization is successful. The optimization methods 
were required to achieve the OF value lower or equal to 10−10. To get this result, the methods 
needed numbers of generations GN, which are listed in Table 6, where the OF value UOBT 
obtained by them is presented too. 
 

Without the simplex  
method 

With the simplex  
method Method 

GN UOBT GN UOBT 

DE, best/1/bin 94 8.6·10−11 60 2.3·10−11 

DE, EDE 173 4.4·10−11 61 6.1·10−11 

DE, rand/1/bin >2000 1.4·10−9 114 4.0·10−11 

DE, rand-to-best/1/bin 179 9.1·10−11 72 4.1·10−11 

GA >2000 3.9·10−2 >2000 7.3·10−10 

Table 6. Results obtained by means of the chosen methods. 

Fig. 21 illustrates the achieved value of the OF versus the number of generations. The speed 
of optimization of all the methods can be seen easily from it. Fig. 21 together with Table 6 
shows the ability to search for the global extreme too. The method i could not find the global 
extreme but a local one only whereas the other methods except for e converged to the global 
extreme quickly. The method b turned out to be the best one. 
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Fig. 21. Dependence of the value of the OF on the number of generations during 
optimization process performed by means of the chosen methods. 

7. Conclusion 
The aim of this chapter was to show possibilities of an optimization of analogue electronic 
filters by means of evolutionary algorithms. In practise, there are many cases when common 
analytical methods cannot be used for obtaining required circuit characteristics and/or 
eliminating nonideal circuit features. Evolutionary algorithms are very suitable for this 
purpose. 
The ways to carry out the optimization of analogue electronic filters were described in the 
beginning of this chapter. Then a few examples of optimizations were presented to explain 
the description better. The optimized circuits were chosen from both analogue continuous-
working ones and analogue discrete-working ones. Several evolutionary algorithms were 
compared regarding their efficiency while optimizing analogue electronic filters at the end 
of the chapter. 
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1. Introduction 
The optimization of circuits with the aim of improving performance, lowering costs, and 
more recently, to reduce the size and weight of electronic devices, among other objectives, 
has become a research field in the areas of mathematics and engineering around the world 
(Antoniou & Lu, 2007). The problem can be interpreted as: among all possible models for the 
circuit, considering topology and values of components, find a model with minimum size 
and appropriate parameters, able to meet a set of typically conflicting hard specifications. 
The deterministic methods are not effective in the design of new circuits, since it does not 
always have available accurate mathematical models of the processes to be optimized (Levy 
et al., 2001). However, a number of new stochastic algorithms have allowed the 
development of nearly optimal circuits, which are quite acceptable from the standpoint of 
their implementations. The techniques currently used require much prior knowledge about 
the circuit to be optimized and this knowledge is not always available. The challenge, then, 
is the development of robust techniques that rely less in specialist knowledge or even 
incorporating this knowledge, and show efficiency equal or superior to the traditional 
methods. 
In general, due to the complexity of the problems associated with different types of circuit 
designs, sub-optimal solutions are looked for in order to mitigate the mathematical 
complexity of the analytical models, generating approximate solutions, but with acceptable 
results (Levy et al., 2001). Evolutionary methods, so called because they use principles of 
evolution found in nature, are natural candidates to this task, since they are able to find 
optimal solutions or solutions near the optimum, using mechanisms of selection, crossover 
and mutation (Holland, 1970). Most methods in the literature consider an initial topology for 
the circuit and only optimize its parameters, such as, for example, in (Hsu & Huang, 2005). 
However, it is desirable that the topological structure also goes under optimization, 
allowing, among other things, the search for new topologies, which is a requirement of 
current applications. Other methods, using the traditional Genetic Programming as in the 
work of Koza (Koza et al., 1996), optimize the topology, without considering any prior 
knowledge, but demand a high computational cost and also have some methodological 
drawbacks such as premature convergence and stagnation, among others (Hu & Rosemberg, 
2004). 
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This chapter discusses the application of evolutionary methods to design RF/microwave 
filters, making comparisons with traditional methods and other evolutionary methodologies 
proposed in the literature for the same class of problems. The design of analog circuits will 
be addressed as a problem of simultaneous optimization of topology and parameters, and 
we will present a general evolutionary method for synthesis of analog circuits, whose 
application produces competitive solutions when compared with other methods already 
proposed in the literature. 

2. Description of the method 
Fig. 1 shows the flowchart of the Memetic Evolutionary Algorithm. This hybrid (memetic) 
method associates a local search technique widely explored in the literature, the Simulated 
Annealing algorithm (Michalevicz & Fogel, 2004), to the global search Evolutionary 
Algorithm. In the following sections, the features of the method will be described. 

2.1 Two-port circuit representation  
Two-port circuit representation is widely used to describe microwave circuits,  from passive 
to active elements, such as transistors. So, it becomes necessary to represent the evolvable 
circuit shown in Fig. 2 by two-port sub-circuits. Thus, the circuit is encoded into the 
hereinafter called Positional Matrix.  
The initial size of this evolvable matrix is given by the number of elements of the initial 
circuit, which is composed by a set of elements cascaded from the source towards the load. 
The build-up process of the initial Positional Matrix is as follows:  
1. Randomly define the size n  of the Positional Matrix;  
2. Randomly select n  circuit elements from a database and assemble the initial Positional 

Matrix by cascading them into its main diagonal, from the source to the load;  
3. Repeat m  times 
Randomly select a row i  and a column j  of the Positional Matrix, subject to i j≤ . 
Randomly select a circuit building-block and its respective connection type based on 
constraining rules and encode it in the  position ( , )i j  of the Positional Matrix (e.g., as 
depicted in Fig. 4).    
Along the evolution process, other building blocks are placed into or removed from the 
variable-size Positional Matrix, as described in the following sections. This specific feature of 
this approach gives degrees of freedom to the process of suitable topology discovery. The 
possible types of connection are: cascade, serial, parallel, or hybrid. Besides the building-
blocks, topology constraining rules also feeds the algorithm, as depicted by the database in  
Fig. 3. 
Figs. 4 and 5 illustrate the proposed representation. In the Positional Matrix of Fig. 4, the 
circuit elements (building-blocks) (1)

11b , (1)
22b , and (1)

33b  are connected in cascade;  (2)
11b  and 

(1)
11b ,  are connected in parallel (p); (1)

13b  is in series (s) with the input port of (1)
11b   and in 

parallel (p) with the output port of (1)
33b  (hybrid connection); (1)

23b  is in parallel (p) with the 
input port of (1)

22b  e and in series with the output port of (1)
33b ;  (hybrid connection). Fig. 5 

shows its respective topological representation.  
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Fig. 1. The Bi-objective Memetic Evolutionary Algorithm. 

 

 
Fig. 2. Template of the evolvable circuit.  



Evolutionary Algorithms 

 

410 

                  
(a)                                                      (b) 

 

    
                                                    (c)                                                      (d) 

Fig. 3. The possible connections types between two-port building blocks: (a) parallel, (b) serial, 
(c) cascade, and (d) hybrid (serial connection in the input port and parallel in the output port). 
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Fig. 4. Example of Positional Matrix (size 3×3). 
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Fig. 5. Topological representation. 

Note that the matrix is handled directly by the algorithm without the need of a one-
dimensional equivalent representation. In (Mesquita et al., 2002) a matrix representation for 
circuit synthesis is proposed but the mapping bi to one-dimensional is performed before the 
crossover operator is applied. However, in (Im et al., 2003), it is shown that this procedure 
losses neighbor structures, which is fundamental for the good behavior of the evolution 
process. In the representation presented in this chapter, the Positional Matrix is always 
associated with valid circuits, what does not occur in other methods, with always present 
the generation of anomalous circuits in each generation. In the representation proposed by 
(Mesquita et al., 2002) the percentual of anomalous circuits is about 5% , but the author says 
that this percentage can reach 80%, which is undesirable. 

2.2 Database entries 
The presented algorithm uses an approach with combinations of building-block and 
topology constraining rules, as used in (Dastidar et. al, 2005, Lai & Jeng, 2006). This allows 
the use of expert knowledge to reduce the search space, avoiding anomalous circuits and 
producing structured circuits. The building-blocks are structures known in the literature or 
can be defined by the user. The rules allow topological constraints. For example, the user 
may allow only the occurrence of inline topologies. He may set the maximum number of 
connections between the circuit blocks (between source and load or between other circuit 
elements), the types of integration (serial, parallel, cascade, mixed), and the types of 
connections between blocks of circuits (direct, cross), among others. These constraints are 
used to compose the initial population and to accept or reject a new circuit composed during 
the evolution process. This feature significantly improves the quality of initial population, 
which represents an early memory stage. This adds expert knowledge, which somehow also 
contributes for reducing the search space, and still avoiding anomalous circuits at this stage. 
Fig. 6 illustrates the process. 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 6. Structural entries: (a) specialist database, (b) representation of the solution, and (c) a 
circuit composed from the structural entries. 

2.3 Population initialization  
The population is initialized with circuits composed by building-blocks, randomly selected 
from the database previously mentioned. They are connected according to the Positional 
Matrix previously completed, using the rules of topological constraints. Initially, only a 
building-block is connected to a possible pair of nodes. At the same time a building-block is 
selected, values are assigned to its parameters. This selection is random and held in a range 
of values predetermined by the user. The rules of structural constraints can be set by the 
user, if he has expert knowledge. Once defined, the types of connections allowed between 
the circuit elements are established: connections in series, parallel, cascade, mixed, number 
of paths between source and load, n 
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umber of paths between parts of the circuit, if the source and the load will be directly 
coupled, what types of coupling that are allowed, etc. The definition of coupling rules can 
improve the quality of the initial population. In case the user does not have this knowledge, 
the algorithm performs a default initialization. It generates a matrix associated with a valid 
circuit of arbitrary size - for this, all entries are filled with high probability. Soon after, the 
algorithm checks whether the generated matrix corresponds to a connected circuit and, if it 
is wrong, a repairing procedure is performed. 

2.4 Evaluation functions  
In this method, two objective-functions are defined in order to allow a trade-off relation: (a) 
the circuit performance, which is evaluated using a frequency-domain circuit simulation 
method; and (b) the circuit size, given by the number of two-port building-blocks. The 
circuit simulator computes the frequency responses (the scattering parameters) over a set of 
frequencies uniformly distributed in the range defined by the user. Then, the algorithm 
calculates the sum of the squared deviations between the computed aggregate responses 
and the desired responses (sum squared error), as in (1). The desired response is provided as 
scattering parameters masks for the absolute values of the transmission coefficient 21S  and 
reflection coefficient 11S , given in dB. 

 ( ) ( )( ) ( ) ( )( )2 2

21 21 11 11
1

k

j j j j
j

SSE S f S f S f S f∗ ∗

=

⎡ ⎤
= − + −⎢ ⎥

⎣ ⎦
∑   (1) 

In (1), k is the number of evaluation frequencies, ( )21 jS f∗  is the constraining value of the 
response mask of the respective scattering parameter at jf . The difference 

( ) ( )21 21j jS f S f∗−  in (1) is set to zero if the mask is not violated by the value ( )21 jS f .  The 
same criterion is applied to 11S . 

2.5 Evolution schemes 
The population is randomly initialized with circuits (individuals or chromosomes) that use 
the template circuit shown in Fig. 2, which is composed by two-port circuit elements (genes) 
randomly selected from the previously defined database. In order to generate high-
performance small circuits, a bi-objective selection approach – the crowded-comparison 
operator, extracted from the NSGA-II (Deb et al., 2002) – is applied in this method at two 
points: to extract the elite (non-dominated chromosomes) of the current population, as well 
as the elite of the offspring. The two evaluation functions (objective-functions) previously 
defined are taken into account. The elite individuals of the population, i.e. the Pareto front, 
are found by applying this classification method. The selection scheme used here is the well-
known binary tournament method (Michalewicz & Fogel, 2004).  
The proposed approach provides the balance between performance and size of the 
solutions, and, consequently, makes it possible to naturally reduce the tendency of the 
process for producing larger circuits as the population evolves. Additionally, it allows the 
extraction of new building-blocks (as desired concerning the building-block hypothesis 
(Goldberg, 1989)) derived by the evolution process. They can be used in the next stage to 
produce the competitive circuits with some degree of structural redundancy. 
A local search process assists the Evolutionary Algorithm for fitness improvement of 
candidate circuits, refining their parameters in order to avoid good topologies with non-
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optimized parameter values to be prematurely discarded. The evaluation criterion to accept 
new parameters for a given topology is mono-objective, based on the performance function (1). 
This process takes place in two points of the evolution cycle. After the classification process, 
the local search method is applied to each elite individual. Also, the local search procedure is 
carried out after the crossover/mutation procedure. Doing so, the topology space is explored 
and, subsequently, the parameters of the new topologies are improved. As a result, offspring 
solutions will be able to fairly compete with the current elite set for composing the elite of the 
next generation. The Simulated Annealing technique (Michalewicz & Fogel, 2004) with few 
iterations and predefined temperature values was adopted. Only a low computational effort is 
necessary for each local search (circuit parameters tuning). 

2.6 Bidimensional topology crossover operator 
Only one crossover operator is proposed. Fig. 7 sketches this operator. Each crossover 
operation generates only one offspring. The crossover occurs as follows.  
1. Given two reduced matrices, a cut point in parent matrix 1 is randomly chosen, such 

that four regions are defined, as shown in Fig 7(a).  
2. After that, a square sub-matrix in parent matrix 2 is arbitrarily defined, as shown in Fig. 

7(b) and Fig. 7(c). Fig. 7(e) e Fig. 7(f) illustrates the offspring composition. The blocks R1, 
R2, R3 and R4 in the offspring matrix are from the parent matrix 1, the block R5 is from 
the parent matrix 2, and the block R6, is randomly selected from the corresponding 
block in parent matrix 1 or from 2. Two types of offspring composition are possible and 
likely to occur: cut-splice, as in Fig. 7(c); cut-overlap, as in Fig. 7(d). 

Then, the proposed crossover operator can explore the knowledge content of the body of the 
parents, and can also promote the diversity of structures. Since selection of the cut point is 
independent for each Parent Matrix, it is obvious that the length of the produced offspring 
matrix can vary during the evolution process. Then, circuits with different sizes and 
complexities evolve together by exchanging their genetic material. 

2.7 Bidimensional topology and value mutation operators 
Four types of likely topology mutation were defined. The circuit mutation is performed via 
one of the following operations:  
1. adding a randomly selected building-block, without position restriction in the 

Positional Matrix;  
2. deleting a randomly selected building-block, given that the circuit remains connected;  
3. deleting a randomly selected building-block from the diagonal matrix, by removing a 

row/column, given that the circuit remains connected;  
4. inserting an arbitrary building-block in cascade into the diagonal of the Positional 

Matrix, by adding a row/column.  
All the parameters of the two-port circuit elements of the circuit may undergo mutation. 
When a parameter is mutated, a new parameter value is randomly generated through a 
uniform distribution bounded by the predefined range of possible values. 

3. Experiment and results 
Several different two-port filters were synthesized, presenting several complexity levels. The 
proposed method successfully produced filters that complied with the rigorous 
specifications. The number of circuit evaluations for the entire synthesis process was not 



Evolutionary Optimization of Microwave Filters 

 

415 

large. A simple bandpass and a type of dual band-pass filter, which offers a considerable 
difficulty degree, illustrate the application of the proposed method in this section. In recent 
years, dual-band filters have become extremely important components for wireless 
communication devices at microwave frequencies (Chen & Hsu, 2006, Hu et al., 2004, Koza 
et al., 1996, Grimbleby, 2000, Zebulum et al., 1998, Nishino & Itoh, 2002, Lai & Jeng, 2006). 
Its design is a hard problem, as reported in previous works (see (Lai & Jeng, 2006, Tsai & 
Hsue, 2004, Zhang, 2007), for example).  
The crossover probability was set to 100%, the topology mutation probability was set to 
20%, and the parameters mutation probability was set to 5%. The circuit performance was 
analyzed at 80 discrete frequencies. In all 10 runs, the proposed algorithm achieved results 
that accomplished the specifications. 
 

      
                                                        (a)                                              (b) 
 

     

 
R 1

R 4

R 2

R 3

 
                                                       (c)                                             (d) 
 

      
                                                        (e)                                            (f) 

Fig. 7. Crossover operator: (a) parent matrix 1, (b) parent matrix 2, (c) cut-splice operation, 
(d) parent matrix 1, (e) parent matrix 2, and (f) cut-overlap operation.  
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Fig. 8. Evolution of number of nodes (size of the circuit) of the best solution. 

3.1 Narrowband filter 
A simple bandpass filter was generated in this experiment. The best solution has a circuit 
with 4 nodes and 12 components. The solution was obtained after 41 generations with 
populations of 30 circuits, i.e. with 16,000 circuit evaluations. It can be observed in Fig. 8 that 
the size of the circuit varies during the evolution process, which means that changes occur 
until the process reaches a structure that meets the specifications. One can also notice that 
the proposed method achieves a solution topology, as shown in Fig. 9, where building-
blocks naturally appear due to the evolution process, e.g. the sub-circuit composed by an 
inductor and a capacitor in parallel that appears regularly on the circuit. The frequency 
response of the circuit is shown in Fig. 10. Koza (Koza et al., 1996), using Genetic 
Programming with populations of 640,000 individuals and 199 generations (127,360,000 
circuit evaluations) achieved a circuit with 38 components. Grimblebly (Grimblebly, 2000),  
 

 
Fig. 9. Best topology obtained. 
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using a hybrid Genetic Algorithm, obtained a circuit with 4 nodes, but did not mention the 
computational effort required to reach such a solution. Shin (Shin & Histoshi, 2003), using a 
multi-stage Genetic Algorithm obtained a solution with a population of 2,000 individuals 
after 400 generations, which represents 800,000 circuit evaluations. The authors did not 
present the obtained circuit structure. 

3.2 Dual-band filter 
In this experiment, a filter for dual-band systems was synthesized. The same filter was 
synthesized in (Lai & Jeng, 2006); (Tsai & Hsue, 2004) with the following specifications: the 
return losses (reflection coefficient inside the pass-bands) within 3.4─3.6 and 5.4─5.6 GHz > 
10 dB, and the rejections (transmission coefficient outside the pass-bands) within 2.0─3.0, 
4.0─5.0, and 6.0─7.0GHz > 20 dB.  
Table 1 and Fig. 11 present the building-blocks and connection types. Besides that, during 
the evolution process, as a topology constraining rule, only common junctions in microstrip 
circuits were allowed (step-, tee-, and cross junctions) (Tsai & Hsue, 2004). 
 
 

 
 

Fig. 10. Frequency response of the best solution. 
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Electrical parameters 
(lower and upper bounds) 

Two-port 
circuit 

building 
blocks 

Connection 
types 

Physical 
parameters Z01, as a 

function of  L 
(length) 

Θ1  (at 4 GHz), as 
a function of W 

(width) 

TL Cascade or 
Parallel L, W 40 – 110 30 – 100 

Sh-TL-OC Cascade L, W 40 – 110 20 – 160 
Sh-TL-SC Cascade L, W 40 – 110 20 – 160 

Sh-TL2-OC Cascade L1, W1, L2, W2 40 – 110 20 – 120 
Sh-TL2-SC Cascade L1, W1, L2, W2 40 – 110 20 – 120 

Table 1.  Building-blocks and connection types. 

 

 
Fig. 11. Building-blocks of the experiment.  

The best topology obtained with the proposed method has 11 two-port circuit elements, 
achieved after 20,285 circuit evaluations. It is a very compact topology and matches the 
specifications, as shown in Fig. 12. Besides this high-quality solution, the designer has a set 
of trade-off solutions available into the elite population (Pareto front). For instance, another 
good solution in the Pareto front has 8 circuit elements, although the frequency response 
was slightly worse. It can be compared with the result presented in (Lai & Jeng, 2006), which 
uses a mono-objective hybrid encoded Genetic Algorithm. In (Lai & Jeng, 2006), the best 
solution was composed by 10 circuit elements, and was achieved after 300 generation, with 
a population size of 200, or 60,000 circuit evaluations. Results as good as the ones in (Lai  & 
Jeng, 2006) were achieved with a lower number of circuit evaluations and moreover, the 
proposed method produced filters smaller than those presented in (Tsai & Hsue, 2004). 
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Fig. 12. The frequency responses of one Pareto solution. The thick black line represents the 
user-defined mask. The gray line is the transmission response |S21|. The black line is the 
reflection response |S11|. 

4. Conclusions 
The circuit design to meet increasingly stringent specifications is a demand of modern 
applications. The evolutionary methodologies applied to the problem of synthesis of analog 
circuits have been producing competitive solutions with the solutions found by 
conventional techniques developed by experts. However, it is a difficult problem, requiring 
a balance between optimizing topologies and parameters and also presents several open 
issues. The hybrid evolutionary method presented in this chapter has evolved over time 
(Dantas, 2006a, 2006b, 2007). The latest proposal, with representation for circuit elements of 
two ports, using the Positional Matrix, is appropriate to obtain arbitrary topologies and 
parameters of circuits using small populations, few generations and with a low 
computational cost. The proposed method has proved robust and flexible. We performed 
several tests for filters with bandwidth of various sizes, with the desired response with 
differing degrees of asymmetry, multi-bands, broadband, all with promising results. This 
indicates that the method is able to generate various compact topologies that meet the 
design specifications and shows characteristics such as regularity and controlled structural 
complexity. The circuit elements used, provided by the user, were reorganized during the 
evolution process into new blocks, appearing with some degree of redundancy in the 
formation of the final circuit. This means that the evolutionary strategy developed is able to 
keep the size of the circuit under control, and is still effective in maintaining an elite of 
better building-blocks to compose the next generation of circuits.  
Another important aspect is the choice of a bi-objective approach, which provides a trade-off 
between performance and size of circuits. Miniaturization is a requirement of current 
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applications, depending on the development of new materials and manufacturing 
technologies. On the other hand, after the optimization process, the designer has at his 
disposal a set of solutions in the Pareto front. He can thus use their expert knowledge to 
choose the best solution, taking into account the application at his hand. 
In future works, we intend to work with multiple objective functions, using the classifying 
process of the NSGA-II method, but making a preference-based articulation along the 
evolutionary process. In the synthesis of a multi-band filter, for example, each band may 
correspond to an objective-function and to each of them could be assigned a preference level.  
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1. Introduction 
Feature extraction, in the context of remote sensing, can be defined as image processing 
techniques to identify and to classify mutual relationships or mutual meaning between 
image regions (Baatz et al., 2000). The aggregation of image pixels forming image regions 
and their relationship to other image regions are interpreted and used as cues in the 
information retrieval process (Quackenbush, 2004). A common approach is to create 
hierarchical structures of image regions in which fine-scale image regions constitute 
portions of other coarse-scale image regions (Niemeyer & Canty, 2001). Feature extraction 
differs from traditional pixel-based remote sensing image classification algorithms in which 
each, individual pixel (or pixel vector in the case of images with more than one channel) is 
individually evaluated and assigned to one class (Lillesand & Kiefer, 2000). The difference 
between low-level information extraction techniques using traditional pixel-based 
classification methods and high-level information extracted by a human analyst is often 
referred to as the “semantic gap” (Smeulders et al., 2000). Human analysts use a complex 
combination of different image cues such as colour (spectral), texture, shape (geometry of 
image regions), and context (relationship between image regions). However, human 
analysis of large areas and multiple images is costly and time consuming (Munyati, 2000). 
As the volume of available remotely sensed imagery increases by many orders of 
magnitude, one of the challenges faced by many organizations and institutions is converting 
large quantities of images into actionable information and intelligence. Because human 
analysis of large areas and sometimes over multiple periods of time is costly and time 
consuming, scientists have recognized the importance of developing more sophisticated 
semi-automated or automated feature extraction techniques to improve the information 
extraction process. The challenge resides in multifaceted problems where the relationship 
between image’s regions is too complex to be solved by explicit programming (hard 
computation) and/or these problems require the system to adapt and evolve when image 
conditions change. This provision is particularly important in remote sensing applications 
due to changing factors such as variation in sensor spatial and spectral resolutions, change 
in environmental conditions between images, and specificity of the feature of interest. 
The use of stochastic algorithms to address these complex feature extraction problems, are 
now being investigated as a possible alternative; due to their properties of deriving 
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solutions from a small set of positive and negative examples through an optimized 
combinatorial search rather than being explicit programmed (Fogel, 2000; Mitchell, 1997). 
Evolutionary algorithms (also referred to as evolutionary computation) have been used to 
solve problems in different domains, including remote sensing applications. 
In this chapter, the use of evolutionary algorithms, in the form of genetic programming, to 
aid the feature extraction process from high-resolution satellite imagery was evaluated. A 
novel framework involving genetic programming, standard image processing methods, and 
clustering algorithms is described. The proposed system was designed to support routine 
feature extraction procedures from satellite imagery and is composed of two modes: 
development and operational.  In the development mode, a single and representative image 
in conjunction with human analyst input are used to train the system to develop the 
candidate solutions. The operational mode applies the developed candidate solutions to 
unforeseen images in an automated fashion, thus expediting the information extraction 
process. In this study, the objective was to quantitatively access the generalization capability 
of the proposed system to imagery variations in physical and environmental factors such as 
distinct features with similar spectral signatures, variations in sensor’s resolution, and 
environmental condition changes between scenes. The proposed methodology uses a 
biologically-inspired framework to extract and combine in non-linear way, image derived 
information such as colour (spectral characteristics) and shape (image region geometrical 
properties). The accuracy of the framework was quantitatively assessed through a cross-
evaluation procedure where a set of different image chips is used to develop candidate 
solutions in one scene (development mode) and then test those solutions in the remaining 
unforeseen scenes (operational mode).  

2. Background 
2.1 Remote sensing and remote sensing spectral indices 
Remote sensing can be defined as the science of deriving information about a feature, an 
object, or a phenomenon from a distance by analyzing the energy reflected or emitted by the 
feature (Aronoff, 2005; Lillesand & Kiefer, 2000). The main energy detected by remote 
sensing systems is electromagnetic energy. Remote sensing uses sensors to measure the 
amount of electromagnetic energy exiting an object or a geographic area. Remote sensing 
sensors are characterized by different resolutions such as spatial (relative ground sampling 
distance of one pixel), spectral (number of electromagnetic regions sampled), radiometric, 
and temporal (revisit time).  
Because objects and/or features at the Earth’s surface interact differently with the 
electromagnetic energy based on their molecular composition, differences in the amount 
and properties of electromagnetic radiation becomes a valuable source of information. 
Through the use of multiple parts of the electromagnetic spectrum, represented by multiple 
channels in remote sensing images, it is possible to generate spectral signatures and/or data 
transformations to aid information retrieval.  
Spectral band indices are the most common spectral transformations used in remote 
sensing. These spectral indices apply a pixel-to-pixel operation to create a new value for 
individual pixels according to some pre-defined function of the spectral values (Momm et 
al., 2006). After the transformation, some features and/or spectral properties become more 
discernable when compared to the original data (Figure 1).  
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The challenge resides in the development of such spectral indices. The use of existing 
indices in new environments or the development of new spectral indices constitutes a time 
consuming and complex problem (Momm et al., 2007). Different features with similar 
spectral signatures add to the complexity of creating such indices. Spectral indices level of 
complexity varies according to the relationship between feature’s spectral responses to 
different parts of the electromagnetic spectrum. 
 

 
Fig. 1. Illustration of the use of spectral indices to transform the original multi-spectral 
image for enhanced information extraction. Example shows a spectral profile of the 
transformed image highlighting asphalt-based residential rooftops. 

2.2 Evolutionary algorithms for remote sensing feature extraction 
Easson and Momm (Easson & Momm, 2010) have provided a detailed survey of the use of 
evolutionary algorithms to extract information from remotely sensed data. In their review, 
the different applications were classified into four categories according to the general 
research objective: image enhancement, image classification, modelling, and feature 
extraction. Their literature investigation also revealed that the majority of applications are 
based on genetic algorithms (GA) and genetic programming (GP). 
In image enhancement categories the applications described used GA and GP as an 
optimization tool to improve some image processing problem by defining which basic 
image processing operation, or sequence of operations, to use to solve the problem. The 
objective of image classification algorithms is to automatically (or semi-automatically) 
categorize all pixels in an image into classes (Lillesand & Kiefer, 2000) based on multi-
dimensional spectral similarities of electromagnetic measurements at various wavelengths. 
The use of evolutionary algorithms to aid satellite image classification is the most common 
problem addressed and more than 15 publications were identified. In the modelling 
category, evolutionary algorithms were used to optimize the search for model’s parameters 
or to define new models designed to obtain measurements from remotely sensed imagery. 
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Specifically for feature extraction applications, literature investigation indicates that this 
field of research is relatively new and unexplored. Daida and others (Daida et al., 1995; 
1996) used genetic programming to identify pressure ridges in Arctic ice through the use of 
synthetic aperture RADAR images. In this work, a set of texture-based filters (convolution 
functions) were considered and genetic programming was used to select the most 
appropriate filter (or combination of filters) to highlight pressure ridges. Similarly, Howard 
and Roberts (Howard & Roberts, 1999) used a combination of image regions statistics, 
texture-based filters, and genetic programming to develop a vehicle and ship detector. In 
this work a two step process was used, object location and object classification. 
Recent contributions have employed evolutionary algorithms in the task of deriving 
ontology rules describing characteristics and relationships between image regions (Durand 
et al., 2007). The ultimate goal is to develop tools to partially replicate the human ability to 
interpret images (Easson & Momm, 2010). Forestier and others (Forestier et al., 2008) 
researched the use of genetic algorithms to optimize the search for ontology rules to 
segment satellite imagery. Candidate solutions, composed of non-linear combinations of the 
primitive rules developed by genetic algorithms, where then compared to human-derived 
ontology rules. The definition of ontology rules for feature extraction from remotely sensed 
data is a complex and time consuming task and the use of evolutionary algorithms to 
optimize the search and definition of such rules are now the subject of ongoing research 
(Forestier et al., 2008; Momm et al., 2009; Puissant et al., 2007).  

3. Evolutionary framework 
3.1 Framework description 
The proposed framework develops spectral indices, in the form of mathematical expressions of 
the original image's channels, to create a transformed image; which maximizes the 
performance of standard classification algorithms to separate the target feature from the 
remaining image background (Momm at al., 2009). The system works in a learn-from-
examples approach where positive and negative samples are used by the genetic 
programming algorithm to evolve candidate solutions through an optimized iterative search. 
In the development mode, the system requires three inputs: original image, parameters 
controlling the run, and reference image (Figure 2). The original image consists of a 
representative multi-spectral image containing the feature to be extracted. Success of 
machine learning algorithms are dependent on the quality of the training set; and therefore, 
when designing applications involving feature extraction it is necessary to understand the 
sensor's limitations (spectral, spatial, and radiometric resolutions) and contrast them with 
the feature's spectral and spatial characteristics. The parameters controlling the run involve 
the definition of the terminal set (image's spectral channels), function set (list of basic 
mathematical functions used as the building blocks to evolve candidate solutions), 
population size, number of generations, percentage of crossover, stopping criteria, and 
restarting threshold (measure to maintain diversity during the evolutionary process). 
Reference data consists of human classified set of positive and negative samples. 
During the initial generation, genetic programming randomly generates a set of candidate 
solutions (mathematical expressions) referred to as population. This set of candidate 
solutions are then individually applied to the original multi-spectral image resulting in a 
new set of transformed images; which are individually clustered and compared to the 
reference image for fitness computation. If either of the stopping criteria are met (fitness 
threshold or maximum number of iterations) the system sorts the candidate solutions by 
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Fig. 2. Simplified flowchart illustrating data/parameters input, output, and main internal 
components of the evolutionary framework. 
fitness values and then outputs the most fit candidate solution. On the other hand, if the 
stopping criteria are not met, the system performs genetic operations (cross over and 
restarting) with the top most fit individuals to create a new population and the entire 
process is iteratively repeated until the stopping criteria are met. 

3.2 Fitness function 
Cohen’s kappa coefficient of agreement was selected as the statistical measurement of 
fitness for each candidate solution (Cohen, 1960). When comparing the binary image 
obtained by clustering of the transformed image to the user-provided reference data, kappa 
is preferred over simple measure of percent of agreement because it corrects for the amount 
of agreement due to chance. Kappa statistics can be computed as: 
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In this equation, after computing the contingency table (Jensen, 1996), r represents the 
number of rows, Xii the sum of values in the major diagonal, Xi+ the sum of observations in 
row i, X+i the sum of observations in column i, and N the total number of observations. 

3.3 Multi-stage implementation and candidate solution representation 
The objective of using a sequence of steps to extract the desired information from imagery is 
based on the premise that complex problems can be partitioned into a series of easier-to-
solve smaller problems. In theory, machine learning algorithms can master smaller tasks 
and when combined, the set of specialized algorithms can outperform an algorithm 
designed to solve the overall problem. Following this concept, the initial stages are designed 
to address spectral characteristics while in the latest stage geometric properties of group of 
connected pixels (image objects) are considered. Each subsequent stage uses as input the 
results of the previous stage. 
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The initial steps address the identification of pixels with similar spectral characteristics to 
the feature of interest. Ontology rules are not considered since, after the mathematical 
transformation of the image, pixels are individually analyzed and classified. Transformation 
functions, also referred to as spectral indices, use the image spectral channels as arguments 
(Figure 3).  
 

 
Fig. 3. Example of genetic programming candidate solution representation as a hierarchical 
tree structure (internal) and as a mathematical expression (external) used in the spectral 
pixel classification stages of the feature extraction process. 
 

 
Fig. 4. Example of genetic programming candidate solution representation as a hierarchical 
tree structure (internal) and as a mathematical expression (external) used in the geometric 
stages of the feature extraction process. Arguments are geometric properties of image objects. 

In the final stages, the classified image resulted from previous stage is processed to identify 
groups of connected pixels (segmentation), label each group of connected pixels with a 
unique identifier, and computation of multiple geometric descriptors (Momm et al., 2010). 
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The input for the geometric stage consists of an raster grid image with the number of image 
object as the number rows and the number of shape descriptors as the number of columns. 
Candidate solutions in the geometrical stages use as arguments the geometrical shape 
descriptors (Figure 4). 

4. Feature extraction experiment 
The overall research objective is to develop a system to be used in routine operational 
situations by extracting specific information from sets of imagery with minimum human 
interaction possible. The ideal system should be trained using a small and representative 
scene and once the solutions are developed, these solutions are then used in a multitude of 
unforeseen scenes in an automated fashion. In this experiment, the generalization ability of 
the evolutionary framework is assessed when candidate solutions are applied to different 
images with changing environmental conditions and remote sensing parameters. The aim of 
this study is to use its outcome as guidance for future applications by identifying the 
limitations and strengths of the proposed system. 
The problem selected in the evaluation of the evolutionary framework was the identification 
of residential single family rooftops from high spatial resolution imagery. There are some 
challenges in the development of algorithms to obtain such information. The limited 
spectral resolution presented by the current high spatial resolution satellite sensors 
combined with the spectral similarities between asphalt-based roofing material and asphalt 
pavement limits the use of pixel-by-pixel classification algorithms. To overcome the spectral 
similarities limitations, a geometric classification of the spectrally classified material is 
introduced mimicking the human analyst classification approach. Human’s advanced 
interpretation ability takes into consideration not only rooftop colour information (spectral 
information) but also our knowledge of rooftop geometry. 
Our approach divided the task of identifying single family residential buildings (through 
rooftop) into three stages (Figure 5). In the first stage, the evolutionary framework is used to 
evolve spectral transformation to spectrally separate the image pixels into two 
classes,asphalt-based material and background. Using the results from the first stage, the 
evolutionary framework is used to evolve a new set of spectral transformation to further 
separate the pixels previously identified as asphalt-material into either rooftop class or other 
classe. The third stage obtains geometric properties of each group of connected pixels 
 

Stage 1 Information: Spectral and Texture
Task: Spectrally separate asphalt-based materials 

from remaining image background 

Stage 2 Information: Spectral and Stage 1

Task: Spectrally separate roads from buildings 

Stage 3 Information: Object Geometry and Stage 2

Task: Roads geometry: straight or curve / larger
Building geometry: squarish / smaller

Spectral subset of target spectral 
group (asphaltic features)

Result 1

Spectral separation of targets 
(asphalt pavement from rooftop)

Result 2

Geometric verification of feature 
properties

Result 3

 
Fig. 5. Flowchart of the multi-stage approach for single family rooftop detection to access the 
evolutionary framework’s ability to generalize as remote sensing and physical conditions 
change. 
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identified as single family rooftop and the evolutionary framework is once again used to 
evolve a third set of mathematical transformations to distinguish single family residential 
rooftop from other features (such as commercial buildings, pavement, etc) based on 
geometric properties (Momm et al., 2010). 
Examples of the resulting thematic maps from each stage are displayed on Figure 6. The 
resulting map of stage 1 (step 1 in Figure 6) illustrates the separation between asphalt-based 
materials (in red colour) and the remaining background (green colour).  
The map resulting from stage 1 is fused with the original multi-spectral image to create the 
input image for stage 2. Green colour pixels in Figure 6 step 1, are used as a filter to mask 
out pixels from the original multi-spectral image leaving only the pixels marked with red. A 
new multi-spectral image is created with the same original four channels but pixel can have 
as values either the original scaled radiance values (red pixels from map created in stage 1) 
or no data (green pixels from map created in stage 2). The results from stage 2 further 
discriminate asphalt-based materials into rooftops and others (step 2 in Figure 5). In the 
middle map, black colour indicates pixels not considered (masked out), red colour indicates 
target material, and green colour non rooftop materials.  
In the final stage, the group of connected pixels resulting from stage 2 (red colour in the map 
created in stage 2) are further filtered based on geometric properties such that smaller, 
larger, and elongated image objects differing from single family residential building were 
removed (step 3 in Figure 6). 
 

 
Fig. 6. Illustration of the outcomes produced by the evolutionary framework for each step 
considered. Step 1 outputs a binary image containing asphalt-based material and 
background. Step 2 uses the results of step 1 to generate another image discriminating 
asphalt rooftop from other asphalt-based material. Step 3 uses the output from step 2 
containing group of connected pixels and filter them based on geometric properties. 

4.1 Data description and preparation steps 
Three scenes were used in this experiment, two obtained with the IKONOS sensor and one 
with the QuickBird sensor (Table 1). The two IKONOS scenes were acquired three years 
apart during early fall while the QuickBird scene was acquired during the summer. The 
2005 imagery was immediately acquired after hurricane Katrina. Trees in the region 
investigated (south part of Mississippi in the United States of America) does not lose their 
leaves during the winter; however, there are differences in rain patterns and day light 
illumination (Table 1). 
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Scene Sensor Acquisition 
Date 

Spatial 
Resolution 

(meters) 

Spectral 
Resolution 
(η meters)

Scan 
Azimuth.

Sun 
Elevation. 

Sun 
Azimuth. 

1 IKONOS-2 2002-OCT-06 Pan: 1.0 
Multi: 4.0 

480,550, 
665,805 179.97 50.82 154.94 

2 IKONOS-2 2005-SEP-06 Pan: 1.0 
Multi: 4.0 

480,550, 
665,805 90.00 63.24 107.5 

3 QuickBird 2002-JUL-06 Pan: 0.7 
Multi: 2.8 

485, 560, 
660,830 25.55 70.22 144.20 

Table 1. Imagery used in the evaluation of the evolutionary framework in the task of single 
family residential rooftop extraction. 

The scenes also differ in the sensor’s spatial and spectral resolution. QuickBird has a 
nominal spatial resolution of 0.7 meters for the pan-chromatic image and 2.8 meters for the 
multi-spectral image while IKONOS has 1.0 meter and 4.0 meters for pan-chromatic and 
multi-spectral images respectively. Both sensors record four spectral channels (blue, green, 
red, and infra-red) with similar nominal central wavelengths. The largest differences are in 
the infra-red channel. 
All image scenes were provided as scaled radiance at the sensor. An enhanced image was 
generated by fusing the high spatial resolution pan-chromatic image to the multi-spectral 
image using the Gram-Schmidt technique (Laben & Brower, 2000). These images were further 
subset for the generation of image chips (Table 2) to cope with the large computational cost  
 

CHIP 
Identification 

Nominal 
GSD (meters)

Number of 
Samples 

Number of
Lines 

Number of
Bands Role 

QB02R2 0.7 623 614 4 Training and Testing 
QB02R5 0.7 517 677 4 Training and Testing 
IK03R1 1.0 242 233 4 Training and Testing 
IK02R2 1.0 436 425 4 Training and Testing 
IK05R1 1.0 242 233 4 Training and Testing 
IK05R2 1.0 436 425 4 Training and Testing 
QB02C1 2.8 581 459 4 Testing 
QB02C2 2.8 348 475 4 Testing 
QB02C3 2.8 646 400 4 Testing 
IK05C1 1.0 866 478 4 Testing 

Table 2. Description of the image chips characteristics and primary role in the cross-
validation process of the evolutionary framework. 

involved during developing mode (training). Image chips QB02C1, QB02C2, and QB02C3 
were produced using the original multi-spectral image before the resolution enhancement 
procedure. Each image chip covers areas with different morphological characteristics, 
environmental conditions, and level of pre-processing (Figure 6 and 7). A summary of the 
environmental and physical property differences between image chips can be listed as follows: 
• Level of oxidation of the asphaltic material. Asphalt-based pavement and roofing material 

are subject to chemical oxidation over time by prolonged exposure and reaction with 
atmospheric oxygen leading to changes in electromagnetic reflectance properties. Roofing 
material in image chips QB02R2 and QB02R5 present contrasting levels of oxidation, thus 
indicating the presence of younger housing rooftop in the QB02R2 image chip. 
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• Level of tree coverage of rooftops:  Tree canopy coverage of rooftops varies at each 
residential subdivision. This poses a challenge for the geometric stage where the 
rectangular shape of residential rooftops may be altered by tree cover. 

• Rooftop integrity: Image chips IK05C1, IK05R1, and IK05R2 cover locations impacted 
by hurricane winds leading to varying levels of rooftop damage ranging from missing 
shingles to flattened rooftops. 

 

QB02R2 (R=4,G=3,B=1)

QB02R5 (R=3,G=2,B=1)

IK03R1 (R=1,G=2,B=3)

IK03R2 (R=4,G=2,B=3)

IK05R1 (R=1,G=2,B=3)

IK05R2 (R=1,G=2,B=3)

 
Fig. 6. Image chips used in the evaluation of the evolutionary framework in the task of 
identifying single family residential rooftops through training and testing procedure. 
Differences in sensors, acquisition dates, and level of pre-processing were exploited to 
access the generalization ability of the system to changing conditions. 
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Reference data was generated by manual classification of individual pixels into one of the 
three land use covers: rooftop, roads, and other (Figure 8). In the first stage (asphalt material 
versus background) the land use covers rooftop and roads were combined to form another 
class, asphalt-based material. The reference data used as input for stage two uses only 
rooftop and road classes. 
 

QB02C1 (R=3,G=2,B=1)

QB02C2 (R=4,G=3,B=1)

QB02C3 (R=4,G=3,B=1)

IK05C1 (R=1,G=2,B=3)  
Fig. 7. Additional image chips used in the evaluation of candidate solutions developed by 
the evolutionary framework for identifying single family residential rooftops. 
 

 
Fig. 8. Example of coloured polygons representing the reference datasets obtained by 
manual classification of individual image pixels. Background shows QB02R5 with spectral 
band combination 1-4-1. 
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The reference data for stage 3 (geometric properties) used the set of resulting images from 
stage 2. These thematic images were analyzed by human analyst and individual image 
objects were classified as either residential single family rooftop or other. 

4.2 Genetic programming parameters 
Two configurations of genetic programming parameters were considered (Table 3). For the 
first two stages, dealing with spectral information, the terminal set was composed of the 
four available spectral bands. This configuration used a reduced number of generations and 
a smaller population size. These were required to cope with the increased computational 
overhead generated by the utilization of images as arguments in the candidate solutions. 
During the evolutionary process, calculation of fitness values are formed by a sequence of 
mathematical expressions where the attributes consist of images that must be processed 
thousands or even millions of times depending on the population size and the number of 
generations. Conversely, the number of image objects is many orders of magnitudes smaller 
than the number of pixels, allowing for the larger population sizes and number of 
generations. The terminal set in the third stage contains ten geometric descriptors (Table 4). 
In both scenarios, constant numbers were not considered as part of the terminal set to 
promote adaptation and generalization. Constant numbers, selected during the evolutionary 
process as being part of the solution, are often specific to the training image and thus 
considered a threat to the generalization ability of the system when the same solution is 
applied to a different image. It is possible that, in the testing image, the constant number 
defined during training has a different meaning. 
 
Parameter Spectral Information Geometric Information 
1. Terminal Set Image spectral bands Object’s shape descriptors 
2. Function Set Summation (SUM) 

Subtraction (SUB) 
Safe Division (DIV) 
Multiplication (MUL) 
Safe Square Root (SQRT) 
Safe logarithm (LOG) 
Absolute value (ABS) 

Summation (SUM) 
Subtraction (SUB) 
Safe Division (DIV) 
Multiplication (MUL) 
Safe Square Root (SQRT) 
Safe logarithm (LOG) 
Absolute value (ABS) 
Threshold (if a>b then a else b) 
Greater than (if a>b then 1 else -1) 
Lower than (if a<b then 1 else -1) 

3. Fitness Function Kappa Coefficient of 
Agreement 

Kappa Coefficient of Agreement 

4. Population Size 40 200 
5. Generations 70 250 
6. Crossover 30% 30% 
7. Stopping Criteria 71 or Khat > 0.975 251 or Khat > 0.975 
8. Restarting Threshold 5 generations 5 generations 

Table 3. Genetic programming parameters used in the multi-step feature extraction 
experiment. During the spectral information steps, smaller population size and number of 
generations were used to cope with the computational cost inherent from using multi-
spectral images in the terminal set.  
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Population diversity was controlled by restarting procedure (Momm & Easson, 2010; Momm 
et al., 2008) rather than traditional mutation operations. The basic principle of restarting is the 
introduction of new genetic material into the evolutionary process after a certain number of 
iterations without change in fitness value of the most fit individual of the population. 
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Table 4. Shape descriptors of group of connected pixels used in the experiment of 
identifying residential rooftops from high spatial resolution satellite imagery. 

4.3 Cross-evaluation 
The evaluation of the system was performed by developing solutions in one image chip and 
then applying those solutions to the remaining image chips in the pool. Results generated by 
the system were then quantitatively compared to human classified reference data. For each 
stage six training-testing configurations were considered resulting in 18 different scenarios. 
This approach was adopted to verify the system’s robustness to environmental and physical 
condition changes between images. 

5. Experimental results and discussion 
The accuracy results for each scenario considered were expressed as overall accuracy and 
Cohen’s kappa coefficient of agreement. Kappa values range from -1.0 to 1.0. Negative 
values mean agreement less than random chance of agreement while positive values are a 
result of greater than random chance of agreement.  
Accuracy results for each scenario are plotted in Figures 8, 9, and 10. The image chips used to 
develop solutions are identified by a shadowed area in the plots. The remaining points in each 
plot are accuracy results yielded from using the candidate solutions developed using the 
image chip in the shadowed area to the other image chips. For example, in the upper left plot 
in Figure 8, a non-linear spectral transformation was developed to spectrally identify asphalt-
based materials using the evolutionary framework with the image chip QB02R2 and its 
correspondent reference dataset as input. The spectral transformation developed, was then 
applied to the remaining nine image chips resulting in nine new transformed images. Each 
transformed image was then clustered into a two-class thematic map and compared to its 
correspondent reference data for fitness computation (overall accuracy and kappa statistic). 
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Analysis of the accuracy results for stage 1 (Figure 8), identification of asphalt-based 
materials, indicates that solutions developed and tested using the sensor QuickBird 
produced an overall consistent pattern of accuracy results despite the differences in pre-
processing between image chips. These findings were expected due to the smaller level of 
difficulty of this task. Conversely, training and testing results between image chips 
produced from IKONOS 2003 and 2005 imagery did not agree. This could be attributed to 
the differences in shade length and orientation between these scenes caused by distinct sun 
elevation and azimuth angles (Table 1).  
 

 

 
Fig. 8. Accuracy results of step 1 in the cross-evaluation of candidate solutions for imagery 
classification developed using the evolutionary framework. In step 1 candidate solutions 
were developed to spectrally classify individual pixels as either asphaltic material or 
background. The shadowed vertical bar represents the image chip used for training 
(developing the candidate solutions) and the remaining points are the testing results when 
using the candidate solution developed using the training image. 
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The thematic maps, produced in stage 1, were used to create the necessary input files for 
stage 2. Image chips derived from the QuickBird sensor repeated the good generalization 
performance previously displayed in stage 1 (Figure 9). Results also indicated that age of 
roofing material and roads had little or no effect in the QuickBird-based image chips. The 
image chip IK05R1 and IK03R2 resulted in the poorest performance.  

 

 

 
Fig. 9. Accuracy results of step 2 in the cross-evaluation of candidate solutions for imagery 
classification developed using the evolutionary framework. In step 2 candidate solutions 
were developed to spectrally classify individual pixels selected in step 1 as either asphaltic 
rooftop or other asphalt-based material. The shadowed vertical bar represents the image 
chip used for training (developing the candidate solutions) and the remaining points are the 
testing results when using the candidate solution developed using the training image.  
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The highest variability was found in stage 3, image object classification based on geometric 
descriptors (Figure 10), where no apparent pattern could be identified. Kappa statistics 
values were found in the “very good to excellent” agreement beyond the random chance of 
agreement range (>0.75), according to Landis and Kock (Landis & Kock, 1977), only for the 
image chips used in the training phase. With exception of isolated cases, results indicated a 
weak generalization capability of the system.  
 

 

 
Fig. 10. Accuracy results of step 3 in the cross-evaluation of candidate solutions for imagery 
classification developed using the evolutionary framework. In step 3 candidate solutions 
were developed to geometrically identify individual group of connected pixels, classified in 
step 2, as single family residential rooftop. The shadowed vertical bar represents the image 
chip used for training (developing the candidate solutions) and the remaining points are the 
testing results when using the candidate solution developed using the training image. 
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The poor generalization ability found in Stage 3 could be partially attributed to the large 
variability in rooftops shapes (Figure 11) causing a direct impact on the shape descriptors. 
Image chips presented different pixel sizes as result of differences in sensors spatial resolution 
and image pre-processing procedures. For example, image object shown in Figure 11 boxes 1 
and 4 have a nominal spatial resolution of 0.7 meters, boxes 3 and 6 1.0 meter, and boxes 2 and 
5 2.8 meters. Additional variations in image object shapes were caused by partially coverage of 
rooftops by tree canopy (box 4 and 5) and roof damage caused by hurricane winds (box 3 
missing shingles and box 6 half of the roofing material was removed). 
 

1 2 3

4 5 6

 
Fig. 11. Image objects representing single family residential rooftop extracted using the 
evolutionary framework. Image objects displayed illustrate the large variability in geometric 
properties due to factors such as sensor spatial resolution, rooftop partially covered by tree 
canopies (boxes 4 and 5), and damaged rooftops (boxes 3 and 6). 

6. Conclusions 
In this chapter we evaluated the robustness of an evolutionary framework in the task of 
feature extraction from remotely sensed imagery. The proposed system integrated standard 
imagery processing algorithms with genetic programming to evolve non-linear 
mathematical transformations to convert the original imagery into transformed images to 
aid in the discrimination of the material/feature of interest. The task selected was the 
identification of residential single-family rooftops from several image chips produced from 
scenes acquired with different sensors and at different dates and locations. Robustness was 
quantitatively assessed by training the system in one image chip and testing the evolved 
solutions in the remaining image chips. 
The overall task of identifying rooftops from several image chips was addressed by dividing 
it into three sub-stages: two focused on spectral characteristics and one focused on 
geometrical characteristics. The multi-stage approach permitted the breakdown of a 
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complex problem into three simpler and smaller problems. In each sub-task a more 
specialized solution was evolved by the genetic programming algorithm as its performance 
could be assessed specifically for that sub-task. Because the results from one stage were used 
as input for the subsequent stage, the success of individual stages becomes significant to the 
overall success of the system. Additionally, the multi-stage approach helped identify 
possible limitations and areas of improvement of the system. 
Although environmental and physical factors, such as environmental conditions, date of 
acquisition of the scenes, sensor resolutions, and others, influenced the robustness of the 
system in all stages; the main discrepancy of the results were found in the third stage 
(geometric properties). In the first two stages (focused on spectral information), results 
indicated a good agreement between sensors and a small impact of seasonal differences, 
illumination (radiance received at the sensor), and level of pre-processing of the scenes. The 
limited generalization ability demonstrated by the third stage can be partially attributed to 
the geometric properties dependency on sensor’s spatial resolution (pixel size), type of 
subdivision (rooftop geometry), tree canopy coverage of rooftop, and level of rooftop 
damage. The complexity and size of the search space when these properties are combined 
limited the ability of genetic programming to evolve general solutions. 
Once the development stage is completed, the operational stage has a small computational cost 
allowing it to be applied in a large number of scenes. The evolutionary framework was able to 
evolve useful non-linear transformations that provides tools to expedite the information 
extraction from large amounts of data, despite the limited generalization capability 
demonstrated by the geometrical stage. For improved generalization of geometrical stages, we 
advise the use of images collected with similar sensor’s spatial characteristics and 
identification of features with similar shape properties in both training and testing images. 
Future work includes the addition of more stages to investigate ontology (relationship 
between image objects). This relationship is inherent to the human’s perception of how 
features should look like. For instance, the human analyst knows that a house may be 
connected to the road by a concrete driveway and that houses occur within a certain 
distance of roads. The same concept could be carried out to produce computer programs to 
replicate our spatial relationship perception ability. Topological functions such as 
“connected”, “compact”, “continuity”, “close”, “contained”, and others could be defined 
and implemented to be used in the subsequent stages. Evolutionary algorithms could be 
used as the optimization tool to generate the most appropriate ontology representation of 
the feature of interest, using the same optimized learn-from-examples schema used herein.  
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1. Introduction 
A crucial part of a typical pattern recognition system is the extraction of the appropriate 
information that uniquely describes the patterns under processing. This information has the 
form of vectors and their contents are called features, which are constructed by specific 
extraction methods (Feature Extraction Methods - FEMs). The length of the extracted feature 
vectors may take high dimension by incorporating many features for each pattern, although 
this huge information may be redundant and in a lot of cases this extra information corrupts 
the separability of the patterns under recognition. 
Therefore the need of an additional pre-processing method that reduces the feature vectors’ 
dimension, by selecting the most appropriate features, subject to some performance indices 
(class separability, high classification error etc.) is necessary. This procedure is called 
dimensionality reduction or feature subset selection and has attracted the attention of the 
scientific community for the last thirty years (Molina et al., 2002). 
This chapter is focused on the usage of evolutionary methods in selecting the appropriate 
feature subset from a pool of features, in a way the resulted subset increases the recognition 
rates in several benchmark pattern recognition problems. A simple genetic algorithm is used 
to examine the usefulness of a predefined feature set of some benchmark problems from the 
literature and some useful conclusions about the ability of these features to recognize the 
patterns are drawn. 
Moreover, the dependency of the resulted feature subsets, as far as their classification 
abilities are concerned, on the form of the fitness function used to measure the 
appropriateness of the candidate solutions, constructed by the genetic algorithm, is studied 
in this chapter. Three fitness functions with different properties are examined and their 
performance is compared to each other, for a set of pattern recognition problems. 

2. Feature subset selection 
Feature subset selection plays an important role in any pattern recognition system where the 
knowledge about the problem under consideration has to be modelled by appropriate data 
derived by the problem’s environment. Since these data may have very high dimension the 
presence of irrelevant or redundant information causes significant disorders in the whole 
recognition system. 
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First of all, the usage of massive data collections reduces significantly the training and 
evaluating performance of the mining or classifying stage of the recognition procedure. 
Therefore there is a need to keep these data as little as possible without loosing useful 
information about the problem to solve.  
On the other hand the presence of imprecise features can cause the misrepresentation of the 
knowledge  which affects the generalization capabilities of the decision making module. 
From the above it is obvious that there is a need of a mechanism that analyses the entire data 
collection and forms the optimal feature subset, according to the following proposition, in 
terms of some performance indices. 

Proposition: A feature subset is called “optimal” if it has the lowest dimension that gives 
the highest recognition rate simultaneously. 

Many algorithms that attempt to find this optimal feature subset, in many disciplines, have 
been proposed in the past. Generally, there are three main categories (Liu & Yu, 2005) of 
feature selection methods: 1) wrapper (Talavera, 2005) methods, where a search mechanism 
evaluates candidate feature subsets by applying them to a specific classification model, 2) 
filter (Marono et al., 2007) methods, where the candidate subsets are evaluated without the 
presence of the mining model (they are independent of the classification model), instead the 
internal data properties/characteristics (dependency, correlation etc.) are measured and 3) 
hybrid (Das, 2001; Jashki et al., 2009) methods which make use of both filter and wrapper 
mechanisms by collaborating them in different steps. 
Ideally, an optimal subset has to be efficient, independent of the presence or not of the 
classification stage, since the internal characteristics of the features in a pool, determine their 
irrelevance and redundancy. However, due to the fact that a pattern recognition procedure 
constitutes a multi-step procedure, where its stage might affect each other, the operational 
behaviour of the classifying device (classifier) has to be considered. Therefore, while the 
filter methods are converged quite quickly, their resulted feature subsets may not work 
appropriately when applied on the classifier. On the other hand when wrapper methods are 
applied, the convergence to an optimal subset is slow and it highly depends on the structure 
of the classifier. 
A special case of feature selection methodologies are these methods which are making use of 
an evolutionary algorithm (Genetic Algorithms, Particle Swarm Intelligence, Evolutionary 
Strategies, etc.) as an optimization procedure with several different objective functions. 
Evolutionary feature subset selection has proved to be an effective selection tool, since the 
ability of the evolutionary algorithms to search in parallel many candidate solutions of the 
problem (Raymer et al., 2000; Papakostas et al. 2003, 2010; Uncu & Turkşen, 2007), 
guarantees their convergence to a near optimum solution subject to a performance index.  
In this chapter a Simple Genetic Algorithm (SGA), without having any advanced 
mechanism to prevent possible premature convergence to a problem solution is used, in 
order to optimize specific performance indices called objective functions. The presented 
algorithm is examined under three different configurations regarding the used objective 
function, the nature of which gives to the algorithm the characterization of filter or wrapper.   

3. Genetic Algorithms (GAs) 
Genetic Algorithms (GAs) have played a major role in many applications of the engineering 
science, since they constitute a powerful tool for optimization. A simple genetic algorithm is 
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a stochastic method that performs searching in wide search spaces, depending on some 
probability values. For these reasons it has the ability to converge to the global minimum or 
maximum, depending on the specific application and to skip possible local minima or 
maxima, respectively.  
The main idea in which GAs are based, was first inspired by (Holland, 2001). He tried to 
find a method to mimic the evolutionary process that characterizes the evolution of living 
organisms. This theory is based on the mechanism qualified by the survival of the fittest 
individuals over a population.  In fact, there are some specific procedures taking place until 
the predominance of the fittest individual. 
In the sequel, terminology in the field of genetic methods for optimization and searching 
purposes is given (Coley, 2001): 
• Individual (Chromosome) is a solution of a problem satisfying the constraints and 

demands of the system in which it belongs. 
• Population is a set of candidate solutions of the problem (chromosomes), which contains 

the final solution. 
• Fitness is a real number value that characterizes any solution and indicates how proper 

the solution for the problem under consideration is. 
• Selection is an operator applied to the current population, in a manner similar to the one 

of natural selection found in biological systems. The fitter individuals are promoted to 
the next population and poorer individuals are discarded. 

• Crossover is the second operator that follows the Selection. This operator allows solutions 
to exchange information, in the same way the living organisms use in order to 
reproduce themselves. Specifically two solutions are selected to exchange their sub-
strings from a single point and after, according to a predefined probability Pc. The 
resulting offsprings carry some information from their parents. In this way new 
individuals are produced and new candidate solutions are tested in order to find the 
one that satisfies the appropriate objective. 

• Mutation is the third operator applied to an individual. According to this operation a 
single bit of an individual binary string can be flipped with respect to a predefined 
probability Pm.  

• Elitism is the procedure according to which, the fittest individual of each generation is 
ensured to be maintained in the next generation.  

 

 
Fig. 1. Block diagram of a simple genetic algorithm. 
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After the application of these operators to the current population, a new population is 
formed and the generational counter is increased by one. This process will continue until a 
predefined number of generations is attained or some form of convergence criterion is met. 
A Simple Genetic Algorithm (SGA), which uses some of the operations discussed above, is 
presented in the above Fig.1. 
The usage of the SGA, depicted in Fig.1, in selecting the suitable feature subset for several 
benchmark datasets, for different objective functions is studied in the next section. 

3.2 GA-based selection 
The most computational blocks of the above Fig.1 are independent of the application where 
the GA is applied. Only the coding/decoding of the population and the fitness calculation 
depend on the problem under solution.  
The application of the GA as feature subset selection algorithm involves the appropriate 
representation of the problem solution as chromosome structure of the algorithm’s 
population. Since the main goal of this work is to investigate the ability of each feature to 
describe the classes, the GA is repeatedly applied for all possible number of features from 1 
to the maximum number. Therefore the algorithm’s chromosomes take variable length equal 
to the predefined number of features needed.    
In this way the general form of the m chromosomes of a population, where n features are 
searched, is as follows:  
 

 
Fig. 2. Block diagram of chromosomes structure. 

In the above chromosome representation, n is equal to the number of the features being 
searched. For example, if the best 2 features are needed n is equal to 2 and each feature in 
the chromosome is labelled with a value (binary or real) lying inside the feature range of the 
pool. Moreover, appropriate handling to avoid multiple copies of the same feature to be 
included in the same chromosome, is required. 
The next processing stage, after the chromosome coding, is the determination of the 
objective (also defines the fitness of the candidate solutions) function, which is application 
dependent and constitutes the representation of the problem being optimized. The correct 
definition of the objective function is an important procedure since it has to fully describe 
the desired behaviour of the system. 
For pattern recognition purposes a simple objective function is the classification rate yielded 
when a set of features are selected. In order to compute the classification rate, a specific 
classifier is needed, so this version of GA-based selection belongs to the wrappers algorithms 
category. This first objective function has the following form:  
 

Objective Function 
#1 1

Number of incorrectlyclassifiedsamplesObjFunc
Totalnumber of samples

=  (1)



Evolutionary Feature Subset Selection for Pattern Recognition Applications 

 

447 

The Minimum Distance classifier (Kuncheva, 2004) is used to compute the classification 
performance of the candidate feature subsets. This classifier operates by measuring the 
distance of each sample from the patterns that represent the classes’ centroid. The sample is 
decided to belong to the specific class having the less distance from its pattern. 
Since the performance of the classifier is highly dependent on the specific metric used to 
measure the distance of the samples from the classes, five well-known distances from the 
literature (Papakostas et al., 2010), the Euclidean, Logarithmic, Correlation Coefficient, 
Discrimination Cost and Hausdorff  distancrs are selected and presented in the following: 
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The above formulas measure the distance between two vectors [ ]1 2 3, , ,..., np p p p=p        
[ ]1 2 3, , ,..., ns s s s=s , which are defined in the n  space. 

It has to be remarked that the above measures tend to 0 for the case of two equal vectors, 
except d3 which gives 1, since it counts the similarity of the two vectors. 
Finally, when the GA-based feature selection method is used, these measures are treated as 
objective functions aimed to being minimized (d1, d2, d4, d5) or maximized (d3). Noted that a 
maximization problem can be transformed to a minimization one, by minimizing the 
opposite objective function (-F instead F). 
The second examined objective function describes the internal relationships of the feature 
vectors describing each class and is based on the Pearson Correlation Coefficient (Wikipedia). 
This function measures the within-class and between-class correlation of the feature vectors 
belonging to the same class and the feature vectors of different classes respectively. In a 
similar way as in the case of Fisher Criterion, the objective is the maximization of the 
following quantity.  
 

Objective Function 
#2 2

w

b

rObjFunc
r

=  (7)
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where rw is the within-class Pearson correlation coefficient defined as 
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and rb is the between-class Pearson correlation coefficient defined as 
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In the above equations (8)-(11), Cmax is the number of classes and NC the number of samples 
belonging to the class C.  
The maximization of the ObjFunc2, indicate the existence of the appropriate feature vectors 
which guarantee high correlation between the vectors that describe the same class and low 
correlation between the vectors of different classes. The GA-based selection procedure which 
uses the function defined in (7) as the objective being optimized, constitutes a filter selection 
method, since it is independent from the classifier device used to take the final decision. 
The third objective function which is studied in this investigation, is a hybrid function 
formed by the combination of the previous two functions ObjFunc1 and ObjFunc2, according 
to the following weighted combination rule. 
 

Objective Function 
#3 1 1 1 2 2ObjFunc w ObjFunc w ObjFunc= × + ×  (12)

 

where the weights w1 and w2, controls the importance of each objective function regarding 
their ability to describe the problem under process. 
The definition of (12) corresponds to a generalized formula of an objective function, where 
the functions of (1) and (7) are special cases derived from (12), by setting w2=0 and w1=0, 
respectively. 
Although, a separate study on the appropriate selection of the w1, w2 weights is needed in 
order to improve the overall feature selection procedure, the same value of 0.5 is selected for 
the experiments, by giving the same degree of importance to the two objective functions. 



Evolutionary Feature Subset Selection for Pattern Recognition Applications 

 

449 

It is important to notice that the GA-based selection scheme has the advantage to permit the 
usage of non differentiable functions as objective functions, in contrast to the gradient-based 
optimization methodologies working only with differentiable error functions. 

4. Experimental study 
For experimental purposes, several well-known benchmark datasets from the pattern 
classification research field are selected, where the usefulness of their default number of 
features are examined, according to the GA-based selection schemes presented in the 
previous section. 
The experimental benchmarks are widely used in the literature and are selected from the 
UCI repository (UCI-Machine Learning Repository), with their properties being 
summarized in the following Table 1.  
 
Dataset Features Instances Classes 
Iris 4 150 3 
Wine 13 178 3 
Pima Indians Diabetes 8 768 2 
Thyroid 5 215 3 
Parkinson 22 195 2 
Hepatitis 19 155 2 
Glass 9 214 6 

Table 1. Properties of benchmark datasets. 
In all the experiments the GA operates with the configuration shown in Table 2, although 
each classification problem needs its own configuration in order to achieve the best 
performance. However, this common GA configuration does not affect significantly the 
selection procedure, since even taking into account a suboptimal solution, significant 
conclusions can be drawn, which can further be improved by appropriate algorithm’s 
calibration.       
 

Parameter Value 
Population Size 10 
Variables Range  [1,n] n: number of features 
Maximum Generations 100 
Elitism YES, 2 chromosomes 
Crossover Points 2 points 
Crossover Probability 0.8 
Mutation Probability 0.001 
Selection Method Uniform Selection 

Table 2. Simple Genetic Algorithm settings. 
Three feature selection experiments are arranged, where the GA optimization scheme used 
to select the best features by using the three objective functions defined in (1), (7) and (12). 
For a predefined desired number of features, the algorithm returns the best features’ 
combination for each one of the datasets and the corresponding formed vectors are 
presented in the following sections.  
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4.1 Experiment 1 – 1st objective function (a wrapper case) 
In the first experiment the objective function of equation (1) is applied, as a fitness measure 
of each candidate feature subset, while the five metric distances (2)-(6) is used as minimum 
distance classification module. Since the first objective function measures the classification 
performance of the candidates feature subsets, there is a need to define the representative 
patterns that best characterize the classes’ distributions in each benchmark problem. These 
patterns correspond to the classes’ centers and are decided by taking into account a specific 
part of the entire dataset, called training set. In fact three different data collections are used in 
this experiment, the 25%, 50% and 75% randomly selected samples of each dataset, while the 
rest samples, called testing set, in each case are used for evaluation purposes. Moreover, each 
execution of the GA-based selection has been repeated 10 times in order to extract more 
statistically corrected results and the corresponding mean values are summarized in the 
following Tables (3)-(9) (for the case of 50% training data samples).  
 
 

Iris Dataset 
Metric d1 d2 d3 d4 d5 

Best Feature Subset 3,4 1,4 4 1,4 3,4 
Objective Value 0.973 0.973 0.960 0.973 0.973 
All Features 
Objective Value 0.893 0.973 0.866 0.973 0.893 

 

Table 3. Selection results for the Iris dataset. 

 
 

Wine Dataset 
Metric d1 d2 d3 d4 d5 

Best Feature 
Subset 1,2,3,7,9,10,12 3,4,5,7,10,11, 

12,13 2,6,7,10,12 1,3,4,5,7,10, 
11,12,13 1,2,3,7,9,10,12 

Objective 
Value 0.933 0.988 0.900 0.988 0.933 

All Features 
Objective 
Value 

0.700 0.933 0.711 0.933 0.700 

 

Table 4. Selection results for the Wine dataset. 

 
 

Pima Indians Diabetes Dataset 
Metric d1 d2 d3 d4 d5 

Best Feature Subset 1,3,5,7 1,5,7 1,7 1,5,7 1,3,5,7 
Objective Value 0.750 0.760 0.742 0.763 0.750 
All Features 
Objective Value 0.679 0.555 0.713 0.554 0.679 

 

Table 5. Selection results for the Pima Indians Diabetes dataset. 
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Thyroid Dataset 
Metric d1 d2 d3 d4 d5 

Best Feature Subset 2,3 2,3,4 3,4,5 2,3,4 2,3 
Objective Value 0.906 0.943 0.915 0.943 0.906 
All Features 
Objective Value 0.850 0.846 0.710 0.887 0.850 

Table 6. Selection results for the Thyroid dataset. 
 

Parkinson Dataset 
Metric d1 d2 d3 d4 d5 

Best Feature Subset 17,20,22 1,16,21,22 17,20,22 1,16,21,22 17,20,22 
Objective Value 0.855 0.855 0.855 0.855 0.855 
All Features 
Objective Value 0.721 0.690 0.701 0.690 0.721 

Table 7. Selection results for the Parkinson dataset. 
 

Hepatitis Dataset 
Metric d1 d2 d3 d4 d5 

Best Feature 
Subset 5,10,12,14,17,19 1,10,12 2,12,13,14 1,3,12 3,5,10,12,14,17,19 

Objective Value 0.870 0.860 0.870 0.860 0.870 
All Features 
Objective Value 0.545 0.652 0.584 0.652 0.545 

Table 8. Selection results for the Hepatitis dataset. 
 

Glass Dataset 
Metric d1 d2 d3 d4 d5 

Best Feature Subset 2,4,8,9 2,4,7 2,3,4,7,8 2,4,7 2,4,8,9 
Objective Value 0.458 0.458 0.440 0.458 0.458 
All Features 
Objective Value 0.403 0.247 0.357 0.247 0.403 

Table 9. Selection results for the Glass dataset. 
An important conclusion is drawn from the above tables, about the usefulness and 
information redundancy of the nominal features describing all the benchmark datasets. In 
all the cases there is a feature vector with lower dimension and higher objective value than 
the corresponding vectors consisting of all the features. This means that the classification 
performance can be significantly improved by using a small feature subset, while the usage 
of all the features does not guarantee better classification results. Therefore, by applying a 
classification-driven dimensionality reduction mechanism based on GA selection scheme, 
only the most essential features are kept. 
Moreover, the above tables show the ability of each metric distance (d1)-(d5) to measure the 
real distance between the data points and the corresponding classes’ centers. Due to the fact 
that none of the above distance shows significant superior performance over the rest ones, 
an additional statistical analysis, which counts the frequency of the features including in the 
best feature subsets for all distances and training sets (25%,50%,70%), is applied and the 
resulted histograms are illustrated in the following Fig.3. 
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Fig. 3. Features histograms for (a) Iris, (b) Wine, (c) Pima Indians Diabetes, (d) Thyroid, (e) 
Parkinson, (f) Hepatitis and (g) Glass datasets. 

By analysing the above plots of Fig.3, the suitability of each feature in the case of all datasets, 
can be studied. Through these plots, the statistically most efficient feature subsets for all metric 
distances are constructed, as a supplementary to the GA-based feature selection mechanism. 
The final features subsets for each dataset are summarized in the following Table 10. It has 
to be noted that the usefulness of these features subsets will be studied later by using them 
to solve the same pattern recognition problems, with a typical feedforward neural network 
classifier used as the decision module. 
 

 Datasets 

 Iris Wine 
Pima 

Indians 
Diabetes

Thyroid Parkinson Hepatitis Glass 

Best 
Feature 
Subset 

3,4 1,2,3,6,7,10,
11,13 1,3,5,7 2,3,4 

1,2,3,9,10,13, 
14,16,17,18,19, 
20,21,22 

1,2,3,4,5,7,9, 
10,11,12,13,14, 
17,19 

2,4,7,8 

Table 10. Resulted feature subsets from the analysis of the histograms of Fig.3. 

4.2 Experiment 2 – 2nd objective function (a filter case) 
The only difference between the 2nd experiment and the 1st one is the usage of a different 
objective function for the evaluation of the candidate solutions fitness. The used objective 
function is defined in (7) and it measures the correlation degree between the data points 
belonging to the same class and to different classes simultaneously. This filter type of 
selection is executed in the absence of any classification module and therefore it is 
interesting to study the classification performance of the selected features when applied to a 
traditional neural network classifier.  
The selected features subsets along with the performance of the entire features sets are 
presented in Table 11, as follows.  
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 Datasets 

 Iris Wine 
Pima 

Indians 
Diabetes 

Thyroid Parkinson Hepatitis Glass 

Best 
Feature 
Subset 

2,3,4 2,3,6,7 
9,11,12 3,4,5,6,8 2,3,5 4,8,11,15 2,4,5,6,7,8,9, 

10,11,12,13,19 1,3,4,6,8,9 

Objective 
Value 0.765 0.623 1.507 0.895 1.273 0.835 0.683 

All 
Features 
Objective 
Value 

1.210 1.522 1.930 1.502 2.026 2.030 1.259 

Table 11. Selection results using ObjFunc2 for the case of all benchmark datasets. 

A careful study of the above table can lead to common conclusions with that of the previous 
experiment. The selection procedure by using the objective function of (7), forms feature 
vectors of lower dimension and higher objective value, as compared with the nominal ones.  
This result highlights the fact that all the features are not of the same importance but 
moreover the counting of some features may degrade the over classification performance. 
Furthermore, there are some overlaps between the subsets derived by the two experiments, 
something which reinforces the importance and appropriateness of the common features.  
What is of major importance is the investigation of the classification capabilities of the 
formed subsets by using a specific classifier, in order to study the independency of the 
selection procedure to the applied classification structure. 

4.3 Experiment 3 – 3rd objective function (a hybrid case) 
For the purposes of the 3rd experiment, a hybrid objective function (12) that combines the 
two functions ObjFunc1 and ObjFunc2 is used. The operation of the GA in this case 
corresponds to a multi-objective optimization, where the weights are set both to 0.5, while 
an additional procedure to find the best values of them can be performed. 
It has to be noted that in order to evaluate the ObjFunc1, all the metric distances are used and 
the same statistical analysis is performed as in the case of the 1st experiment. For space saving  
 

 Datasets 

 Iris Wine 
Pima 

Indians 
Diabetes

Thyroid Parkinson Hepatitis Glass 

Best 
Feature 
Subset 

2,3,4 2,3,6,7,9,11,12 3,4,6,7,8 2,3,4,5 10,20,22 2,3,4,5,6,8,9, 
10,11,13,19 1,3,4,6,8 

Objective 
Value 0.402 0.411 0.928 0.503 0.782 0.545 0.620 

All 
Features 
Objective 
Value 

0.658 0.911 1.125 0.825 1.152 1.242 0.927 

Table 12. Selection results using ObjFunc3 (with d1) for the case of all benchmark datasets. 
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 Datasets 

 Iris Wine 
Pima 

Indians 
Diabetes

Thyroid Parkinson Hepatitis Glass 

Best 
Feature 
Subset 

2,3,4 2,3,6,7,11 3,4,5,6,8 2,3,5 10,20,22 2,3,4,5,6,8, 
9,10,11,19 1,3,4,6,8,9 

Table 13. Resulted feature subsets from the analysis of the corresponding features’ 
histograms. 

reasons, only the selection results of distance d1 is presented in Table 12, while the selection 
results analysing the corresponding features’ histograms, are summarized in Table 13. 
A first look to the above selection results, leads to the conclusion that the usage of the hybrid 
objective function gives in some cases the same features subsets with the ObjFunc2, meaning 
that this measurement mostly influences it, while there are cases where the formed subsets 
are smaller than the other two experiments. Therefore, by combining the two objective 
functions novel features subsets can be found that optimize both the classification rate and 
the correlation degrees of the feature vectors being used. 
However, the study of the selected features subsets obtained by the three experiments, gives 
information only about the utility of the features, regarding the objective value used to 
evaluate them and their classification capabilities have to be investigated on the presence of 
the classifier module. 

4.4 Feature subsets verification – A Neural Network Classifier case  
As already mentioned in the previous sections, the features subsets formed by applying the 
GA-based selection scheme, are optimal as far as their performance is concerned, in  terms of 
the used objective function. In the case of ObjFunc1 the selection is taking into account the 
classification capabilities of the subsets relative to a specific classifier structure. It is worthy 
investigating the performance of the selected subsets under the usage of a totally different 
classifier module, such as the Neural Network Classifier (NNC), widely used in pattern 
recognition applications (Papakostas et al., 2008). This need for further study of the global 
behaviour of the selected features is more important in the case of the subsets derived by 
applying the ObjFunc2, since this selection procedure takes into account inherent properties 
of the data samples constituting the pattern classes. 
By working on this way, a typical feed-forward neural network classifier is used to verify 
the classification performance of the features subsets selected through the GA-based 
procedure, under the three different objective functions configurations. 
Before the presentation of the classification configuration and results of the NNC, it is 
constructive to summarize the features subsets selected by the three different objective 
functions for all the benchmark datasets, as depicted in Table 14.  
A multilayer perceptron is used as the NNC, having a different structure for each 
benchmark dataset. The used NNC has three layers with one hidden layer and its structure 
is denoted as inputs x hidden nodes x outputs. The number of inputs is equal to the number of 
features used to discriminate the patterns, the number of hidden nodes is equal to the nominal 
features (Table 1, 2nd column) of each dataset and the number of outputs is equal to the 
number of classes describing each dataset (Table 1, 4th column) 
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 Datasets 

 Iris Wine 
Pima 

Indians
Diabetes

Thyroid Parkinson Hepatitis Glass 

ObjFunc1 
Histogram 
based 

3,4 1,2,3,6,7,10, 
11,13 1,3,5,7 2,3,4 

1,2,3,9,10,13, 
14,16,17,18,19, 
20,21,22 

1,2,3,4,5,7,9, 
10,11,12,13, 
14, 17,19 

2,4,7,8 

ObjFunc2 
 2,3,4 2,3,6,7,9,11,12 3,4,5,6,8 2,3,5 4,8,11,15 

2,4,5,6,7,8,9, 
10,11,12,13, 
19 

1,3,4,6,8,9 

ObjFunc3 
Histogram 
based 

2,3,4 2,3,6,7,11 3,4,5,6,8 2,3,5 10,20,22 2,3,4,5,6,8, 
9,10,11,19 1,3,4,6,8,9 

Table 14. Selected features subsets by applying the three objective functions. 

 
Subsets Statistics Datasets 

  Iris Wine 
Pima 

Indians
Diabetes

Thyroid Parkinson Hepatitis Glass 

All 
Features 

min   (%) 
max   (%) 
mean (%) 
std    (%) 

58.53 
98.78 
90.73 
14.37 

95.55 
100 
98.44 
1.58 

68.48 
80.46 
77.57 
3.81 

82.24 
100 
97.28 
5.33 

94.84 
98.96 
97.21 
1.29 

79.22 
94.80 
89.22 
4.82 

17.11 
78.37 
58.28 
18.15 

ObjFunc1 
Histogram 
based 

min   (%) 
max   (%) 
mean (%) 
std    (%) 

97.56 
98.78 
97.68 
0.69 

96.66 
100 
98.88 
1.04 

77.34 
80.72 
78.90 
1.02 

70.09 
94.39 
85.79 
9.37 

94.84 
100 
97.42 
1.70 

83.11 
96.10 
89.61 
3.67 

34.23 
78.37 
59.45 
16.21 

ObjFunc2 
 

min   (%) 
max   (%) 
mean (%) 
std    (%) 

50 
100 
92.92 
15.13 

37.77 
92.22 
82.55 
17.67 

65.10 
71.09 
67.70 
2.81 

70.09 
99.06 
85.79 
12.94 

67.01 
79.38 
74.22 
3.26 

85.71 
92.27 
88.31 
2.53 

21.62 
76.57 
53.24 
18.80 

ObjFunc3 
Histogram 
based 

min   (%) 
max   (%) 
mean (%) 
std    (%) 

50 
100 
92.92 
15.13 

63.33 
94.44 
83 
12.62 

65.10 
71.09 
67.70 
2.81 

70.09 
99.06 
85.79 
12.94 

75.25 
92.78 
86.90 
6.57 

79.22 
85.71 
81.29 
2.81 

21.62 
76.57 
53.24 
18.80 

Table 15. Classification results of the neural classifier for the entire features subsets. 

Each experiment is executed 10 times in order to ensure its statistical accuracy, and the 
corresponding statistics (minimum (min), maximum (max), mean (mean) and standard 
deviation (std)), in terms of classification rate (%), by applying the feature subsets of Table 
14, on the NNC are summarized in the above Table 15. 
The results show the superiority of the feature subsets selected by ObjFunc1, over the two 
other selection methods. However, the most important observation is the outperformance of 
these features subsets as compared with the performance of all the nominal features, which 
in all the cases (except for the case of Thyroid dataset) give lowest classification rates. 
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Another significant result that comes from the comparison of Table 15 and Tables 3-9, is the 
improvement (Iris: 97.30% to 97.68%, Wine: 98.88% remains the same, Pima: 76.30% to 
78.90%, Parkinson: 85.55% to 97.42, Hepatitis: 87.00% to 89.61%, Glass: 45.80% to 59.45%) of 
the classification abilities of the subsets, when the NNC is applied as the classifier module. 
Therefore while a minimum distance classifier is used to select the best feature subsets, the 
appropriateness of the selected features is further enforced by applying a more sophisticated 
classifier structure in the recognition procedure.  

5. Conclusion 
The issue of selecting the most appropriate features describing the classes of different 
patterns constituting a pattern recognition application is concerned in this chapter. The 
presented selection procedure is based on the usage of an evolutionary algorithm, such as a 
Genetic Algorithm, in order to find a global optimal solution, by giving the necessary 
feature subsets that better separate the classes.  
The advantage of the evolutionary optimization methods to enable the application of any 
objective function, without the need of being differentiable, gives a great flexibility in 
choosing this function that better describes the problem in hand.  
By examining three different configurations of the GA-based selection scheme, regarding 
the usage of the objective function applied to measure the fitness of possible candidate 
solutions, some useful outcomes are obtained. The wrapper version of the selection method, 
which takes into account the classifier type used to classify the patterns, present the better 
performance over the other two different alternatives, but most of all the selected subsets 
perform better than the nominal benchmarks’ features, even for the case of a different 
applied classifier structure.  
Therefore, it is important to highlight the necessity of applying a selection procedure before 
the classification stage, in order to reduce the dimensionality of the features’ vectors driven 
by the classification separability point of view. Moreover, there is a need to find suitable 
objective functions without the performance of ObjFunc1, but with the speed of ObjFunc2 
independent of the applied classifier structure.  
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1. Introduction 
cDNA microarrays is one of the most fundamental and powerful tools in biotechnology. 
Despite its relatively late discovery in 1995, it has since been utilized in many biomedical 
applications such as cancer research, infectious disease diagnosis and treatment, toxicology 
research, pharmacology research, and agricultural development. The reason for its broad 
use is that it enables scientists to analyze simultaneously the expression levels of thousands 
of genes over different samples (Leung et al., 2003).  
More precisely, the process of a microarray experiment (Campbell et al., 2007) starts with 
the selection of a set of DNA probes that are of particular interest. A robot places the 
selected DNA probes on a glass slide, creating an invisible array of DNA dots. Two distinct 
populations of mRNAs (messenger RNAs) are then isolated from a control sample (i.e a cell 
developed under normal conditions) and a test sample (i.e. a cell developed under a specific 
treatment). The mRNA populations are reversely transcribed into cDNA (complementary 
DNA) populations which in turn are colored with separate fluorescent dyes of different 
wavelengths (i.e. Cy3 and Cy5). The dyed cDNA populations are mixed with purified water 
and the solution is placed on the glass slide in order for the cDNA populations to be 
hybridized with the slide’s DNA dots. Finally, the hybridized glass slide is fluorescently 
scanned twice; one scan for each dye’s wavelength. Hence, two digital images are produced, 
one for each population of mRNA. Each digital image contains a number of spots 
(corresponding to the DNA-cDNA dots) of various fluorescence intensities. Given that the 
intensity of each spot is proportional to the hybridization level of the cDNAs and the DNA 
dots, the gene expression information is obtained by analyzing the digital images. 
As stated by Yang et al (Yang et. al, 2002), the process of analyzing a microarray image can 
be divided into three main phases, namely: “Gridding”, “Spot-Segmentation” and “Spot-
Intensity extraction”. During the 1st phase, the microarray image is segmented into 
numerous compartments, each containing one individual spot and background. During the 
2nd phase each compartment is individually segmented into a spot area and a background 
area, while during the 3rd phase the brightness of each spot is calculated. The expression-
levels of the genes in these spots are a direct result of their individual brightness.  
Amongst the stages of the microarray-image analysis, spot-segmentation remains the most 
challenging one. Ideally, the existing spots inside the microarray image are aligned in 2D 
array layouts. These ‘ideal spots’ also have a circular 2D shape with fixed diameters, while 
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their intensity peaks at their central region and declines at regions further from their centre. 
In reality however, microarray images have poor quality due to the existence of noise 
and/or artifacts as well as due to uneven background (Wang et. al, 2003). Additionally, 
many spots are rather different to the ideal ones as they vary in size, shape and position due 
to imperfect sample-preparation and hybridization processes (Tu et. al, 2002). Last but not 
least, some spots are so poorly contrasted that are not clearly visible (Chen et al 2006). 
As a result, a number of spot-segmentation techniques have been developed, some of which 
have been incorporated into commercial software programs.  The fixed circle segmentation 
algorithm [implemented by the ScanAlyze software program (Eisen, 1999)] or the adaptive 
circle segmentation algorithm [implemented by the Dapple software program (Buhler et. al, 
2000)] assumes that microarray spots are circular. However, this assumption is in fact invalid 
since a spot’s morphology – as previously mentioned - is not always a circle. Moreover, both of 
these techniques require input parameters in order to define the spot’s diameter. The adaptive 
shape-segmentation [implemented by the Spot software program(Buckley, 2000)] has been 
suggested in order to deal with the various shapes of the spots. The algorithm can segment 
regions of irregular shapes by implementing a watershed algorithm. However, a drawback in 
this method is that its performance is based on the appropriately specified number and 
locations of the starting points (seeds). Chen et al (Chen et al, 1997) suggested a thresholding 
method based on the statistical Mann-Whitney test. A disadvantage of this method is that its 
performance relies on the appropriate choice of background samples. Clustering algorithms, 
such as K-means, hybrid K-means and, fuzzy C-means (FCM) have been also applied in order 
to determine which pixels belong to the spot area and which ones to the background area 
(Bozinov et. al 2002), (Rahnenfuhrer et. al, 2003), (Nagarajan et. al 2003). Nevertheless, these 
methods become inaccurate, when the spots are poorly contrasted or when the spots are very 
close to each other. In the latter case, instead of segmenting the real spot, these methods may 
segment portions of neighboring spots. Another segmentation method, based on the clustering 
of pixels’ values, is the model-based segmentation algorithm, proposed by Li et al (Li et. al, 
2005). A disadvantage of this method is that it may over-segment the microarray spots since 
the number of clusters is determined automatically. Finally, there are segmentation methods 
based on active contours and multiple snakes (Ho et al, 2008),(Srinark et al 2004), (Srinark et al 
2001). These methods give inaccurate results when the compartment is contaminated with 
noise and artifacts. The Markov Random Fields method (MRF) (Demirkaya et. al, 2005) utilizes 
the neighboring information, along with the intensity information, based on an MRF modeling 
of the compartment. However, one major drawback of this method is that it requires an initial 
classification of the pixels which in turn affects the final results.  The segmentation method 
included in the Matarray toolbox of Matlab (Wang et al, 2001) combines both spatial and 
intensity information. A disadvantage of this method is that it requires input parameters in 
order to segment the spots. 
All aforementioned techniques require human intervention in order to define input 
parameters or to correct the segmentation results. This apparent lack of automation can be 
disadvantageous during microarray image analysis. Indeed, human intervention may 
inevitably modify the actual results of the microarray experiment and lead to erroneous 
biological conclusions. Therefore, the necessity of an accurate and automatic spot-
segmentation technique becomes obvious.   
In this chapter, the spot-segmentation stage of the microarray-image analysis is expressed as 
an optimization problem which is subsequently solved by using genetic algorithms and 
fuzzy logic. In particular, a genetic algorithm (GA) represents the real-spots of the cDNA 
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microarray image with spot-models, in a 3D space. The segmentation of the real-spots is 
conducted by drawing the contours of the spot-models. It should be noted that the spot-
model presented in this chapter can be used for the representation of all types of real 
microarray spots such as peak-shaped, volcano-shaped and doughnut-shaped spots. 
Consequently, the proposed method can segment all possible types of microarray spots. 
Moreover, the genetic algorithm has been further developed in order to be noise-resistant 
and yield more accurate results. It adopts the Fuzzy Logic so as to take into account the 
uncertainties that exist in the pixels’ intensities due to noise, artifacts and uneven 
background. Contrary to existing software systems, the proposed spot-segmentation 
method is fully automatic as it does not require any input parameters; it is also noise 
resistant and yields excellent results even under the following adverse conditions: i) the 
appearance of various spot-shapes, such as peak-shaped, volcano-shaped and doughnut-
shaped spots, ii) the appearance of spots of diverse intensities, such as low-intensity spots or 
saturated spots and iii) the appearance of various spot-sizes. Last but not least, it 
outperforms other image analysis software programs as well as other well-known published 
techniques. 

2. Genetic algorithms 
Genetic Algorithms (GAs) are powerful, stochastic, non-linear optimization tools based on 
the principles of natural selection and evolution (Golderbg, 1989). Compared to traditional 
search and optimization tools (such as Blind Search Algorithms), GAs demonstrate superior 
performance, given that they are robust optimizers, suitable for solving problems for which 
there is little or no a priori knowledge of the underlying processes.  
Given a specific optimization problem, a typical GA searches for the optimal solution as 
follows: Firstly, it creates a finite number of potential solutions encoded as alpha-numerical 
sequences called Chromosomes. These Chromosomes constitute an initial Population Pop1. 
Subsequently, the GA produces a new Population Pop2 according to the following: The 
Chromosomes constituting the Pop1 are evaluated using a Fitness Function. Thereafter, the 
GA evolves the Population Pop1 into a new Population Pop2 using the three Genetic 
Operators: Reproduction, Crossover, and Mutation. This Evolutionary Cycle from one 
Population to the next (Pop1 to Pop2, Pop2 to Pop3 and so forth) continues until a specific 
termination criterion is satisfied. Subsequently, the essential elements of the GA are: 
Chromosome representation, Chromosome evaluation, the Evolutionary cycle, and the 
Termination criteria. 
A Chromosome is often represented as a simple alpha-numerical sequence which encodes the 
values of variables defining a possible solution to the optimization problem at hand. Although 
a traditional GA uses a binary number in order to encode these variables, in the present 
application, a Real-Coded Genetic Algorithm (RCGA), which uses real values, is applied. The 
reason is that real-coded Chromosomes exhibit various advantages over binary-coded 
Chromosomes as they can use large or unknown domains for the variables they encode. On 
the other hand, assuming that the Chromosome has a fixed length, binary implementations 
cannot increase the domain without sacrificing precision (Herrera et al., 1998). 
The evaluation of the Chromosome is based on a Fitness Function which assigns to the 
Chromosome a Fitness Value measuring the quality of the solution that the Chromosome 
represents. Naturally, the Fitness Function depends on the particular optimization problem 
at hand and on the Chromosome representation. 
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Reproduction, Crossover and Mutation are the three Genetic Operators used for the creation 
of new Chromosomes (Herrera et al., 1998). All of them have been implemented in several, 
distinct fashions depending on the Chromosome representation.  
Common terminating criteria are: (i) A solution that satisfies the defined minimum 
standards, (ii) The attainment of a maximum number of Populations, (iii) The attainment of 
a fixed number of Populations for which the Fitness Value of the best Chromosome remains 
the same, and (v) Combinations of the above (Hayes, 2006). 

3. Microarray spots 
The following three types of microarray spots can be identified in a microarray image (Kim 
et al. 2007): 
1. Peak-shaped spot (Fig. 1a); this type of spot has an intensity that peaks at its central 

region and declines at regions further from the centre. In the case when the peak is thin, 
the spot resembles to a 2D-Gaussian function. In the case when the peak is wide, the 
spot resembles to a plateau.  

2. Volcano-shaped spot (Fig. 1b); this type of spot is defined as the peak-shaped spot 
having a small hole in the area of its peak. It therefore resembles to a volcano. 

3. Doughnut-shaped spot (Fig. 1c); this type of spot has a thin rim of high intensity and a 
large hole of very low intensity at its central region. 

 

(a) (b) (c) 

Fig. 1. Three types of real microarray spots in 2D and 3D dimensions:(a) a peak-shaped spot, 
(b) a volcano-shaped spot, and (c) a doughnut-shaped spot. 

4. Proposed spot-segmentation method 
Given that IREAL is one of the compartments of a real microarray image containing one 
individual spot SREAL and background BREAL, the segmentation procedure aims to the 
delineation of the boundaries of the spot SREAL. The segmentation procedure is divided into 
two stages: 
1st Stage: The compartment IREAL of the microarray image is optimally represented by a 3D 
compartment-model IMODEL. 
2nd Stage: The boundaries of the microarray spot SREAL are depicted by drawing the contour 
of the spot-model SMODEL. 

4.1 Morphological models for a microarray spot and its compartment 
Due to the aforementioned common spots’ characteristics, a microarray compartment can be 
represented by a 3D compartment-model, in which the third dimension represents the 
intensity. More precisely, a microarray spot can be represented using: i) a 3D-curve 
representing the main-body SMB of the spot-model, and ii) a 3D-curve representing the 
inner-dip SID of the spot-model.  
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4.1.1 The spot-model and its components 
The main-body and the inner-dip 3D curves have opposite orientation and they resemble 
the 3D Gaussian or plateau curve (Fig.2).  More precisely, the main body of the spot-model 

( , )MBS x y is defined by the following equation:  

 ( ) ( )( , ) ( , ) ( , )MB MB MB MB MB MBS x y h erf a r x y erf a r x y⎡ ⎤= ⋅ + + −⎣ ⎦  , (1) 

Where 
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Fig. 2. Components of the spot-model: (a,b) The main-body SMB(x,y) of the spot-model,(c,d) 
3D representation of the  inner-dip SID(x,y) 3D-curve, the initial 3D-curve and the horizontal 
surface H(x,y). 
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MBh controls the height of the main body of the spot-model. ( )erf z denotes the error 
function encountered in integrating the normal distribution. 0, 0,( , )MB MBx y are the 
coordinates of the center of the main body of the spot-model on the 2D plane. ,x MBD  and 
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,y MBD control the slope of the 3D curve at two main directions (x and y) of the 2D plane, 
while MBa controls the shape of the 3D curve.  For 0MBa → , ( , )MBS x y  resembles a two-
dimensional Gaussian function, while for MBa →∞ , ( , )MBS x y resembles a plateau or 
saturated spot. A more detailed illustration of SMB(x,y) is depicted in Fig. 3. It is worth 
pointing out that 0, 0,( , ) [0, ( , )]MB MB MB MBS x y S x y∈ .  
The inner dip of the spot-model SID(x,y) is defined as a symmetrical 3D curve - in respect to 
an horizontal surface H(x,y) - to an ‘initial 3D curve’ which derives from eq. (1), and whose 
maximum value appears in its center 0, 0,( , )ID IDx y .   
 

  
(a) (b) 

  
(c) (d) 

Fig. 3. Illustration of the rotations: (a) The dashed curve represents the contour of the main 
body of the spot-model before the rotation, while the solid curve represents the contour of 
the main body of the spot-model after the rotation, (b) The dashed curve represents the 
contour of the inner dip of the spot-model before the rotation, while the solid curve 
represents the contour of the inner dip of the spot-model after the rotation, (c) The contour 
of the total spot-model without applying the rotations,  and (d) The contour of the total spot-
model after applying the rotations. 

4.1.2 Total spot-model 
The total spot-model SModel(x,y) as a function of x, y is defined by the following mathematical 
equation:  

 , , , ,( , ) ( , ), ( , )MODEL MB ID ID IDS x y Min S x y S x yθ θ θ θΜΒ ΜΒ⎡ ⎤= ⎣ ⎦  (3) 

where , ,( , )x yθ θΜΒ ΜΒ are the rotated coordinates of the (x,y) by an angle θMB around the 3D 
curve’s center 0, 0,( , )MB MBx y  of the main body of the spot-model. Likewise, , ,( , )ID IDx yθ θ  are 
the rotated coordinates of the (x,y) by an angle θID around the 3D curve’s 
center 0, 0,( , )ID IDx y of the inner dip of the spot-model.  
Rotating the two compartments of the spot-model through the angles θMB and θID, permits 
both the ( , )MBS x y and ( , )IDS x y 3D curves to have any possible direction on the 2D plane. An 
example is shown in Fig. 3. A graphical explanation of eq. (3) is depicted in Fig. 4. The 
resulting total-models are the areas colored with grey. Depending of the distance between 
the SMB and SID centers and the height of the SID 3D curve, the resulting total-model can 
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resemble a peak-shaped spot (Fig.4a), a volcano-shaped spot (Fig.4b), or a doughnut-shaped 
spot (Fig.4c). 
 

  
(a) (b) (c) 

Fig. 4. SMB and SID components of the morphological models of: (a) a peak-shaped spot, (b) a 
volcano-shaped spot, and (c) a doughnut-shaped spot. The total morphological models are 
the grey areas. 
 

(a) (b) 

Fig. 5. Examples of the 3D compartment-models containing: (a) a volcano-shaped spot, and 
(b) a doughnut-shaped spot. 

4.1.3 The compartment-model 
The compartment-model IMODEL(x,y) as a function of x,y is defined by the following 
mathematical equation: 

 [ ]( , ) , ( , )MODEL AV MODELI x y Max B S x y=  (4) 

where AVB  denotes the average background intensity of the compartment-model IMODEL. 
AVB  corresponds to a threshold of the lowest values of the ( , )MODELS x y . Pixels whose 

values are lower than AVB belong to background, and their values are set equal to AVB . 
Thus: 0, 0,( , ) [ , ( )]MODEL AV MB MB MBI x y B S x y∈ . 
Two examples of compartment–models IMODEL(x,y) are depicted in Fig. 5. The first 
compartment-model contains a volcano-shaped spot-model while the second compartment-
model contains a doughnut-shaped spot-model. 
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4.2 Optimum 3D representation and definition of real-spot contour 
The first stage of the segmentation procedure is regarded as an optimization problem of 
modeling a microarray compartment and it is tackled by using the proposed genetic 
algorithm. A genetic algorithm determines the compartment-model which optimally 
represents the real-one. More precisely, it determines the values of the variables of the 
compartment-model (eq. 4) so that the resulting compartment-model represents optimally 
the real-one. 

4.2.1 Chromosome representation 
A chromosome m represents a specific compartment-model m

MODELI  in a three-dimensional 
space, where m stands for a specific chromosome. It is therefore a simple numerical 
sequence which encodes the values of the variables defining the specific compartment-
model. It consists of 3 segments: The first segment encodes the value of the average 
background intensity of the compartment-model m

AVB . The second segment encodes the 
values of the variables of the main-body m

MBS  of the spot-model m
MODELS , while the third 

segment encodes the values of the variables of the inner-dip m
IDS of the spot-model m

MODELS . 

4.2.2 Chromosome evaluation 
The aim of the genetic algorithm is the maximization of the resemblance between the 
compartment-model m

MODELI  and the real-one IREAL. In other words, the higher the 
resemblance of the compartment-model m

MODELI  (represented by the chromosome m) to the 
real-compartment IREAL is, the higher the value of the fitness function of a chromosome m 
becomes. Based on the aforementioned remark, the chromosome evaluation contains the 
following three main objectives:  
1. Maximization of the degree of overlap between the area containing the real microarray 

spot SREAL and the area containing the spot-model m
MODELS  (represented by chromosome 

m),   
2. Maximization of the resemblance between the real microarray spot SREAL and the main 

body of the spot-model m
MBS  (represented by chromosome m). In this case, let MBI  be a 

model-compartment which contains only the main body of the spot-model (instead of 
the total-spot model). In correspondence with eq. (4), MBI  is defined by the following 
equation: 

 [ ]( , ) , ( , )MB AV MBI x y Max B S x y=  (7) 

Subsequently, the aforementioned maximization is equivalent to the maximization of 
the resemblance between the real-compartment IREAL and the model-compartment m

MBI  
(represented by chromosome m).  

3. Μaximization of the resemblance between the real-compartment IREAL and the model-
compartment m

MODELI  containing the total spot-model m
MODELS . 

It should be noted, however, that since the real-compartment is contaminated with noise 
and artifacts, its intensity values are noticeably fluctuated – even between two consecutive 
pixels – resulting in a scabrous 3D-curve that contains many peaks.  As a result, pixels 
belonging to the spot area SREAL may have lower intensity values than the pixels belonging 
to the background area BREAL. Correspondingly, pixels belonging to the background area 
BREAL may have higher intensity values than the pixels belonging to the spot area SREAL. 
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Contrary to the scabrous 3D-curve of the real-compartment, the compartment-model has a 
smooth 3D-curve. Consequently, some of the points of the 3D-curve of the compartment-
model are identical to the points of the real-one while some others interpolate the points of 
the real-one. The identical points should belong mostly to the region near the spot’s contour 
while the interpolated points should belong mostly to spot areas or background areas. 
To deal with the ambiguity and vagueness of the intensity values of pixels – due to noise, 
artifacts and uneven background – the genetic algorithm adopts the Fuzzy Logic. We set the 
‘membership degree’ of a pixel p to belong to the background area or to the spot area 
according to the following two rules of fuzzy logic theory:   
1. The smaller the intensity’s value IREAL(p) is, the greater the ‘membership degree’ that pr 

belongs to the background area becomes, and   
2. The higher the intensity’s value IREAL(p) is, the greater the ‘membership degree’ that pr 

belongs to the spot area becomes.  
Based on the two aforementioned rules, the membership function ( )B pμ  of a pixel p  in 
order to belong to the background area and the membership function ( )S pμ  of a pixel p  in 
order to belong to the spot area are defined by the following equations: 

 

1, ( )
( )( ) , ( )

0, ( )

REAL B

F REAL
B B REAL F

F B

REAL F

if I p I
I I pp if I I p I

I I
if I p I

μ

⎧ ≤
⎪

−⎪= < <⎨
−⎪

⎪ ≥⎩

. (5) 

 

and, 

 

0, ( )
( )( ) , ( )
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REAL B

REAL B
S B REAL F
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if I p I
I p Ip if I I p I

I I
if I p I

μ

⎧ ≤
⎪

−⎪= < <⎨
−⎪

⎪ ≥⎩

 (6) 

 

where BI  and FI  are two intensity values. More precisely, let Io be the intensity 
corresponding to the minimum between the maxima of the two normal distributions which 
represent the distributions of background pixels and spot pixels (Fig. 6). Imin and Imax are the 
minimum and maximum intensity values that appear in the IREAL. Let N1 be the number of 
pixels whose intensities’ values are less than Io and, N2 be the number of pixels whose 
intensities’ values are higher or equal to Io. IB is chosen so that 1k N⋅  number of pixels have 
intensity lower or equal to IB, where k is a constant ( 0 1k≤ ≤ ). IF is chosen so that 2k N⋅  
number of pixels have intensity higher or equal to IF. 
Fig. 7 represents the membership functions ( )B pμ  and ( )S pμ . It becomes obvious that pixels 
with intensity lower or equal to IB belong to the background area ( ( ) 1B pμ =  and ( ) 0S pμ = ), 
while pixels with intensity higher or equal to IF belong to the spot area ( ( ) 0B pμ =  and 

( ) 1S pμ = ). Pixels, with intensity between IB and IF, have a ‘membership degree’ ( )B pμ  to 
belong to the background area and a ‘membership degree’ ( )S pμ  to belong to spot area 
( ( ) 0B pμ ≠  and ( ) 0S pμ ≠ ).  
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Fig. 6. A typical histogram of a real microarray compartment. The left curve corresponds to 
background pixels while the right curve corresponds to spot pixels. 

 

 
Fig. 7. The membership functions μΒ(p) and μS(p). 

In the next subsections, the three aforementioned objectives for the chromosome evaluation, 
as well as the way they are combined in order to form the fitness function are apposed in 
detail. 
4.2.2.1 Overlap of the area containing the real microarray apot SREAL and the area 
containing the spot-model m

MODELS  

Let ˆ
REALS be the set of pixels whose intensity value is higher or equal to IM and, ˆ

REALB be the 
set of pixels whose intensity value is lower than IM (Fig. 7). Ideally, ˆ

REALS  contains the pixels 
belonging to the spot area REALS  while ˆ

REALB contains the pixels belonging to the 
background area REALB . By overlapping the REALI  and the m

MODELI  (Fig. 8) four different 
regions can be identified: 1) SA is the set of pixels whose members are the pixels which are 
located in the area of ˆ

REALS and in the area of m
MODELS . 2) SB is the set of pixels whose 

members are the pixels which are located in the area of ˆ
REALS and in the area of m

AVB . 3) SC is 
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the set of pixels whose members are the pixels which are located in the area of ˆ
REALB  and in 

the area of m
MODELS . 4) SD is the set of pixels whose members are the pixels which are located 

in the area of ˆ
REALB  and in the area of m

AVB  
 

 
Fig. 8. Overlapping of the IREAL compartment and m

MODELI  compartment. The solid curve 
represents the area of REALS  while the dashed curve represents the area of m

MODELS . 

Using the aforementioned regions, the true positive rate TP(m) and the true negative rate 
TN(m) can be calculated for the m

MODELS . Due to the uncertainties existing in the pixel’s 
intensities, the pixels contributing to the calculations are weighted; In the calculation of 
TP(m), the weight coefficient of a pixel p equals to its corresponding ‘membership degree’ 

( )S pμ , while in the calculation of TN(m) the weight coefficient of a pixel p equals to its 
corresponding ‘membership degree’ ( )B pμ . 
The higher the TP(m) and the TN(m) are, the higher the overlapping of the m

MODELS  with 
the ˆ

REALS is. As a result, the overlap ( )OverlapF m  of the area containing the real microarray 
spot SREAL and the area containing the spot-model m

MODELS is defined by the following 
equation: 

 ( ) ( ) ( )OverlapF m TP m TN m= ⋅  (8) 

4.2.2.2 Measure for calculating the error of a model-compartment at a pixel p  

Let m
CI  be either the model-compartment m

MODELI  or the model-compartment m
MBI . If the 

surface of the real-compartment IREAL was smooth, the error of the model-compartment m
CI  

at a pixel p should be defined as: 

 | ( ) ( )|( )
( )

m
m C REAL
REAL

REAL

I p I pE p
I p
−

=  (9) 

However, the surface is not smooth since the real microarray compartment is contaminated 
with noise. As a result, the error of the model-compartment m

CI  at a pixel p is defined by the 
following equation:  

 ( ) ( ), ( )m m m
REAL MRE p Min E p E p⎡ ⎤= ⎣ ⎦  (10) 

where, 

 | ( ) ( )|( )
( )

m
m C MR
MR

MR

I p I pE p
I p
−

=  (11) 

and,  
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[ ] [ ]( ) , ( ), ( )

( )
( ),

REAL S B mk K
MR

REAL

Median I k if Max p p
I p

I p otherwise

μ μ λ
∈

⎧ ≥⎪= ⎨
⎪⎩

   (12) 

 { }|(| | 1) | ( ) ( )|S S dK k k p k pμ μ λ= − ≤ ∧ − ≤ . (13) 

 

( )MRI p  equals either to ( )REALI p or to the median intensity value of a set of pixels {K} 
located in a neighborhood near the pixel p, according to the values of ( )S pμ or ( )B pμ . λm and, 
λd denote two constants ( 0 , 1m dλ λ≤ ≤ ) which control the ( )MRI p value of  a pixel p. 

4.2.2.3 Resemblance between the real-compartment IREAL and the model-compartment m
MBI  

The resemblance RMB(m) between the real-compartment IREAL and the model-compartment 
m
MBI  is defined by the following equation: 

 1 2( ) ( ) ( ),MBR m f m f m= ⋅  (14) 
where 

 { }
{ }

1
1

# |
( ) ,

# | REAL

p p S
f m

p p S

∈
=

∈
 (15) 

 { }
{ }

2
2

# |
( )

# | REAL

p p S
f m

p p B

∈
=

∈
 (16) 

and, 

 { }1 | ( ) ( )m m
MAX MB AVS p E p E I p B= ≤ ∧ > , (17) 

 { }2 | ( ) ( )m m
MAX MB AVS p E p E I p B= ≤ ∧ ≤ . (18) 

 

The symbol # denotes the number of the elements of the set that is defined by the brackets 
{}. MAXE  is a positive constant which expresses the maximum acceptable error of the model-
compartment at a pixel. 
S1 denotes a set of pixels whose members are the pixels p of the compartment-
model m

MBI which are located in the area of the main body of the spot-model ( MBS ) and 
efficiently represent the corresponding ones of the real compartment IREAL ( ( )m

MAXE p E≤ ). 
Likewise, S2 denotes a set of pixels whose members are the pixels p of the compartment-
model m

MBI which are located in the area of the background ( AVB ) and efficiently represent 
the corresponding ones of the real compartment IREAL.  
f1(m) denotes the percentage of the REALS  pixels which have been efficiently represented by 
the compartment-model m

MBI . Likewise, f2(m) denotes the percentage of the REALB  pixels 
which have been efficiently represented by the compartment-model m

MBI . From eq. (14), the 
further pixels have been efficiently represented by the m

MBI  compartment-model, the higher 
the value of  RMB(m) becomes. 
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4.2.2.4 Resemblance between the real-compartment IREAL and the  
model-compartment m

MODELI  

The resemblance between the real-compartment IREAL and the model-compartment m
MODELI  

is defined by the following equation: 

 3 4( ) ( ) ( )MODELR m f m f m= ⋅   (19) 
 

where 

 3( ) ( ) (1 ( ))
REAL

m
S

p I
f m p w E pμ

∈
= ⋅ − ⋅∑ ,  (20) 

 4( ) ( ) (1 ( ))
REAL

m
B

p I
f m p w E pμ

∈
= ⋅ − ⋅∑  (21) 

 

and, 

 0.1, ( )
1,

m
REAL MAXif E p Ew

otherwise
⎧ ≤⎪= ⎨
⎪⎩

, (22) 

 

If the value of ( )m
REALE p  of a pixel p is less or equal to MAXE  (eq. 22), the error between the 

model-compartment m
MODELI  and the real-compartment IREAL at that pixel is considered 

negligibly small and thus insignificant. Consequently, the ( )mE p error ((eq. 20) and (eq. 21)) 
is multiplied by a factor of 0.1 (w=0.1).  
 

 
 
                                       (a)                                                                                    (b) 

Fig. 9. The dotted curve represents the intensity of a real microarray spot while the dashed 
curve represents a spot-model. Spot-models whose values fall within the margin, defined by 
the solid curves, efficiently represent the real microarray spot. (a) An efficient spot-model. 
(b) An inefficient spot-model. 
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In fact, the constant MAXE  controls an acceptable margin of the error existing between the 
intensities’ values of the compartment-model and the intensities’ values of the real 
compartment. As an example Fig. 9 depicts the margin in the area of the real microarray 
spot. Spot-models whose values fall within the margin efficiently represent the real 
microarray spot. 
As the value of f3(m) increases, so does the number of those pixels belonging to REALS  which 
are efficiently represented by the SMODEL. Likewise, as the value of f4(m) increases, so does 
the number of those pixels belonging to REALB  which are efficiently represented by the  BAV. 
As a result, the greater the number of pixels that are efficiently represented by the m

MODELI  
compartment-model is, the higher the value of RMODEL(m) becomes. 
4.2.2.5 Fitness function 
Each chromosome m in every population is evaluated using a fitness function, F(m), which 
assigns to it a degree of how appropriate a solution to the optimization problem it is. The 
higher the value of the fitness function, the more appropriate the chromosome is. The 
Fitness Function, F(m), of a Chromosome m that encodes a possible solution to the particular 
optimization problem is defined by the following equation: 

 
[ ]1 2

3 4

( ), ( ), ( ), ( )
( ) 1 ( ), ( ) 0 ( ) 0

( ) ( ),

MB MB R

MB

MODEL Overlap

R m if Min f m f m R m Th
F m R m else if f m f m

R m F m otherwise

⎧ ≤
⎪

= + ≤ ∧ ≤⎨
⎪ ⋅⎩

 (23) 

The Fitness Function F(m) of a Chromosome m equals to ( )MBR m  (1st case), to 1 ( )MBR m+  
(2nd case) or to ( ) ( )MODEL OverlapR m F m⋅  (3rd case), according to the values of 1( )f m , 2( )f m , 

( )MBR m , 3( )f m  and, 4( )f m .  
If one of the value of 1( )f m , 2( )f m and, ( )MBR m  is less or equal to a threshold RTh , it means 
that the model-compartment m

MBI  does not resemble at all to the real-compartment IREAL (1st 
case). RTh  is a threshold which controls the minimum acceptable resemblance of the model-
compartment m

MBI with the real-compartment IREAL.   
If the values of 1( )f m , 2( )f m and, ( )MBR m  are higher than the threshold RTh , it means that 
the model compartment m

MBI  resembles to an extent to the real-compartment IREAL. In this 
case, the fitness function checks the value of 3( )f m  and 4( )f m . If their values are less than 
zero, the model compartment m

MODELI  does not resemble at all to the real-compartment IREAL, 
thus the model-compartment is not an acceptable one (2st case). On the other hand, if their 
values are higher than zero, it means that the model compartment m

MODELI , represented by 
the chromosome m, represents to a degree the real compartment (3rd case). Of course, the 
higher the value of ( ) ( )MODEL OverlapR m F m⋅  is, the higher the resemblance between the real 
compartment with the model compartment m

MODELI becomes. 
Using the fitness function F(m), the higher the resemblance of the model-compartment 

m
MODELI  with the real one is, the higher the value of the fitness function F(m) becomes. This 

is because the genetic algorithm can assign to the chromosome m of the 3rd case a higher 
fitness value than to the one of the 2nd case and to the one of the 1st case. For example, the 
genetic algorithm can progressively assign – from upper left to lower right – a higher fitness 
value to the chromosomes representing the compartment-models in Fig. 10. 
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Fig. 10. Overlapping of the real-compartment IREAL and compartment-model m
MODELI . The 

dotted curve represents the real spot SREAL, while the dashed curve represents the spot-
model m

MODELS .  The chromosome m representing the m
MODELI  in (d) should have 

progressively higher fitness value than that of (c), (b) and (a). 

4.3.3 Evolutionary circle-termination criteria 
Let Popn be a population of chromosomes, where n stands for the consecutive number of 
populations. The population consists of Npop chromosomes. A new population Popn+1 of an 
equal number of chromosomes (Npop) is created through the following stages: (i) 
Reproduction stage: Pr% of the best chromosomes of the current population Popn are carried 
over to the new population Popn+1. (ii) Crossover-Mutation stage: The chromosomes needed 
to complete the new population Popn+1 are produced through iterations of the following: 
Four chromosomes of the population Popn are selected using the tournament selection 
method (Miller et al., 1995); These chromosomes are subsequently subjected in groups to a 
crossover operator (according to a Pc% probability) and then to a mutation operator 
(according to a Pm% probability). The best two of the four resulting chromosomes (those two 
with the best fitness value) proceed to the new population Popn+1. It should be noted that the 
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mutation operator applied is the wavelet-mutation as it exhibits a fine-tune ability as 
opposed to other mutation operator (Ling et al., 2007). Moreover, the crossover operator 
applied is the joint application of the BLX-a and the dynamic heuristic crossover as it is the 
most promising crossover application (Herrera et al., 2005). 
New populations are thus produced until at least one of the following two criteria is 
satisfied: (i) the genetic algorithm is executed up to a maximum number of populations 
GMax; (ii) the genetic algorithm is executed up to a maximum number of populations GFit for 
which the best fitness value has remained unchanged. 

5. Results 

Several experiments were executed so as to evaluate the performance of the proposed 
method for spot-segmentation on both synthetic and real cDNA microarray images. Most of 
the parameters were experimentally adjusted once, and thus they remained unchanged 
during all the experiments. The constant k of 0.6 was adopted as the most appropriate in 
order to distinguish: i) the pixels which belong to the background area, ii) the pixels which 
belong to the spot area, and iii) the pixels which have a ‘membership degree’ μΒ in order to 
belong to the background area and a ‘membership degree’ μS in order to belong to the spot 
area. The constant parameters λm of  0.7 and   λd of  0.2 were adopted as the most appropriate 
so as to control the ( )MRI p  value of each pixel p of the real microarray compartment ((eq. 
12) and (eq. 13)). A constant MAXE  of 0.2 was adopted so as to control the maximum 
acceptable error of a model-compartment m

CI  at a specific pixel. A threshold ThR of 0.15 was 
adopted as the most appropriate one in order to define the minimum acceptable 
resemblance between a model compartment m

MBI and the real one.  
The population size of the genetic algorithm Npop was set to 100. This size is high enough to 
reduce the possibility of the genetic algorithm prematurely converging to a local solution 
that would not be an efficient one. Meanwhile, it does not increase the time required for the 
population to converge to an efficient solution (Achiche et al., 2004). The percentage of each 
population which was reproduced was relatively small (Pr=10%) as the reproduction was 
used only for the best chromosomes of the population to be preserved in the next 
population. In accordance with Miller et al (Miller et al., 2003) the high crossover probability 
of 80% was chosen (Pc=80%). The mutation probability was experimentally adjusted to 30% 
(Pm=30%). The termination criterion was satisfied when the genetic algorithm was executed 
for 500 populations (GMax=1000) or when the best fitness value remained unchanged for 250 
populations (GFit=250). 

5.1 Evaluation of the performance using synthetic microarray images 
In order to compare the proposed method with preexisting ones objectively, we used an 
existing dataset of synthetic microarray images for which the ground truth is known. The 
dataset contains 50 good quality images and 50 low quality images. Each image has been 
produced by the microarray simulator of Nykter et al (Nykter et al., 2006). It is digitized at 
330 x 750 pixels and it contains 1000 spots. Nykter’s simulator has been designed to produce 
synthetic microarray images with realistic characteristics. Consequently, the good quality 
images have low variability in spot sizes and shapes, while the noise level is reasonable low. 
On the contrary, the low quality images contain spots whose shape and size vary 
significantly. In addition, noise level is significantly higher for the low quality images. It 
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should be noted that this dataset has already been used for the evaluation of other well-
known segmentation techniques (see table I), as it is described in (Lehmussola et al., 2006).    
During these experiments, the efficiency of the proposed method was analyzed by means of 
a statistical analysis. The statistical analysis is the one described in (Lehmussola et al., 2006). 
More precisely, the segmentation accuracy was measured on a pixel level. Firstly, the 
probability of error PE and the discrepancy distance D for each synthetic spot were 
calculated. Then, the median probability of error and the median discrepancy distance for 
both good and low quality images were calculated. 
The probability of error PE measures the mis-segmented pixels. It is defined as:  

 ( ) ( | ) ( ) ( | )PE P F P B F P B P F B= ⋅ + ⋅   (24) 

where P(F) and P(B) are the a priori probabilities of foreground and background. P(F|B) 
denotes the probability of error in classifying background as foreground, while P(B|F) 
denotes the probability of error in classifying foreground as background. 
The discrepancy distance D gives different weights for mis-segmented pixels based on how 
spatially far they are located from the nearest correct segmentation result. 

 

2

1
( )

N

i
d i

D
A

==
∑

  (25) 

where N is the number of mis-segmented pixels, d(i) is the Euclidian distance from the i-th 
mis-segmented pixels to the nearest pixel that actually belongs to the mis-segmented class. 
A is the number of pixels in the image. 
 

Algorithm Median Value of 
Probability of error 

Median Value of 
Discrepancy distance 

 Good Low Good Low 
Fixed Circle 0.049 0.049 0.027 0.027 
Adaptive Circle 0.019 0.192 0.017 0.074 
Seeded region growing 0.099 0.114 0.037 0.048 
Mann-Whitney 0.165 0.162 0.066 0.074 
Hybrid k-means 0.017 0.020 0.016 0.029 
Markov random field 0.154 0.053 0.063 0.039 
Matarray 0.004 0.031 0.008 0.068 
Model-based segmentation 0.094 0.101 0.052 0.067 
Proposed method 0.000 0.012 0.000 0.018 

Table 1. Performance  of  commonly used and  well-known segmentation algorithms as well 
as of the proposed method 

The evaluation results of the proposed method are shown in table I (last row). It becomes 
obvious that the proposed method can accurately segment the spots of good quality images 
while it can segment the spots of low quality images quite efficiently. In the same table we 
have apposed the results of commonly used and well-known segmentation techniques (first 
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eight rows), as they are reported by Lehmussola et al. Comparing the results of the 
proposed method with the results of the other software programs, it is obvious that the 
results of the proposed method are significantly more successful than the ones of the other 
software programs, indicating the high performance of the proposed method. The 
significant number of spots which are contained in the used dataset supports these 
arguments additionally. Indeed, the evaluation of all the methods has been statistically 
calculated in 50000 artificial microarray spots for which the ground truth is given, meaning 
that the correct segmentation result is known.  
Fig. 11 presents a segmentation result on two blocks of a good quality and a low quality 
synthetic microarray image. As it is obvious the proposed algorithm has very efficiently 
segmented the microarray spots. 

5.2 Evaluation of the performance using real microarray images 
The second dataset contains ten microarray blocks, which have been arbitrarily selected 
from ten microarray images obtained from the Stanford Microarray Database (SMD) 
(Standford Microarray Database), which is publicly available. The blocks are digitized at ~ 
450 x 450 pixels at 16-bit grey level depth and they are stored in tiff format. Each one of 
them contains 864 spots. Thus, the blocks contain 8640 spots in total. The microarray images 
have been produced by comprehensively analyzing the gene expression profiles in 54 
specimens of acute lymphoblastic leukemia, 37 positive and 17 negative to BCR-ABL. BCR-
ABL is a fusion gene product resulting from translocation between the 9th and the 22nd 
chromosomes. 
Fig. 12 shows the segmentation results of a real-microarray sub-image which is 
contaminated with noise and contains the three types of microarray spots (peaked-shaped 
spots, volcano and doughnut-shaped spots).  As it is obvious, the proposed method has very 
efficiently segmented the spots. Moreover, the proposed method has correctly detected the 
absence of the first spot. 

6. Conclusions 
Spot-segmentation in microarray images comprises one of the most challenging stages of the 
microarray image analysis sequence.  In this chapter, the segmentation procedure is a result 
of an optimization problem which is tackled by using a genetic algorithm, which represents, 
in a three dimensional space, the real-spots of the microarray image with spot-models. In 
vue of this, fuzzy logic is adopted in order to take into account the uncertainties existing in 
the pixels’ intensities, and which have been caused by noise, artifacts, and uneven 
background. The segmentation of the real-spots is conducted by drawing the contours of the 
spot-models.  
The proposed approach is noise-resistant and it is efficient under the following adverse 
conditions: i) the appearance of various spot-shapes, such as peak-shaped spots, volcano-
shaped spots and doughnut-shaped spots, ii) the appearance of spots of diverse intensities, 
such as low intensity spots which are not clearly visible or saturated spots and iii) the 
appearance of various spot-sizes. Last but not least, it is fully-automatic since it does not 
require any input parameter or human intervention in order to determine the contours of 
microarray spots properly. The experimental results over synthetic and real images 
demonstrate that it is very efficient and effective. Furthermore, it outperforms various 
existing well-known and broadly used segmentation techniques. 
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(a) 

 
(b) 

Fig. 11. Spot-segmentation result of 2 blocks: a) in a good quality artificial microarray image 
and, b) in a low quality artificial microarray image. 
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(a) (b) 

  
(c) (d) 

   
(e) (f) (g) 

   
(h) (i) (j) 

Fig. 12. Spot-segmentation results: (a) A region of a real microarray image containing the 
tree types of microarray spots in the presence of noise, (b) enlargement of a part of the 
microarray image which is contaminated with noise, (c,d) the spot-segmentation results of 
(a,b), (e) enlargement of a doughnut-shaped spot (f) the spot-model representing the 
doughnut-shaped spot, (g) the segmentation result of the doughnut-shaped spot, (h) 
enlargement of a volcano-shaped spot (i) the spot-model representing the volcano-shaped 
spot, and (j) the segmentation result of the volcano-shaped spot. 
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1. Introduction 
Discretization of a random field by the generalized polynomial chaos (GPC) begins with 
selecting a specific type of orthogonal polynomial (e.g. Legendre and Hermite polynomials) 
(e.g. Ghanem and Spanos, 1991). This selection of a type of orthogonal polynomial can be 
performed based on the reported experiences (e.g. Xiu and Karniadakis, 2003) or data 
revealing the distribution of a random field to be discretized. If such data or reported 
experiences are unavailable, a third way may be generating some pilot tests to study the 
performance of a specific type of orthogonal polynomial in discretizing this random field. This 
study tries to develop an evolutionary algorithm-based auxiliary tool for the implementation 
of such pilot tests. A similar tool (Allaix and Carbone, 2009), which is based on the single-
objective evolutionary algorithm, had been developed for constructing the Karhunen-Loève 
(KL) representation of a random field. Both KL and GPC expansions are two of the popular 
random field discretization methods (Ghanem and Spanos, 1991). But, the KL expansion 
should be applied under a prerequisite of knowing the covariance matrix of a random field to 
be discretized (e.g. Ghanem and Spanos, 1991); while, the GPC expansions can be applied 
without similar prerequisites (e.g. Xiu and Karniadakis, 2003). Therefore, the development of 
an auxiliary tool for constructing a GPC representation of a random field would be necessary. 
The succeeding research considers the derivation of an GPC representation of a random field 
as a multi-objective (MO) problem having two goals: (a) limiting the computational efforts 
spent in applying the resulting GPC representation; and (b) keeping the resulting GPC 
representation satisfying all accuracy standards (e.g. getting the sufficiently accurate 
prediction of statistical parameters of a random field). The former goal will be attained by 
limiting the highest order of polynomial term and total number of uncorrelated random 
variables used to construct a GPC representation; while the latter goal will be attained by 
minimizing multiple error estimators. Since there are multiple goals to be attained, a multiple 
objective evolutionary algorithm (MOEA) is required. Among all available MOEAs, the 
strength Pareto evolutionary algorithm II (SPEA 2) (Zitzler, et al., 2001) is chosen. The highest 
order of polynomial term and total number of uncorrelated random variables used to 
construct an GPC representation are considered as two parameters to be identified.  
The remainder of this study is organized into four sections. In Sec. 2, the theoretical 
backgrounds of GPC expansions (e.g. Xiu and Karniadakis, 2003) are briefly reviewed. In 
Sec. 3, the SPEA 2 (Zitzler, et al., 2001) is used to construct a parameter identification 
procedure to identify the aforementioned highest order of orthogonal polynomial and total 
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number of uncorrelated random variables. Two examples are introduced to study the 
performance of the resulting works are tested in Sec. 4. The test results are used to give 
some discussion and conclusion in Sec. 5. 

2. Generalized polynomial chaos expansion 
2.1 Definition 
The GPC (e.g. Xiu and Karniadakis, 2002) is a generalization of the classical Wiener’s PC 
(polynomial chaos). This Wiener’s PC is defined as the span of Hermite polynomials of a 
Gaussian process. A Cameron-Martin theorem states that the Wiener's PC can be used to 
approximate any functional in L2(C) and converges in the L2(C) sense in which C denotes the 
space of real functions, which are continuous over the interval [0, 1] and vanish at 0. The GPC 
further provides a mean of expanding second-order random fields having finite variance over 
a specific interval in terms of orthogonal polynomials. Most physical processes can be 
simulated by such second-order random fields. As compared to the Wiener’s PC, the GPC has 
better performance in representing some specific types of non-Gaussian inputs. 
Suppose θ is an event in the probabilistic space, and u(θ) is a continuous function of θ. The 
GPC representation of u is equated by (e.g. Xiu and Karniadakis, 2002) 
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where  
1 1 20 ,  ,  ,....i i ia a a  denote the coefficients to be determined and ψn, n = 0, 1, 2… are the 

polynomial chaos (PC) of order n of multi-dimensional independent random variables 
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ni i iandξ ξ ξ  having zero mean and unit variance. 
For the notational convenience, Eq. (1) is further modified to (e.g. Xiu and Karniadakis, 2002) 
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In addition, because Ψi, i = 0-∞ and ψn, n = 0-∞ are orthogonal polynomials in terms of ξ, it 
can be obtained: 

 2 2,  and , ,    i,j 0-i j i ij i j i ijδ ψ ψ ψ δΨ Ψ = Ψ = ∀ = ∞  (4) 
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where δij is the Kronecker delta (i.e. δij = 1 if i = j and δij = 0 if i ≠ j), ,⋅ ⋅  is the ensemble 
average. If f and g are two orthogonal polynomials of ξ, ,⋅ ⋅  is computed by (Xiu and 
Karniadakis, 2002; Xiu and Karniadakis, 2003) 
a. Continuous case (i.e. 

1 2
, ...  

ni i iandξ ξ ξ vary continuously over the probabilistic space):  
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b. Discrete case  (i.e. 
1 2
, ...  

ni i iandξ ξ ξ vary discretely over the probabilistic space): 
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where 
1 2

( ),  w( )....w( )
ni i iw ξ ξ ξ  represent the weighting functions. 

Equation (4) can be used to get Ui, i = 0-∞. Multiplying Eq. (2) with Ψi, i = 0-∞ and 
simplifying the resulting equations according to Eq. (5a) or (5b) give 
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In practice, not all Ui are computed. Eq. (2) can be truncated as follows 
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where M is ( )!
! ! 1n P

n P
+ − , n represents the total number of uncorrelated random variables, and P 

is the highest order of polynomial term used to equate Ψi. 
Tables 1-2 (e.g. Xiu and Karniadakis, 2002) list available choices of orthogonal polynomials 
and corresponding statistical distributions and weighting functions to generate Ψi, i = 0-∞, 

1 2
, ...

ni i iξ ξ ξ , and 
1 2

( ),  w( )....w( )
ni i iw ξ ξ ξ ; respectively. 

 
Distribution Polynomial w(ξ) Interval 

Gaussian 
gamma 

beta 
uniform 

Hermite polynomial Hn(x) 
Laguerre polynomial Ln(x) 

Jacobi polynomial Gn(p, q, x) 
Legendre polynomial Pn(x) 

exp(-ξ2) 
exp(-ξ) 

(1-ξ)p-qξq-1 
1 

(-∞,∞) 
[0, ∞] 
[a, b] 
[a, b] 

Table 1. Polynomials, weighting functions, and statistical distributions for generating an 
GPC expansion (Continuous case) (e.g. Xiu and Karniadakis, 2002) 
 

Distribution Polynomial w(ξ) Interval 
Poisson 

binomial 
negative 
binomial 

hypergeometric 

Charlier polynomial C(x, λ) 
Krawtchouk polynomial Kn(x, p, N)

Meixner polynomial Mn(x, β, c) 
Hahn polynomial Qn(x, α, β, N) 

exp(-λ)λξ/ξ! 
N!pξ (1-p)N-ξ/[ξ!(N-ξ)!] 

(β)ξ(1-c)βcξ/ξ! 
(α+ξ)!(β+N-ξ)!/[ξ!α!(N-ξ)!β!] 

{0, 1, 2…} 
{0, 1…N} 
{0, 1, 2…} 
{0, 1…N} 

Table 2. Polynomials, weighting functions, and statistical distributions for generating an 
GPC expansion (Discrete case) (e.g. Xiu and Karniadakis, 2002) 
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Furthermore, some references (e.g. Xiu and Karniadakis, 2002; Xiu and Karniadakis, 2003) 
had summarized useful properties about those orthgonal polynomials listed in Tables 1-2. 
Interested readers may refer to these papers and these properties are not repeatedly listed 
here. 

2.2 Discretization error estimator 
Discretizing u by Eq. (7) causes some discretization errors. These discretization errors can be 
quantified by some error estimators. For example, the exact value of standard deviation of u 
(or other statistical parameters) and the one provided by Eq. (7) can be used to equate an 
error estimator. However, the exact value of standard deviation of u may be unavailable or 
difficult to be obtained. At such a situation, a Monte Carlo simulation (MCS) is required. 
This MCS is performed by first generating some samples of u. The standard deviation of 
resulting samples of u is then computed. It had been concluded (e.g. Ghanem and Spanos, 
1991) that the standard deviation of u provided by an MCS will approach its exact value, if a 
sufficiently large amount of samples have been generated to implement the MCS. Thus, 
statistical parameters computed by an MCS, which is completed using a large amount of 
samples of u, can be used to understand the accuracy of Eq. (7). 
For simplicity, this study defines two types of error estimators to quantify the discretization 
errors. The values of these error estimators are kept within an acceptable range when 
constructing a GPC representation of a random field. The first type of error estimator is 
equated to quantify the error ε1 caused by truncating Eq. (2) to derive Eq. (7). At a specific ξ, 
ε1 is defined by  (Field and Grigoriu, 2004) 
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where the subscript ex denotes the exact value. 
The second type of error estimator is equated to quantify the errors between the exact value 
of standard deviation of u and the one computed based on Eq. (7). Suppose σex and σGPC 
denote the exact value of standard deviation of u and the one provided by Eq. (7); 
respectively. The latter σGPC is computed by ( Ghanem and Spanos, 1991) 

 2 2

1

M

GPC i i
i

Uσ
=

= Ψ∑  (9) 

Based on Eq. (9), the error ε2 between σex and σGPC is defined by 

 2 2 2 2
2

1 1

1 11
M M

ex i i i i
i iex ex

U Uε σ
σ σ= =

⎡ ⎤
= − Ψ = − Ψ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑  (10) 

If σex is unavailable or diffcult to be obtained, σMCS is substituted for it where the subscript 
MCS denotes the Monte Carlo simulation. 
Equations (8) and (10) will be used to define the objective functions in the next section. 

3. Parameter identification procedure 
As stated in Sec. 1, this study considers the derivation of an GPC representation of a random 
field as an MO problem and applies the SPEA2 (Zitzler et al., 2001) to solve this MO 
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problem. Mathematically, an MO problem is defined by (Tan, et al., 2005) finding a set of 
vector, P such that 

 ( )
∈

∈ℜNMin
Θ Φ

F Θ Θ  (10) 

where Θ = {θ1, θ2... θN} is an N-dimensional vector having N parameters, Φ defines a feasible 
set of Θ, and F = {f1, f2...fm} is an objective vector with m objective functions fi (i = 1 to m) to 
be minimized. 
For the succeeding research, suppose the mean value and σ of a random field to be 
discretized have been known or computed by an MCS. It is intended to identify n and P for 
constructing the GPC representaton of this random field; thus, Θ is equal to {n, P}. 
Meanwhile, the goals are (a) limiting the computational efforts spent in applying the 
resulting GPC representation; (b) keeping the accuracy of resulting GPC representation 
satisfying all accuracy standards. The former goal can be attained by choosing n and P 
within an acceptable range; while, this sudy attains the latter goal by minimizing the next 
three objective functions fi, i = 1-3: 

 
1 2 n

1 2 n

1 1 i i i a 1

2 1 i i i b 2

3 2 3

f ( ) S
f ( ) S
f S

= ε ξ = ξ = = ξ = ξ −

= ε ξ = ξ = = ξ = ξ −

= ε −

 (11) 

where ξa and ξb denote two specific values of ξ and Si, i = 1-3 are three constants. 
Based on those concepts (Tan, et al., 2005), which are frequently mentioned in solving an 
MO problem, Sec. 3.1 lists the general steps to identify n  and P. Secs. 3.2-3.3 explains the 
details of specific steps. 

3.1 General structure 
The identification of n and P is performed by next six steps: 
a. Initially, generating 2N random numbers for creating a population Θt (the subscript t 

denotes the generation number) containing N sets of candidate values of n and P. Since 
n and P should be integers, each random number is rounded to its nearest integer for 
producing a candidate n or P value. Besides, create an empty archive Ξt for storing the 
resulting Pareto optimal set. Limit the maximum size of Ξt to a number Nmax. 

b. Compute the fitness value of each individual of Θt ∪ Ξt. This fitness value is defined as 
the sum of the number of individuals dominating an individual and the density 
assessment at this individual in an objective space. The density assessment is used to 
speed up the convergence of Pareto optimal set until it contains only nondominated 
individuals. Sec. 3.2 further explains the computation of fitness values of an individual. 

c. Generate a temporary Pareto optimal set as follows (Tan, et al., 2005 and Zitzler, et al., 
2001): Nondominated individuals of Θt ∪ Ξt are first copied to Ξt+1. If there are less than 
Nmax individuals in the resulting Ξt+1, sort dominated individuals of Θt ∪ Ξt in an 
ascending order by their fitness values. Fill Qt+1 with first (Nmax - |Ξt+1|) dominated 
individuals (|Ξt+1| is the size of Ξt+1). If there are more than Nmax individuals in the 
resulting Ξt+1, sort Ξt+1 in a descending order by the distance of each individual to its k-
th nearest neighbor. Then, remove last (|Ξt+1| - Nmax) individuals from the sorted Ξt+1. 
A reference book (Tan, et al., 2005) gives the pseudo-codes to implement this step. 
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d. Test whether a stopping criterion is satisfied. For example, it can stop when a maximum 
generation number is reached. If the stopping criterion is satisfied, the final Pareto 
optimal set is Ξt+1. Then, go to Step (f). Otherwise, execute the tournament selection, 
crossover, and mutation genetic operators to fill Θt+1 with P offspring of individuals of 
Ξt+1. The implementation of these genetic operators is explained in Sec. 3.3. 

e. Increment the generation number t. Repeat Steps (a) to (d). 
f. Select manually the final values of n and P from Ξt+1. 

3.2 Fitness assignment 
Continuing Step (b) of Sec. 3.1, suppose the fitness value of each individual of Θt ∪ Ξt to be 
computed. The fitness value Fi of an i-th individual is obtained by (Zitzler, et al., 2001) 

 i i iF R D= +  (12) 

where Ri is the raw fitness value defined based on the total number of individuals 
dominating the i-th individual and Di denotes the density assessment at the i-th individual 
in an objective space. 
The total number of individuals dominating an i-th individual is represented by a strength 
value Si expressed in the form as 

 { }|i t tS j j i j= ∈ ∪ ∧Θ Ξ  (13) 

where j denotes the j-th individual, |.| denotes the cardinality of a set, and  denotes the 
Pareto dominance. Based on Eq. (13), Ri, is defined by 

 
t ti jj j iR S∈ ∪ ∧= ∑ Θ Ξ  (14) 

However, Eq. (14) may fail when most individuals do not dominate each other. Therefore, 
Eq. (12) includes Di and it is computed by the distance k

id  to its k-th nearest neighbor. The 
method for calculating k

id  is as follows: First, calculate the distances of an i-th individual to 
all other j-th individuals of Θt ∪ Ξt. Thus 

 
3

2
, ,

1
( )ij L i L j

L
d f f

=
= −∑  (15) 

where the subscripts i and j denote the i-th and j-th individual; respectively. The resulting dij 
are then stored in a list. Sort this list and k

id  is the k-th element of sorted list. The resulting 
k
id  is used to define Di as follows: 

 1
1k

i
i d

D
+

=  (16) 

in which 1 in the denominator is to ensure Eq. (16) is less than 1. 

3.3 Genetic operators 
The tournament selection, crossover, and mutation operators are applied to produce the 
offspring of those random numbers generated for getting candidate n and P values. Those 
random numbers should be coded into chromosomes before applying those genetic 
operators (Tan, et al., 2005). 



Discretization of a Random Field – a Multiobjective Algorithm Approach 

 

487 

a.  n the tournament selection operation, two chromosomes are randomly selected. Discard 
the chromosome dominated by the other one. If else, two chromosomes are all 
conserved. Consider a population Ξ as an example. The tournament selection operation 
will repeat |Ξ| times (|Ξ| denotes the size of Ξ). 

b. In the crossover operation, the crossover probability pc is first defined. Two chromosomes, 
which have survived from the tournament selection operation, are chosen as the parents 
for producing the offspring. The offspring are generated by combining parts of the 
chromosomes contributed by each parent. Continuing using Ξ in Step (a), the crossover 
operation will repeat until Ξ is recovered to its original size. Figure 1(a) further illustrates 
this crossover operation in which chromosomes are represented by binary strings. 

c. In the mutation operation, the mutation probability pm is first set. A chromosome, 
which has survived from the tournament selection operation, is randomly selected. The 
structure of it is randomly changed to produce a new chromosome. Continuing using Ξ 
in Steps (a)-(b), the crossover operation will repeat | |

2
Ξ  times. Figure 1(b) illustrates this 

mutation operator in which the chromosome to be mutated is also represented by a 
binary string. 

 

 
Fig. 1. Illustration of two genetic operators: (a) Crossover; (b) Mutation 

4. Results 
Two examples are generated to study the performance of resulting works in Sec. 3. The first 
example is discretizing a random field u varying with a lognormal distribution: 

 2

1
1 log 0.12

n

i
i

u ξ
=

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
∑  (17) 
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where -1 ≤ ξi (i = 1-2) ≤ 1 denotes n random numbers. By implementing an MCS using 105 
samples of u, the mean μu and σu of u are calculated by 2 and 0.12; respectively. A GPC 
representation of u is constructed with satisfying the following accuracy standard: 

 10%;    j = 1-3jS =  (18) 

Essential parameters for identifying n and P are set by 
a. Find n and P within the range 1 ≤ n ≤ 3 and 1 ≤ P ≤ 10. 
b. Set ξa = 1 and ξb = -1.0. 
c. Set temporarily pc and pm are all equal to 1 and Nmax is 100. Study subsequently the 

convergence of fi, i = 1-3 with respect to different pc and pm values. 
d. Set N = 100 in producing candidate n and P values. (That is, total 200 random numbers 

are generated to produce candidate n and P values). Besides, generate 100 generations 
of candidate n and P values. 

e. Following temporarily Table 1 (e.g. Xiu and Karniadakis, 2002), apply the Hermite PC 
to construct an GPC representation of u. Introduce subsequently a different type of the 
GPC (e.g. the Legendre PC) to equate another GPC representation of u and compare the 
accuracy of two different GPC representations of u. 

Figures 2 shows the convergence of fi, i = 1-3. The diversity of 1st and 100th generations of 
random numbers for generating candidate n and P values is shown in Fig. 3. Note that less 
than 100 (= N) points are drawn in Fig. 2, since candidate n and P values are gotten by 
rounding some random numbers to their nearest integers. 
Sorting the data of fi, i = 1-3 depicted in Figs. 2-3 finds that the minization of f3 and fi, i = 1-2 
cannot be simultaneously attained. For example, if n and P are chosen to minimize f3 (= 
0.00319), the corresponding fi, i = 1-2 (f1 = 0.0012; f2 = 0.0082) are not equal to their minimum 
values (f1,min = 0.00079 and f2,min = 0.0001 (the subscript min denotes the minimum value)). In 
addition, examining Figs. 2-3 indicates that there may be two choices of final values of n and 
P. As listed in Table 3, if n and P are equal to 2 and 6; respectively, f3 is minimized but fi, i =  
 

 
Fig. 2. Convergence of fi, i = 1-3 (Using the Hermite PC, Lognormal distribution) 
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Fig. 3. Diversity of random numbers for generating candidate n and P values (Using the 
Hermite PC, Lognormal distribution) 
1-2 are not minimized. Meanwhile, if n and P are equal to 1 and 10;respectively, fi, i = 1-2 are 
minimized but f3 is not minimized. If only one set of final values of n and P is forced to be 
left, this study prefers the former set. Getting a sufficiently accurate predicted standard 
deviation is more important. 
 

n P M f1 f2 f3 
2 6 28 0.0012 0.0082 0.00319 
1 10 10 0.0427 0.0019 0.257 

Table 3. Two different choices of final values of n and P (Using the Hermite PC, Lognormal 
distribution) 

 
Fig. 4. Convergence of fi, i = 1-3 (Using the Legendre PC, Lognormal distribution) 
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One may suspect that f3 can be further minimized, if u is represented by another type of the 
GPC. As a test, Fig. 2 is modified by substituting the Legendre PC for the Hermite PC to re-
discretize u. Fig. 4 depicts the convergence of resulting fi, i = 1-3. 
It seems to be difficult to compare f3 values provided by the Legendre PC-based and 
Hermite PC-based representations of u by simply observing Figs. 2 and 4. Therefore, 
another set of n and P values, which minimize f3, are chosen from the data for depicting Fig. 
4. Table 4 lists the resulting n and P values. 
 

n P M f1 f2 f3 
3 2 10 0.0022 0.0778 0.08811 

Table 4. Final values of n and P (Using the Legendre PC, Lognormal distribution) 

Comparing Tables 3 and 4, this study suggests that a random field varying with a lognormal 
distribution is better represented by the Hermite PC. If the Legendre PC-based 
representation of u is applied, f3 is not further minimized. In other words, the accuracy of 
predicted σu is not further improved, if the Legendre PC-based representation of u is used. 
The second example is representing another random field v varying with a uniform 
distribution: 

 2

1
1 0.12

n

i
i

v ξ
=

= + ∑  (19) 

where -1 ≤ ξi (i = 1-2) ≤ 1 still denote n random variables. Another MCS using 105 samples of v 
is performed. The mean value μv and standard deviation σv of v are 1 and 0.12; respectively. 
Following Table 1 (e.g. Xiu and Karniadakis, 2002), the Legendre PC is applied to discretize 
v. With fixing other essential parameters for sketching Figs. 2-4, Fig. 5 shows the 
convergence of fi, i = 1-3. The diversity of 1st and 100th generations of random numbers for 
generating candidate n and P values is shown in Fig. 6. 
 

 
Fig. 5. Convergence of fi, i = 1-3 (Using the Legendre PC, Uniform distribution) 
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Fig. 6. Diversity of random numbers for generating candidate n and P values (Using the 
Legendre PC, Uniform distribution) 

Sorting the data of fi, i = 1-3 depicted in Figs. 5-6 still finds that the minization of f3 and fi, i = 
1-2 cannot be simultaneously attained. If n and P are chosen to minimize f3 (= 0.02635), the 
corresponding fi, i = 1-2 (f1 = 0.1363; f2 = 0.1934) are not equal to their minimum values (f1,min 
= 0.0103 and f2,min = 0.0266). Also examining Figs. 5-6 finds two choices of final values of n 
and P. Table 5 lists these two sets of final values of n and P. If n and P are equal to 3 and 10; 
respectively, f3 is minimized but fi, i = 1-2 are not minimized. Meanwhile, if n and P are 
equal to 2 and 8; respectively, fi, i = 1-2 are minimized but f3 is not minimized. This study 
still prefers the former set, although more computational efforts are required in applying 
this set of n and P values. 
 

n P M f1 f2 f3 
3 10 286 0.1363 0.1934 0.0264 
2 8 45 0.0103 0.0266 0.1422 

Table 5. Two different choices of final values of n and P (Using the Legendre PC, Uniform 
distribution) 

Furthermore, similarly manipulating Fig. 4, the Hermite PC is substituted for the Legendre 
PC to re-discretize v and the convergence of corresponding fi, i = 1-3 is depicted in Fig. 7. 
Then, a set of n and P values, which minimize f3, is chosen from the data for drawing Fig. 7. 
Table 6 lists the resulting n and P values.  
If it is desired that the GPC representation of v should be as accurate as possible, Tables 5-6 
confirms the reported conclusion (e.g. Xiu and Karniadakis, 2002) that a random field 
varying with a uniform distribution is better represented by the Legendre PC. Comparing 
Tables 5-6 indicates that the application of Hermite PC-based representation of v gives a less 
accurate predicted σv. However, if the computational efforts spent in applying a set of n and 
P values is the major concern, n = 2 and P = 10 may be used. The corresponding f3 value is 
not too worse. 



Evolutionary Algorithms 

 

492 

 
Fig. 7. Convergence of fi, i = 1-3 (Using the Hermite PC, Uniform distribution) 

 
n P M f1 f2 f3 
2 10 66 0.053 0.027 0.066 

Table 4. Final values of n and P (Using the Hermite PC, Uniform distribution) 

Before closing this section, the effects of changing pc and pm on the determination of n and P 
values are studied. As an illustration, Figs. 3-4 are modified by changing pc = pm = 1.0 to pc = 
pm = 0.9. Figs. 8-9 depict the convergence of fi, i = 1-3 and diversity of 1st and 100th 
generations of random numbers for producing candidate n and P values. 
 

 
Fig. 8. Convergence of fi, i = 1-3 with pc = pm = 0.9 (Using the Hermite PC, Lognormal 
distribution) 
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Fig. 9. Diversity of random numbers for generating candidate n and P values with pc = pm = 
0.9 (Using the Hermite PC, Lognormal distribution) 

Observing Figs. 8-9 finds that the decease of pc and pm affects insignificantly the 
convergence of fi, i = 1-3 but diversifies the random numbers for generating candidate n and 
P values. 

5. Discussion and conclusion  
This study applies the SPEA2 (Zitzler, et al., 2001) to develop an auxiliary tool for 
identifying n and P values, which are two essential parameters for constructing a GPC 
representation of a random field. In Sec. 4, the proposed tool is tested to identify n and P for 
constructing GPC representations of two random fields varying with the lognormal and 
uniform distributions; respectively. The test results illustrate that an MOEA can be a good 
tool for constructing a sufficiently accurate GPC representation of a random field, 
irrespective of how many accuracy standards should be satisfied. Besides, the resulting GPC 
representation can be applied with keeping computational costs as few as possible. 
In addition, Sec. 4 demonstrates the need of generating some pilot tests for studying the 
performance of GPCs in discretizing a random field before choosing one type of the GPC to 
discretize this random field. Such pilot tests can be quickly implemented by applying an 
MOEA. Tables 5-6 and Figs 5 and 7 demonstrate that the Hermite PC may be used to discretize 
a random field varying with a uniform distribution, if it can be sacrificed some accuracy of 
predicted statistical parameters (e.g. the standard deviation) of this random field. 
Nevertheless, a disadvantage should be mentioned:  Ψi, i = 0-M may be difficult to be 
equated in case of n > 3. Although much computational efforts will be spent, n > 3 may give 
more accurate GPC representation of a random field. Fortunately, consulting with some 
references (e.g. Field, 2004) finds that 1 ≤ n ≤ 3 seems to be enough to generate sufficiently 
accurate GPC representations of random fields. 
As a conclusion, an MOEA can be an efficient auxiliary tool for constructing an GPC 
representation of a random field satisfying multiple accuracy standards. Only Ψi, i = 0-M at 
n > 3 may be complementally derived in the future. 
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1. Introduction  
Globally there is a land area of 13000 million ha, of which the area used for agricultural 
production is 1500 million ha (Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 
en el mundo [NUDRHM], 2006), that is 12% of the total surface. Because the productivity of 
the agricultural sector is reduced, in general, the intensive production in controlled 
environments is an alternative to increase productivity in the aforementioned sector. For 
this reason, the use of greenhouses for agricultural production has increased in recent years. 
In the world, currently some 265,000 hectares are cultivated in greenhouses. Asia, with more 
than 138,000, represents at this moments the leading world power in intensive production 
under plastic cover. In the second place, with 95,000 ha, the Mediterranean basin is placed. 
Northern Europe (16,000 ha) and the American Continent (15,600 ha) share the rest. Holland 
remains the maximum exponent in agriculture under high-tech cover, especially so that 
which refers to crystal greenhouses. 
The crop inside greenhouse allows to obtain productions of better quality and higher yields, 
at any time of the year, while it permits extending the cycle of farming, enabling production 
in the most difficult times of the year and getting better prices. Due to the benefits that 
provide crops inside greenhouse, crops should have a controlled microclimate using 
different systems to regulate environmental conditions, limiting the excesses and filling 
shortcomings in terms of crop needs, in order to take place in every moment the optimal 
conditions of different stages of plant development. In addition to the advantages that 
production has in controlled environments it is important to reduce production costs, such 
as heating costs, irrigation and fertilization. To achieve this it is necessary to have a system 
that controls the environment inside the greenhouse that allows improving production and 
crop quality, product quality, time of the production process and improving production 
costs. Moreover, the system should allow the farmer to have sufficient information about 
requirements and changes observed over time in crop development. These control systems 
are based on mathematical models that describe the behavior of variables, such as air 
temperature, the concentration of carbon dioxide (CO2) and absolute humidity. Therefore, to 
improve the productivity of the crop under greenhouse it is necessary to study the process 
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of crop growth as well as in quantitative form moreover, the climatic environment in which 
the crop develops. The modeling allows having a quantitative form of the interaction of 
simultaneous processes (Lopez et al., 2006). 
If the model is not too complex in terms of state variables it can be used to design control 
systems for example optimal control strategies (Seginer & Ioslovich, 1998a; Van Henten, 
1994; Tap, 2000) for the best growth, production and crop quality. 
Due to the advantages that production has in controlled environments, mathematical 
models have an essential role in the description of the main state variables of the system. 
Hence the importance of having a model that adequately describes the climatic conditions 
inside the greenhouse. That is, the problem consists of calibrating or fitting a model that 
describes the internal environment of the greenhouse, i.e., the problem consists in finding 
the set of parameters that make the difference between estimated values by the model and 
real values be minimal. 
Then the problem of calibrating a model is reduced to a problem of search and optimization 
of parameters involved in the model which is formulated as a function of multivariable 
nonlinear optimization, but these types of problems can have multiple local optimal 
solutions. Some local optimization methods have been used to adjust the model parameters. 
However, it is necessary to use a method that allows escaping from local optima and finding 
the global optimum. So, for the optimization of the parameters it is possible to use a global 
search method such as evolutionary algorithms. 
Evolutionary Algorithms (EA) techniques inspired by the theory of evolution, such as genetic 
algorithms (GA), Evolutionary Strategies (ES), Evolutionary Programming (EP) and 
Differential Evolution (DE) that are useful to solve the problem of optimization of the 
parameters of a mathematical model. Once the mathematical model is adjusted, the behavior 
of the main variables involved in the greenhouse environment can be known and, on the basis 
of this, take the appropriate decisions to operate the systems installed in it, such as the 
ventilation system, mesh shading, etc. to keep appropriate levels of temperature, humidity and 
CO2 levels and in this way increase crop yields and improve final product quality.  

2. Models for climate prediction 
The crop production under greenhouse is influenced by the climate inside, so it has to keep 
state variables that characterize it within a certain range of values (CIDEIBER, 2005). 
To study a model for the greenhouse production it should identify of the variables that 
interfere with the greenhouse climate dynamics such as state or control variables (indoor air 
temperature, soil temperature, internal CO2 concentration, internal absolute humidity),  
external or disturbance variables (outside air temperature, external relative humidity, 
external CO2 concentration, radiation, wind speed) and control variables: natural 
ventilation, heating). It is important to take into account that any part of the greenhouse can 
act as an individual body or volume. When the flow of physical quantities, such as, energy 
or mass is considered, the conservation law is valid for any volume. 
For the prediction of environmental variables it is necessary to adjust the climate 
greenhouse model. Consequently, the methodology used for this adjustment is to a) 
defining the structure of a mathematical model that describes the climate inside a 
greenhouse, b) conduct a sensitivity analysis of parameters involved in the model to identify 
the parameters that affect more the state variables, c) making calibration of parameters 
identified using AE and finally e) doing the validation of the mentioned model, Figure 1. 
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Fig. 1. Diagram of the development process for the greenhouse climate model in last years, 
empirical and mechanistic mathematical models have been developed to predict climate and 
crop growth under greenhouses. 

In last years there have been developed empirical and mechanistic mathematical models to 
predict climate and crop growth under greenhouses. 
The process of crop production in greenhouses is complex because it depends on crop 
growth and external climatic conditions and the design of the greenhouse. A tool to improve 
management of the greenhouses is mathematical models to predict the behavior of climate 
variables. There are complex simulation models with a relatively large number of state 
variables that describe a system; however, these cannot be implemented in control systems. 
For which it is required the use of simple models with the minimum possible number of 
variables for optimization and control systems. Thus, the model studied in this research is a 
model for optimization and control purposes. 
Generally there are three types of mathematical models: white-box models, black box and 
gray box. White box models are deterministic and explanatory models of a system (Thornley 
& Johnson, 2000; France & Thornley, 2006). Typically, a set of ordinary differential equations 
is defined to describe the behavior of the system state variables, variables that represent the 
properties or attributes of the system that is under consideration. White box models are 
more appropriate to express hypotheses in mathematical form and thus provide a 
quantitative description and explanation of the most important processes occurring in a 
system. Black box models are direct descriptions of data and provide direct observable 
relationships between the variables in a system without any explanation of the underlying 
mechanisms. They are a powerful means to describe and summarize data. Grey box models 
are used when some physical understanding is available, but several parameters stay to 
determine the observed data. 

2.1 White box models 
The development of a white-box mathematical model requires sufficient understanding of 
the physical, chemical and biological processes that occur in a system and its use demands a 
proper validation. Explanatory models can be static or dynamic. The simulation of crop 
growth and development involves two processes construction of mathematical models and 
numerical solution of the set of equations that describe the behavior of the system, through 
the use of a digital computer. 
Dynamic simulation models are based on the assumption that the state of a system can be 
quantified and that changes in the state can be described by mathematical equations, 
equations of rate of change or differential equations. A model of growth and development of 
crop includes several components: state variables, differential equations, parameters and 
inputs. Normally a state variable is a variable that appears in the accumulation term of a 
dynamic balance of mass or energy. A state variable is a variable that can be quantified (at 
least conceptually) and it allows knowing the behavior of the system at all future instant in 
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time. The differential equations represent the change velocity of the state variables (López 
Cruz, 2004). Crop growth or climate in a greenhouse is described by a dynamic model, 
represented by a nonlinear ordinary differential equation as follows: 

 ( ) ( ), , , ,            bx f x u t x tθ β
•
= =  (1) 

Where nx∈ℜ  are the state variables, mu∈ℜ  are the control inputs, qθ ∈ℜ  are time-
invariant parameters, β  is the vector of initial conditions and t denotes the time (Van 
Henten & Van Straten, 1994). 
From the 60's to date, models for crop growth have been developed. The most known results 
are the model of crop growth SUCROS (a Simple and Universal Crop Growth Simulator) 
and LINTUL (Light Interception and Utilization) which are generic models (Bouman et al, 
1996) i.e., they can be adapted to any crop year (Hernández Hernández, 2009). 
Moreover, in the last 30 years mechanistic mathematical models have been applied in 
modeling of greenhouse climate. Two of the first proposals were made in 1983 by Boy and 
Udink Ten Cate. Both models consider equations for the temperature of the greenhouse 
warming effect and opening windows. 

2.2 Black box models 
The problem of identifying a given system consists of given certain inputs, ( )u t , and 
outputs, ( )y t , of n dynamic system: 

 ( ) ( ) ( ) ( )1 , 2 ,...,tu t u u u t= ⎡ ⎤⎣ ⎦  (2) 

 ( ) ( ) ( ) ( )1 , 2 ,...,ty t y y y t= ⎡ ⎤⎣ ⎦  (3) 

It is looked for the relationship between past observations 1 1,t tu y− −⎡ ⎤
⎣ ⎦  and future outputs 

( )y t : 

 ( ) ( ) ( )1 1,t ty x g u y v t− −= +  (4) 

The term ( )v t  considers the fact that the output ( )y x  will not be an exact function of past 
data, ( )v t  is described as a random noise signal. However, a goal should be that  ( )v t  be as 
small as possible so that you can think that ( )1 1,t tg u y− −  is a good prediction of ( )y x  given 
past data. Eq. (4) models general dynamic systems in discrete time. Static systems can be 
viewed as particular cases of dynamical systems. 
Now, the problem consists of finding a function g in (4). So, it has to look for a family of 
functions. This family of functions can be parameterized by a vector of parameters θ  with 
finite dimension: 

 ( )1 1, ,t tg u y θ− −  (5) 

Parameterize the function g with a vector θ  of finite-dimension is usually an 
approximation. To find a good parameterization, it is necessary to decide on a structure and 
having a set of data collected ,N Nu y⎡ ⎤

⎣ ⎦ , the quality of θ  can be evaluated by adjusting the 
model and the registered data: 
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 ( ) ( )
2

1 1

1
, ,

N
t t

t
y t g u y θ− −

=
−∑  (6) 

The standard and the real way to achieve or try to achieve minimum in θ  may differ but 
many schemes of system identification follow this concept. 
Now the family structure models (5) is too general and useful to write g as a concatenation 
of two mappings: one that takes the increasing number of past observations ut, yt and maps 
them in a vector ( )tϕ  of fixed dimension and one that maps this vector to space of outputs: 

 ( ) ( )( )1 1, , ,t tg u y g tθ ϕ θ− − =  (7) 

where 

 ( ) ( )1 1,t tt u yϕ ϕ − −=  (8) 

This vector is called vector regression and its components are called regressors. The 
regressor vector can be parameterized as: 

 ( ) ( )1 1,t tt u yϕ ϕ − −=  (9) 

Which can be denoted as ( ),tϕ η . Sometimes η θ= , that is the regression vector depends on 
all model parameters (Sjöberg, 1995). 
Black box linear models for dynamic systems can be described with one ( ),g ⋅ ⋅   selected to be 
a linear mapping, ( )T tθ ϕ . Regressor selection ( )tϕ  specifies whether the model is an ARX, 
ARMAX, a state space model, etc. Consider the same type of regressors but using a 
nonlinear mapping given black-box nonlinear models. 
The selection of a nonlinear mapping (5) is separated into two partial problems for dynamic 
systems: 
1. How to choose the regression vector ( )tϕ  of inputs and past outputs. 

2. How to choose the nonlinear mapping ( )g ϕ  from regressor space to output space 

2.3 Gray box models 
A gray box model corresponds to a combination of a black box model with a white box 
model. This model is also named semi-physique or based on knowledge, because in it all the 
knowledge of the process is introduced (or part of it) and additionally those unknown 
parameters are estimated through system measurements (Moreno and Acuña, 2005). 

3. Evolutionary algorithms 
As mentioned above, mathematical models have a set of parameters that need to be adjusted 
so that the data estimated by the model is more closely to the observed data. This problem 
of parameter estimation is also known as calibration parameters problem. 
The task of calibrating a model is formulated as an optimization problem, so that different 
methods of solution have been proposed. Local or global methods of optimization can be 
used to solve the calibration problem. Some researchers have used local optimization 
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methods (Tap, 2000, Linker et al., 2004) or manual calibration (Van Henten, 1994) to adjust 
the parameters of a greenhouse climate model. A method for calibrating a mathematical 
model is using a nonlinear multivariable optimization function, but it is well known that 
these optimization problems may have optimal local solutions. Such problems are known as 
multimodal (Eiben & Smith, 2003). However, in recent years it has increased the use of 
global optimization methods to solve these kind of problems (Michalewicz, 1994) due to the 
advantages of getting global optimal possible solutions. For this reason, there is a need to 
develop algorithms based on this methodology to be applied to greenhouse climate. 
According to Eiben and Smith (2003), evolutionary algorithms (EA) could be an excellent 
alternative to provide a response to the challenge of achieving automated solution methods 
for problems more complicated and faster. EA are stochastic search methods that include 
genetic algorithms (GA), Evolutionary Strategies (ES), Evolutionary Programming (EP) and 
Differential Evolution (DE) (Michalewicz, 1994). 
 

 
Fig. 2. Diagram of a general scheme of an evolutionary algorithm. 
The structure of any AE is the same (Eiben & Smith, 2003), Fig. 3.3. The differences between 
evolutionary techniques consist of the type of selection operator, mutation and crossover 
applied to find the optimal value of the parameters to calibrate. 
In general, it takes five basic components to implement an EA that solves a any problem 
(Michalewicz, 1992): 

Generate an initial 
population P(t=0) 

P’(t)= Select parents [P(t)]

Evaluate [P(t)]

P’’(t)= Crossover [P’(t)]

P’’(t)= Mutated [P’’(t)]

P(t)= Select the next 
generation [P(t), P’(t)] 

Condition 
termination

Select the best 
individual 

Yes

No
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1. A representation of potential solutions to the problem. 
2. One way to create an initial population of potential solutions (this is usually done 

randomly, but it can also be used deterministic methods). 
3. An evaluation function that plays the role of the environment, qualifying the solutions 

produced in terms of its "fitness." 
4. Genetic operators that alter the composition of the offspring (normally using the 

crossing and mutation). 
5. Values for the various parameters used by the genetic algorithm (population size, cross 

and mutation probability, maximum number of generations, etc.). 

3.1 Genetic algorithms 
The traditional representation used in GA to encode a set of solutions that is the binary 
scheme, i.e. it is a string formed by zeros and ones (Eiben and Smith, 2003). However, to 
solve the problem of setting parameters of a greenhouse climate model to a series of real 
values is used to represent a candidate solution to a problem, i.e. a vector ( )1 ,..., np p  where 

ip R∈  and n is the number of parameters that are needed to be calibrated. 

3.2 Parental choice 
N is the population size P. The parent selection is determined by tournament (Coello, 2007) 
which consists of: 
1. Shuffle to the individuals in the population. 
2. Choose k individuals in the population and comparing them with the basis of their 

adaptability (typically k = 2). 
3. The fittest individual is the winner of the tournament. " 
4. The population is shuffled k times to select N parents 

3.3 Crossing 
The cross is an operator that forms a new individual by combining parts of each parent. In 
this case, the type of employed crossing is crossbreeding in two points where both parents 
are employed to generate a new individual and crossover points are chosen randomly 
(Coello, 2007). Be ,  'p p P∈  and { }, 1,2,...,i j n∈  random crossing points, so parents. 

 ( )1 1 1 1,..., , , ,..., , , ,...,  i i i i j j j np p p p p p p p p− + − +=  (10a) 

and 

 ( )1 1 1 1' ' ,..., ' , ' , ' ,..., ' , ' , ' ,..., '  i i i i j j j np p p p p p p p p− + − +=  (10b) 

Generate the children 

 ( )1 1 1 1,..., , , ' ,..., ' , , ,...,  i i i i j j j nh p p p p p p p p− + − +=  (11a) 

And 

 ( )1 1 1 1' ' ,..., ' , ' , ,..., , ' , ' ,..., '  i i i i j j j nh p p p p p p p p− + − +=  (11b) 
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3.4 Mutation 
The type of mutation is not applied uniformly (Michalewicz, 1996), where the position of the 
individual that will be altered is selected randomly. Given ( )1 ,,..., np p p= , this is changed by 
the individual mutant ( )1 ,..., ',...,i sp p p p=  where 

 
( )
( )

, ,   si  0
'

, ,   si  1
i i

i
i i

p t U p R
p

p t p L R

⎧ + Δ − =⎪= ⎨
− Δ − =⎪⎩

 (12) 

[ ],ip L U∈ , {0,1}R∈  are chosen randomly and 

 ( )
1

, * 1

bt
Tt y y r

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟Δ = −⎜ ⎟⎜ ⎟
⎝ ⎠

 (13) 

Where [ ]0,1r∈  is a random, T is the maximum number of generations and b is the degree 
of non-uniformity of the mutation (Michalewicz use b = 5). 

3.5 Survival selection 
The survival selection is used in the replacement based on age, that is, on each generation 
parents are replaced by children who now represent the current population. 

3.6 Evolutionary strategies 
The type of representation used to represent a candidate solution for a problem is real. 

3.7 Parental choice 
Parents selection is random with uniform distribution of the population of N individuals. 

3.8 Crossing 
The type of crossing used is discrete where each element of the generated child is obtained 
randomly from the elements of parents with an equal probability for both parents. That is, 
given ,  'p p P∈  where ( )1 ,..., np p p=  and ( )1' ' ,..., 'np p p= , a child ( )1 ,..., nh h h=  is created with 

 
    si  0

'      si  1
i

i
i

p R
h

p R
=⎧

= ⎨ =⎩
 (14) 

where {1,..., }i n∈  and {0,1}R∈  are chosen randomly 

3.9 Mutation 
In this case, the mutation is not correlated with n step sizes is used which consist on a 
given ( )1 ,...,  np p p= , p is extended in n step sizes thus resulting ( )1 1,..., , ,...,n np p p σ σ= . 
Then, the mutated individual is ( )1' ' ,..., 'np p p=  where 

 
( )

( ) ( )' 0,1 0,1

' ' 0,1 ,

' i

i i i i
N N

i i

p p N

eτ τ

σ

σ σ ⋅ + ⋅

= + ⋅

= ⋅
 (15) 
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with 1'
2n

τ =  and 1

2 n
τ =  

3.10 Survival selection 
Let N be the number of elements of the population and M the number of children generated. 
The selection of survival used is deterministic of type (N, M) in which after creating M 
children and calculating its adaptability, the N best are chosen to move to the next 
generation (Eiben & Smith, 2003). 

3.11 Evolutionary programming 
The type of representation used to represent a candidate solution to a problem is real. 

3.12 Parental choice 
Deterministic selection is used in which each parent generates exactly one child via 
mutation. 

3.13 Crossing 
Evolutionary programming is a technique in which there is no crossing between individuals 
of the population. 

3.14 Mutation 
A Gaussian perturbation is applied. That is, given ( )1 1,..., , ,...,n np p p σ σ=  is transformed 
into ( )1 1' ' ,..., ' , ' ,..., 'n np p p σ σ=  where 

 
( )
( )( )

' ' 0,1 ,

' 1 0,1
i i i i

i i

p p N

N

σ

σ σ α

= + ⋅

= ⋅ + ⋅
 (16) 

With 0.2α ≈ . 

3.15 Survival selection 
The survival selection is deterministic of type (N + N) in which competition between each 
pair is through tournament after creating N children of the N individuals in the population. 
Therefore, let P 'represents the total population that includes parents and children, then each 
individual 'p P∈  is compared with other q individuals selected randomly. In each 
comparison, if p is better than its opponent a gain is assigned to p. The N individuals with 
the greatest values of gain are selected to be parents of the next generation. Typically, q = 10 
is recommended (Eiben & Smith, 2003). 

3.16 Differential evolution 
Representation of a candidate solution to a problem in ED is of real type. Thus that to solve 
the problem of setting parameters of a greenhouse climate model a series of real values is 
used to represent a candidate solution for a problem, i.e. a vector ( )1 ,...,j j jnp p p=  where j = 
1, ..., N, ip R∈  N is the number of elements of the population and n is the number of 
parameters that need to be calibrated (Price and Storn, 2005). 
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The initial population is chosen randomly if nothing is known about the problem. As a rule, 
it is assumed a uniform distribution for random decision making. In ED different strategies 
can be adopted (Price and Storn, 2005). The main idea behind the ED is a new scheme to 
generate vectors. The ED generates these new vectors when adding the weight difference 
between two members of the population vectors to a third vector member. If the fitness of 
the resulting vector is less than the population member chosen then the new vector replaces 
the vector with which it was compared. This vector to be compared can be (though not 
necessarily is) part of the generation process. In addition, the best individual is evaluated in 
each generation G for keeping track of progress during which it is done minimization. 
There are different variations in ED, in this case, it is applied the classic strategy 
ED/random/1/bin in the calibration problem. 

3.17 Selection 
The selection of vectors to disturb is random. 

3.18 Mutation 
The type of mutation is randomly applied which consists of generating N vectors of the 
form: 

 ( )1 2 3v p F p p= + ⋅ −  (17) 

where 1 2 3, , Pp p p ∈  are different, [ ]0,2F∈  is a real constant factor that controls the 
amplification of the differential variation between the vectors 2 3y p p . 

3.19 Crossing 
The crossing applied is binomial type which consists of combining the previously mutated 
vector ( )1 2, ,..., nv v v v=  with a target vector ( )1 2, ,...,  Pnp p p p= ∈  to generate a test vector 

( )1 2' ' , ' ,..., '  np p p p=  where 

 
    if  

'
   other case 

j j
j

j

v r  CR
p

p
≤⎧⎪= ⎨

⎪⎩
 (18) 

with [ ]0,1jr ∈  random and [ ]0,1CR∈  is the constant of crossing, a parameter that increases 
the diversity of individuals in the population. 

3.20 Survival selection 
For the selection of individuals that move to the next generation a simple selection one to 
one is used where the trial vector competes with the target vector. For the case of calibration 
in which minimization of J (p), the vector with the lowest value in the objective function 
goes to the next generation. 

4. Case study and results 
Table 1 shows a summary of the techniques used in each evolutionary algorithm. . To each 
algorithm, the parent selection, the crossover and the mutation were chosen based on the 
advantages that these have over the others (Michalewicz, 1996; Eiben and Smith, 2003; 
Coello, 2007). 
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 Genetic 
Algorithms 

Evolutionary 
Strategies 

Evolutionary 
Programming 

Differential 
Evolution 

Representation Real-valued Real-valued Real-valued Real-valued 
Parent 
selection 

Deterministi
c: by mean 
tournament 

Uniform 
random 

Deterministic (each 
parent creates one 
offspring) 

Random 

Recombination 2-point 
crossover 

Discrete None Binomial 

Mutation Non 
uniform 

Uncorrelated 
with n step 
sizes 

Gaussian 
perturbation 

Random 

Survival 
Selection 

Generational Determination: 
( ),μ λ  

Determinations: 
( )μ μ+  

Elitist 

Table 1. Comparative table of the main techniques of the evolutionary algorithms 

4.1 Study cases 
Some general statistics are used to analyze the obtained results, such as the correlation 
coefficient, r, which establishes the association degree between the measured and simulated 
variable. It is defined by means 

 

( )( )

( ) ( )
1

2 2

1 1

n

i i
i

n n

i i
i i

x x y y
r

x x y y

=

= =

− −
=

− −

∑

∑ ∑
 (19) 

Where xi y yi are measured data and estimated data, respectively, on the time i. making sure 
that -1 ≤ r ≤ 1. 
The standard percentage error of the prediction (%SEP) which establishes the dispersion 
degree between the measured and simulated variable. 

 

( )2

1100% 

n

i i
i

x y
ESP

nx
=

−
=

∑
 (20) 

The efficiency coefficient (E) and the average relative variance (ARV). These estimators are 
used to determine the way in which the model can explain the total variance of the data 
(Ríos-Moreno et al., 2006). 

 obs

obs

S SE
S
−

=  (21) 

and 

 ( )
1

, * 1

bt
Tt y y r

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟Δ = −⎜ ⎟⎜ ⎟
⎝ ⎠

 (22) 
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where 

 ( )2
1

n

obs i
i

S x x
=

= −∑  (23) 

and 

 ( )2
1

n

i i
i

S x y
=

= −∑  (24) 

For a perfect relation, r and E should be near 1 and the values of %SEP and ARV near 0. 

4.2 White box model 
The model proposed by Tap (2000) was considered, one of the most complete and available 
in the literature, which is associated a differential equation to each one of the state variables 
that are: air temperature (Ti), soil temperature (Ts) CO2 concentration (Ci) and absolute 
humidity inside (Vi). 
The equation of the greenhouse air temperature indicates that the variation of temperature 
inside the greenhouse is proportional to the heat exchange ventilation, heat input due to the 
heating system, to the exchange through the roof and walls, to heat exchange with the deep 
soil, to heat input by radiation, to the evaporative heat loss due to transpiration as well as 
the interchange due to condensation on the roof of the greenhouse. So, the rate of change of 
air temperature (Ti) with regards to time is described by: 

 ( ) ( ) ( )
1

i
g v o i r o i s s i c

dTC = k T - T + H + k T - T k T - T + G - E + M
dt

λη λ
ε

+
+

 (25) 

Where Cg is the greenhouse heat capacity expressed in J·ºC-1·m-2, kv is the coefficient of heat 
transfer vent W·ºC-1·m-2, To is the outside temperature in ºC, H is the heat input for heat, kr 
is the coefficient of heat of ventilation from the cover in W·ºC-1·m-2, ks is the coefficient of 
heat transfer from the ground in W·ºC-1·m-2, η is the solar efficiency factor, G is the radiation 
in W·m-2, E is the crop transpiration, λ is the energy of vaporization of water in J·g-1, ε  heat 
resistance from the cover between inside and outside and Mc is the condensation of water on 
the cover. 
Then a more detailed description of each one of the parameters that interfere in equation 
(25), which represents the rate of change of air temperature inside the greenhouse. So, it 
defines the energy of vaporization of water such as: 

 1 2 il l Tλ = +  (26) 

where l1 and l2 are the coefficients of energy of vaporization. 
The heat transfer coefficient ventilation kv is a function of ventilation rate Φv 

 v air p vk M c= Φ  (27) 

where Mair is the air density and cp the specific heat of air. 
The relationship for the natural ventilation flow through windows Φv, does not differ 
between the opening of barlovento windows (rww) and sotavento (rwl), when in fact these 
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have a very different influence on ventilation (from Jong, 1990). Thus, the way to generalize 
this relationship is: 

 
1

wl
v ww

wl

r r w
r

σ ζ ξ ψ
χ

⎛ ⎞
Φ = + + +⎜ ⎟

+⎝ ⎠
 (28) 

Where σ, χ, ς, ξ and ψ are parameters that determine the ventilation rate and w represents 
wind speed. This relationship was developed by Van Henten (1994), and it is based on work 
by Jong (1990). 
Another important factor that interferes with both the air temperature change and in the 
absolute humidity is the crop transpiration E, which is calculated by an adopted version of 
the Penman-Monteith transpiration. The Penman-Monteith model was chosen because it 
does not need the leaf temperature as input. In this sense, it is saved a state variable, while 
the model is still reasonably accurate (Jolliet & Bailey, 1992). 

 

1

a p g b

b

sn G c D g
E

gs
g

η ρ

λ γ

+
=

⎛ ⎞⎛ ⎞
+ +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (29) 

The Penman-Monteith equation assumes that the leaf area index (LAI) is one that is the crop 
in the greenhouse is conceived as a big leaf. Basically transpiration is generated by a 
contribution of the net short-wave radiation absorbed nηG and a contribution due to the 
vapor pressure deficit Dg, γ is the apparent psychometric constant and g is the conductance 
of the leaf. In Eq. (30), the slope of the curve of saturated steam pressure (s) can be 
approximated by the polynomial 

 
2

1 2 3i is s T s T s= + +  (30) 

Where s1, s2 and s3 are polynomial parameters, ρacp represents the heat capacity of air 
volume, gb is the conductance of the leaf. All these quantities are assumed constant. The 
vapor pressure deficit of air Dg, is calculated as the difference between saturated vapor 
pressure *

gp  a Ti (Hanan, 1998) 

 

2

3*
1

i

i

a T
a T

gp a e +=  (31) 

And air vapor pressure to the prevailing water content gp  

 ( )0g i ip T T V= Λ +  (32) 

Where Λ is the constant of pressure that can be obtained from the ideal gas laws, T0 is used 
to convert Ti ºC to Kelvin and Vi the concentration of water vapor in the air. So 

 
*

g g gD p p= −  (33) 

The conductance of the leaf is related to short-wave radiation and the concentration of CO2 
through the regression equation 
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 ( )3 4
1 21 ig G g Cg g g e e− −= −  (34) 

Where from g1 to g4 are regression coefficients. 
A detailed modelling of the transport of water vapor to the cover would require a 
description of the cover temperature, humidity inside the greenhouse, the possible re-
evaporation of condensation, and the present quantity of condensation on the cover. To 
calculate the condensation are needed humidity inside the greenhouse (Vi) and the cover 
temperature (Tc). To keep the model as simple as possible, the temperature of the cover will 
be calculated based on the relationship obtained by Bakker (1995), which describes the 
temperature of the cover as an algebraic average between the outdoor temperature and 
indoor temperature 

 
1

1c o iT T Tε
ε ε

= +
+

 (35) 

In this sense, the influence of the heat capacity of the cover and short-wave radiation from 
the sky are ignored. So, the approximation (3.8) is allowed, as Bakker (1995) showed that 
even instantly condensation can be incorrect, an average of condensation on the basis of a 
day is correct. Condensation on the greenhouse cover takes place when the roof temperature 
(Tc) is below the dew point (dew point) from the air of the greenhouse. Introducing the 
index of humidity as the mass of water vapor per humid air mass unit, condensation takes 
place when the percentage of humidity under pressure of saturated steam on the cover (Wc*) 
is lower than the percentage of air humidity (Wg). The superscript * indicates that the 
amount considered is saturated vapor pressure. T0 complete Wc*, first the pressure of 
saturated steam at Tc is calculated according to Eq. (35) (replacing Ti by Tc). The vapor 
pressure in the air of the greenhouse (pg) is calculated according to Eq. (32). When it is 
known the vapour pressure, humidity ratio W can be calculated as follows 

 
atm

pW
p p
ω

=
−

 (36) 

Where ω is the parameter of the ratio of humidity and patm is the atmospheric air pressure. 
Wg or Wc* can be calculated substituting pg or pc for p, respectively. 
Used Wc* and Wg, the rate of condensation (Mc) is calculated as follows 

 
( )2 * *

1

*

,          

0,                                       

m
i c g c g c

c
g c

m T T W W if W W
M

if W W

⎧ − − >⎪= ⎨
≤⎪⎩

 (37) 

Where m1|Ti -Tc|m2 is the mass transfer coefficient, m1 and m2 are the parameters of mass 
transfer coefficients. In the process of condensation, water and energy are transported 
simultaneously. At the moment that water condenses, the energy of condensation is released 
into the surrounding environment. This is why condensation is part of the temperature 
equation (25) and the humidity equation (40). 
In the case of the equation for soil temperature it is indicated that it is proportional to the 
heat exchange between the surface layer and the ambient temperature and the heat 
exchange between the surface layer and the deep soil. Thus, the rate of change of soil 
temperature (Ts) respect to time is: 
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 ( ) ( )s s i p s- -s
s d

dTC = k T T k T T
dt

− +  (38) 

Where Cs is the heat capacity of soil in J·ºC-1·m-2, kd coefficient of heat transfer from layer to 
layer of soil in W·ºC-1·m-2, Tp is the temperature of the deep layer soil in °C. 
For the CO2, concentration, the equation establishes that the change in CO2 concentration is 
proportional to CO2 exchange with the outside, to the injection of CO2 to increase of CO2 by 
respiration as well as the reduction of CO2 by photosynthesis. Thus, the rate of change of 
CO2 concentration (Ci) with respect to time is described by: 

 ( )g i
v o i inj

g

V dC C C R P
A dt

ϕ μ= Φ − + + −  (39) 

Vg/Ag is the average height of the greenhouse in m, Φv is the ventilation flow in m·s-1, Co is 
the external CO2 concentration in g·m-3, ϕinj is the CO2 injection flow g·s-1·m-2, R is the 
respiration of the crop in g·s-1·m-2, P is the photosynthesis of the crop in g·s-1·m-2 and μ  is 
the molar fraction of CO2 and CH2O. 
For humidity, the equation indicates that the change of humidity inside the greenhouse is 
proportional to the increase of humidity by transpiration, to the exchange of humidity by 
respiration as well as the loss of humidity from condensation on the cover of the 
greenhouse. Thus, the rate of change of humidity in the greenhouse (Vi) respect to time is: 

 ( )( )gi
v i o c

g

AdV E V V M
dt V

= −Φ − −  (40) 

Where Vo is the outdoor humidity, in kg·m-3. 
As mentioned before, measurements were made from climate variables involved in the 
model that describes the greenhouse environment, among them it is found the outdoor 
relative humidity. However, the model has as one of its inputs to external absolute 
humidity, so it is estimated as absolute humidity (AH) from air temperature (T) and relative 
humidity (RH) by means of the following expression (Hanan, 1998): 

 

( )
1

1

18
29 1

eHA
e

=
−

 (41) 

where 
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/18
100 1 / 29 /18
HR ee

e
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+
 (42) 

 
3 4 6 2 7 3

2 3.77 10 2.965 10 5.2 10 3.7 10e T T T− − − −= × × + × + ×  (43) 

Moreover doing the estimation of the four state variables which has the mathematical 
model, it is determined from the internal relative humidity because it is most used the unit 
in practice, calculated by the following equation (Hanan, 1998): 

 *100 g

g

p
HA

p
=  (44) 
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where gp  is the vapor pressure of air in the greenhouse and *
gp  is the saturated vapor 

pressure of air in the greenhouse. 
In order to calibrate a mathematical model properly, it is important to carry out a sensitivity 
analysis (Van Henten, 2003), which evaluates the relative importance of input variables and 
model parameters on the evolution over time of the model’s state variables (Saltelli et al., 
2000). Then model calibration is performed. Finally, a validation process is completed, by 
comparing simulation results using parameter values obtained from calibration, with 
measurements which were not used during model calibration. 
To achieve a good fit of a greenhouse climatic model, it is necessary to find suitable values 
for the parameters in the model. In order to find the parameters that most affect the state 
variables, it is necessary to do a sensitivity analysis of the model. 
The time evolution of the sensitivity model (S(t)) of all states with respect to all parameters 
is defined as 

 ( ) ( )x t
S t

p
∂

=
∂

 (45) 

where nx (t)  R∈  is the evolution time of the state vector, mp  R∈  is the parameter vector and 
t denotes time (Tap, 2000). Thus, S(t) is a n m×  dimensional matrix, where every element 
represents the evolution time of the derivative of one state by one parameter. Eq. (46) is an 
approximation of the time evolution of 

 f fdS S
dt x p

∂ ∂
≈ +
∂ ∂

,          ( )0 0S t =  (46) 

Where the right-hand side of the output equation is defined by f: 

 
( ) ( ), ,

dx t
f x u p

dt
=  (47) 

Where u is the input vector (controls) which does not depend on p. To be able to make a 
good comparison between the different sensitivities the relative sensitivity Srel is calculated, 
as given by the following equation: 

 rel
p y pS S
y p y

∂
= =

∂
 (48) 

A drawback is that this can yield numerical problems when x is very small or equal to zero. 
Parameter ranking is done on the basis of 

 

0

ft

rel
t

I S dt= ∫  (49) 

where t0 is the initial time and tf the final time.  
The following step is the process of calibration of the model which consists of altering 
parameters to obtain a better fit between the simulated and measured data. An appropriate 
method to make the calibration is to use a non-linear multivariable optimization function 
(Tap, 2000), to minimize the sum of square errors (J): 
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1 1 1

arg min

L M N

h h i hj i
h i j

*

J(p) w y t ,p y t ;

      p     J(p)
= = =

= −

=

∑ ∑∑
 (50) 

Where wh is the relative weight of each output , yh(ti, p) is the simulated output, yh in time ti, 
yhj(ti) is the j-th repetition of the measurement yh in time ti, L is the number of outputs, M is 
the number of real measurements (time), N number of repetitions in each real measurement 
(time), p is the parameter set of calibration and p* are the parameters that reduce J(p) to a 
minimum. The weights wh determine the relative importance of the different outputs in Eq. 
(50). These were calculated by normalization of the output vector to avoid problems with 
the units of the state variables. 

4.3 Black box model 
In Other control the air temperature inside of a closed environment it Can Be Modeled by 
auto regressive models with external inputs (ARX) and by auto regressive moving average 
models with external inputs (ARMAX) considering the inputs and outputs Are Measured by 
sensors. For a system with one input and one output (SISO) the model is Given by Eq. (1) 
(Ljung, 1999, Aguado & Martinez, 2003; Ljung, 2005) 

 
1

1 1

( ) ( 1) ... ( )
                      ( ) ... ( 1) ( ) ( 1) ... ( )

a

b c

n a

k n k b n c

y t a y t a y t n
b u t n b u t n n e t c e t c e t n

+ − + + − =

− + + − − + + + − + + −
 (51) 

Where y(t) is the output of the ARX and ARMAX models for t = 1, t-1,… t-na; u(t) is the 
input for t = t-nk, t-nk -1,…, t-nk-nb +1; na is the number of samples passed in the time of 
the output; nk is the delay time of the input u(t), e(t) is the white noise associated with the 
input and t is discrete time. 
To evaluate the temperature inside of a closed environmental using ARX and ARMAX 
models, more input variables are required, so the models have multiple inputs and one 
output (MISO). The structures ARX and ARMAX for MISO systems are defined by Eq. (2) 
and (3), respectively 

 ( )( ) ( ) ( ) ( )kA q y t B q u t n e t= − +  (52) 

Where A(q), B(q) are matrices and C(q) is a vector, all defined by Eq. (53) –(54): 

 A(q): 1
11 ... a

a

n
na q a q−−+ + +  (53) 

 B(q): 1
11 ... b

b

n
nb q b q−−+ + +  (54) 

And the operator q-1 is the backward shift operator 

 
1 ( ) ( 1)q u t u t− = −  (55) 

For a system in which the number of inputs is given by ny and the number of outputs by nu, 
A(q) and B(q) are ny by ny and nu by nu matrices, respectively, whose elements are 
polynomials in the shift operator q-m (with m any natural number). The entries aij(q) and 
bij(q) of the matrices A(q) and B(q), respectively, can then be written as 
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1

aij

ij aij

n
ij ij na q a z a zδ

−−= + + +  (56) 

and 

 ( ) 1
1

k k bij ij ij

ij bij

n n n
ij nb q b z b z

− − − +
= + +  (57) 

Where ijδ  represents the Kronecker symbol. 
From the above it is clear that the ARX structure for a given system can be defined by means 
of the number of poles na, the number of zeros nb-1 and the number of time delays nk. The 
matrices A(q) and B(q) are determined by means of off-line parameter identification 
methods (Uchida-Frausto et al., 2003). 
To achieve a good fit of a greenhouse climatic model, it is necessary to estimate the suitable 
values for the coefficients implicated in the autoregressive model. That is, for each structure 
of ARX and ARMAX models we need to obtain the coefficients 1 ,...,

ana a and 1 ,...,
bnb b  and 

the order of the model given by the values the parameters na, nb and nk, based on the 
information provided by the inputs and outputs in order to get the best fit between the 
measured values and the estimated values by the model. 
To determine the coefficients of ARX and ARMAX models that better fit the simulated to the 
measured data. A method to make it is to minimize the sum of square errors (J): 

 
( ) ( ) ( )( )

( )
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1
,

   * arg min
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i

J p y t p y t

p J p
=

= −

=

∑
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Where ( ),iy t p  is the simulated output, y in time ti, y(ti) is the measurement y in time ti, N is 
the number real measurement (time), p is the parameters set (coefficients of the model) and 
p* are the parameters that reduce J(p) to a minimum.  
In the current work, the minimization of Eq. (58) is a non-linear multivariable optimization 
problem that can be solved by using evolutionary algorithms, such as: GAs and EP since 
they are global optimization methods. The structure of any EA is the same (Eiben & Smith, 
2003), as is shown in Fig. 1. Differences among evolutionary techniques consist of the kind 
of selection, mutation and crossover operators applied to find the optimum value of the 
parameters for the optimization function. In this case, the kind of selection, the crossover 
and the mutation used for each EA is presented in Table 1. 

4.4 Gray box model 
In a gray box model it is made the integration of a white box model and a black box model. 
The workout of the gray box model is done with the indirect strategy used in research as 
Acuña et al. (1999), Dimitri (1992), Thomson and Kramer (1994) y Thornley & Johnson 
(2000). In figure 3 is presented the indirect training diagram. 
The objective of a gray box model training consist of determining the ARX model 
parameters which approximate the existing and unknown relation between and a priori of 
some white box model parameters and the relevant resultant variables. Since the ARX 
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Fig. 3. Indirect training diagram in a gray box model. 

model parameters are unknown, the output of the white box model (measurable outputs) is 
minimized. The objective function is: 
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J p y t y t p
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=

∑
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Where ( ),iy t p  is the simulated output by the gray box model, y(ti) is the measurement y in 
time ti, N is the number real measurement (time), p is the set of parameters (coefficients of 
the model) and p* are the parameters that reduce J(p) to a minimum. 
The objective function gives a consistent real value in the sum of the square error between 
obtained values by the model and the expected outputs, with which the optimization 
method determines the ARX model parameters. 
In this case, the White box model used is Tap’s (2000). However, for the natural ventilation 
flow through windows Φv, Eq. (28), and the saturated steam *

gp , Eq. (31), and Ti (Hanan, 
1998) would be estimated by a black box model, this is, with an ARX model. Due to Eq. (28) 
and (31) depend on parameters σ, χ, ς, ξ, ψ, a1, a2 and a3 that according to the sensitivity 
analysis these turn out to be the most sensitive. 

5. Results 
5.1 White box model 
Initial values of model parameters were taken from Tap (2000). Table 2 shows the statistics 
corresponding to the results of the simulation before model calibration. Figure 4 shows the 
results obtained before the calibration for the simulation of a week’s data. 
A local sensitivity analysis was carried out using measured climate data in order to select 
the most sensitive model parameters to be estimated during the calibration process. As 
result of this analysis, the parameters related to the opening of the windows and to the 
evapo-transpiration of the plant were very sensitive. That is, the inside air temperature and 
the absolute humidity were determined to be most affected by the saturation vapour 
pressure parameters (a1, a2 and a3) and the ventilation rate parameters (σ, χ, ς, ξ and ψ). The 
number of parameters could be reduced by considering a smaller sensitivity index. 
However, in this case, 8 parameters were considered because there was a considerable 
difference between the effect of these 8 and that of the rest. 
Calibration of parameters was made by means of the four evolutionary techniques (global 
search method): GAs, ES, EP and ED. 

WHITE BOX MODEL 
(Tap’s Model) 

BLACK BOX MODEL 
(ARX Model) 

Inputs Outputs 

Parameters ( )2ŷ yi i−∑  
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Fig. 4. Indirect Measured (solid line) and simulated (dotted line) air temperature before 
calibration. 
 

 Method r E %SEP AVR 
Before calibration Original values 0.6643 -2.3902 24.5262 3.3902 

GAs 0.6422 -0.1936 14.5527 1.1936 
EP 0.6785 -0.5266 16.4581 1.5266 
ES 0.6398 -1.345 20.3982 2.345 

After calibration 

DE 0.6874 -0.2708 15.0159 1.2708 

Table 3. Statistical results of greenhouse air temperature before calibration and after 
calibration of a white box model using evolutionary algorithms. 

The statistics of the results of the simulation using the parameters given by GAs, ES, EP and 
DE are shown in Table 3. The obtained results of the simulations for a week with the GAs,  
 

 
Fig. 5. Measured (solid line) and simulated air temperature after calibration with GAs, ES, 
EP and DE. 
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ES, EP and DE parameters are shown in the Figure 5. Results for Evolutionary Algorithms 
are obtained from 10 runs and the selection was made considering the parameters that 
minimized the error better between measured and estimated data. 
Results show a minor error in the model's predictions for the air temperature within the 
greenhouse after calibration. Although there is not an increase in the correlation (r), for Ti, for 
each calibration method results between results obtained before and after calibration with GA 
and EP, unlike the other two methods, Table 3. Furthermore, it can be observed that the 
efficiency coefficient (E) is negative in all cases, suggesting that average use values of observed 
data is better than the estimates obtained. However, percentage standard error of the 
prediction (% SEP) changed from 24 to 14 (Table 3) for the temperature Ti , when GA are used. 
Finally, average relative variance (ARV) decreased from 3.39 to 1.19 (Table 3) for the 
temperature Ti  when GA is used. In general terms there is an improvement when  GA is used. 

5.2 Black box model 
An ARX model with structure na = 1 (one output variable), for nb=2 (four input variables) 
and for nk = 1 was evaluated. 
 

 
Fig. 6. Measured (solid line) and simulated (dotted line) air temperature by means of an 
ARX model 
Table 4 shows the statistical results obtained when 25% of the data is evaluated to estimate 
the ARX model. Fig. 6 shows the behavior of the ARX model with structure na=1, nb=[2 2 2 
2]. Looking at Table 4 it can be observed that a better fit occurs when the identification 
parameter  is performed  with GAs. Correlation r takes the value 0.86 and the efficiency (E) 
obtains value of 0.0.44, percentage standard error of the prediction (%SEP) is 9.94 and the 
average relative variance (ARV) is 0.55. 
 

Method r E %SEP AVR 
ARX 0.6620 -0.8402 18.0704 1.8402 
GAs 0.8691 0.4429 9.9427 0.5571 
EP -0.0058 -0.5386 16.5233 1.5383 
ES -0.0029 -1.3235 20.3051 2.3235 
DE 0.7735 -0.2726 11.3607 0.7274 

Table 4. Statistical results of greenhouse air temperature before calibration and after 
calibration of a black box model using evolutionary algorithms. 
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According to the results, when the parameter identification of an ARMAX structure is 
performed by means of GAs there is a better fit of the simulated data to the measured data 
when t 25% of the data are used to estimate and 75% of the data is used to validate the 
model. 
 

 
Fig. 7. Measured (solid line) and simulated air temperature using GAs, ES, EP and DE 

5.2 Gray box model 
In this case the white box model applied was that of Tap (2000), where natural ventilation 
flow through windows Φv and the saturated vapour *

gp  are estimates through an ARX 
structure. The results of this simulation are shown in Fig. 8 where 50 % of the data was used 
for estimating the parameters. 
 

 
Fig. 8. Measured (solid line) and simulated (dotted line) air temperature by means of a gray 
box model 
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The statistical results of the parameter identification through GA, ES, EP, and DE are shown 
in Table 5. According to these results there is a better fit of the estimated data through the 
gray box model when parameter identification is done using DE. Fig. 9 shows the results of 
each of the simulations  
 

Method r E %SEP AVR 
Gray box model 0.7196 -3.1438 27.0180 4.1438 

GAs 0.7186 -32.1576 76.4268 33.1576 
EP 0.6787 0.3450 10.7419 0.6550 
ES 0.671 0.2778 11.3200 0.7222 
DE 0.9015 0.7064 7.2173 0.2936 

Table 5. Statistical results of greenhouse air temperature before calibration and after 
calibration of a gray box model using evolutionary algorithms 

The obtained results of the simulations for a week with the GAs, ES, EP and DE parameters 
are shown in the Fig. 5. 
 

 
Fig. 9. Measured (solid line) and simulated air temperature using GAs, ES, EP and DE 

6. Conclusions 
Climate conditions were measured in a greenhouse located in the central region of Mexico. 
To perform the calibration, 4 global evolutionary algorithms (GAs, ES, EP and DE) were 
applied and the estimations obtained by the model using the parameter values given with 
the different methods were compared in order to ascertain which method was more 
effective. 
The climate model gave best predictions for the air temperature within the greenhouse 
when using the parameter values obtained by means of the GA when a white box model 
was used.  
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In the same way, results obtained with GAs show that this method is more effective than the 
others methods to find parameters for auto regressive models to predict air temperature 
inside of a greenhouse with structure na = 1, nb = [2 2 2 2], and nk  = [1 1 1 1] and the data 
group 25%:75%. The advantage in this case consists in the use of small sample data (25%) 
can give a better estimation that the traditional method (square least) used to the parameter 
identification of an ARX model. 
 For gray box model, the prediction of air temperature inside of a greenhouse is better when 
the parameter identification is done by means of the DE method. 
To this point, the model can be used to design and development of algorithms of control. 
Likewise, the model can be integrated with a physiological model to get a production 
process model of a greenhouse. 
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1. Introduction

Uncovering interactions between genes and their products has been a major aim of Systems
Biology over recent years, (Przytycka et al. (2010) and references therein). The objective
is to gain a better understanding of the functioning of different organisms, together with
discovery of disease markers and new treatments, (Bar-Joseph, 2004; Tan et al., 2008). Gene
regulatory network (GRN) analysis has been facilitated by the advent of technologies for
measuring gene expression: these include mature technologies such as qrtPCR, (Logan et al.,
2007), suitable for a limited number of genes, and microarrays, (e.g. Baldi & Hatfield (2002)),
which allow for high-throughput measurement of thousands of genes at the same time.
More recently, RNA-Seq (Hurd & Nelson, 2009) measurements have become available, due
to advances in high throughput sequencing technology, but these data are still scarce, due
to high experimental costs. Characterised as they are by high dimensionality and noise
levels, analysis of these data is far from trivial. The class of computational methods known
as Evolutionary Algorithms, (EAs), has demonstrated relevance for different investigative
targets, (Pal et al., 2006; Sîrbu et al., 2010a). This chapter, in consequence, presents an overview
of approaches and issues in GRN modelling and inference, and discusses the role of EAs in
this regard.
Three different analysis stages can be identified for GRN inference: (i) expression pattern
analysis, (ii) mathematical modelling from expression data and (iii) integrative modelling. At
each of these, and most particularly at the last stage, EAs have an important role to play, due
to the strength and flexibility of these search methods.
Expression pattern analysis is largely concerned with the application of classification and
clustering methods to gene expression data. Clustering of genes, as a first step towards
GRN modelling, (Lee & Yang, 2008; Thieffry, 1999), together with classification, which aims
at assigning samples to different classes (usually for gene expression data, to distinguish
between tissue types, e.g. control/treatment or healthy/infected, for diagnostic purposes),
give valuable insight on gene involvement in different processes. EAs are typically employed
at this stage, with some success, for feature selection and clustering.
At the second stage, a GRN model is created to explain the data (see e.g. He et al. (2009)
for a review), which can be used for in silico simulation and process analysis under various
criteria. Such a model is built by reverse engineering from available time course expression
data, with inferential algorithms used to fit model parameters to the data, using evolutionary
optimisation. Different EA approaches are presented here, for inferences on discrete qualitative
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to continuous quantitativemodels. Consequently, the discussion includes classical to hybrid EAs,
and identification of strengths and weaknesses.
A general limitation in GRN modelling is that, although qualitative models can be built for
entire GRNs, quantitative analysis is still restricted to sub-networks, due to limited data
available and the large number of parameters to be optimised. Quantitative models allow
for a better representation of interaction links, and for continuous simulation of dynamical
behaviour, but the limitations in size and accuracy have impeded their use in real-world
scenarios. Consequently, a third stage in network inference, integrative analysis, (Hecker
et al., 2009), aims at reconciling different sources for the large amount of biological data
available, in order to improve reliability of the inferential process, and realism of the models.
This is not without risk, as multi-source data can contain heterogeneous noise, which
has to be dealt with. Further, large scale integrative analysis requires a large amount of
computational resources, and algorithms have to be optimised and parallelised to address
this. Additional data types, which can contribute to this synthesis, include DNA-protein
interactions, knock-out/knockdown experiments, binding site affinities, as well as known
transcription factors (TFs) and RNA interference measures.
To date, integration efforts are sparse. Nevertheless, examples of approaches based on EAs
are presented here, although these typically combine only one additional data type with
expression measurements. Ideally, all related data should contribute to the inferential process.
With this aim, a novel algorithm, based on evolutionary computation, that aims at large
scale data integration for quantitative modelling, is also outlined, and the advantages and
disadvantages of EAs for data unification discussed.
The rest of this chapter gives background on GRNs, general modelling methodology and
mathematical models in Section 2, then follows the development of existing evolutionary
algorithm approaches through the three stages of inference in Sections 3, 4 and 5. Section 5
also describes a novel approach for data integration, which builds a framework for inclusion
of multiple data types in the inferential process, followed by a concluding discussion on EA
role in Section 6.

2. Background

2.1 Gene regulatory networks (GRNs)
DNA encodes the information the cell needs to create proteins that are vital for its mechanisms
(e.g. Brown (2002)). Each cell of an organism contains the same information, i.e. the DNA
sequence, but in different tissues, cells will behave differently. This indicates that other
mechanisms must exist to control protein levels depending on the environment; one such
example is the gene regulatory network.
The Central Dogma of Molecular Biology describes gene expression1 as DNA → RNA →
protein, but, in fact, the process is more complex as it consists of several stages and can be
influenced by several factors at each stage, (Brown, 2002). The initiation of transcription is one
of these stages, influenced by proteins called transcription factors (TFs). These TFs bind to
the region upstream of the gene that needs to be expressed and regulate its transcription in
a positive or negative way, (up- or down-regulation). Such interactions create a regulatory
network between TFs and genes, i.e. a GRN. As TFs are in turn encoded by other genes, we
can consider these interactions as being between pairs of genes instead of gene-protein pairs.
GRNs are used to control protein levels during biological processes, and perturbations in the
network lead to unwanted behaviour, i.e. disease.

1 Formation of a protein from the corresponding gene.
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GRNs feature a set of characteristics that distinguish them from random networks (Marbach
et al., 2009). They are scale-free, modular and contain network motifs, i.e. patterns of
interactions that appear with high frequency and control oscillatory behaviour of the network.
Also, the in-degree of the nodes, (i.e. the number of regulators for each gene), is bounded by
a small number compared to the total number of genes in the network. These properties are
very important, as they can be used to enhance the inferential process and also to generate
plausible synthetic networks which are used to validate inferential algorithms.
Several technologies that measure gene expression have been developed, typically concerned
with gene activity at the mRNA2 level. Among these, high-throughput technologies,
(microarrays, Baldi & Hatfield (2002), and RNA-Seq, Hurd & Nelson (2009)), allow for
measurement of mRNA concentrations for a large number of genes at the same time. These
measurements can be viewed as snapshots of the expression levels of genes under certain
conditions and, with a large-enough set of snapshots, it is theoretically possible to uncover
the underlying GRN (Liang et al., 1998).

2.2 From gene expression data to GRNs
Gene expression data consists of the expression levels of many genes under multiple
conditions, (Stekel, 2003). Hence, for each gene, a vector of values shows the gene expression
pattern for a number of different experiments, (Figure 1a). At the same time, the data
can be viewed as a set of vectors describing the behaviour of the organism under certain
conditions, (experiments), i.e. the experimental patterns, which represent expression values
for many genes in a single experiment, (Figure 1b). By analysing both pattern types,
(separately or together), useful knowledge related to the connections between genes or the
similarity between conditions can be found. The ultimate aim is to build a reliable model
for the underlying GRN, which can be further used for in-silico simulation and analysis
of the system. This goal has triggered significant research efforts, (e.g. He et al. (2009)
and references therein), which can be classified, based on the type of analysis performed,
specifically: (i) expression pattern analysis, (ii) modelling from time series data and (iii)
integrative modelling. Evolutionary algorithms have had an important role in the different
stages of analysis, due to their flexibility and search power.
The first stage in studying gene expression data for GRN discovery applies pattern analysis
algorithms on both experimental and gene patterns seen in the data. Such algorithms include
clustering, classification and feature selection techniques.
Clustering is considered here as unsupervised 3 learning where a set of data entries has to
be grouped into clusters, based on their attribute values, (Manning & Schütze, 1999). The
clusters and cluster assignment for the training data set are typically not known beforehand,
but are deduced based on dissimilarity or distance measures. Such measures may be statistical
constructs, such as correlation, as well as standard spatial distance measures: Euclidean,
Manhattan and others. Bi-clustering is also a variant that has been widely applied to gene
expression data, (Kerr et al., 2008). This aims at grouping both genes and experiments at the
same time, indicating not only clusters of co-expressed genes, but also in which experiments
these appear.

2 Messenger RNA (mRNA) is the RNA that results from transcription of DNA during the expression of
a gene. mRNAs are translated into proteins based on their nucleotide sequence. Other different types
of RNA exist, but relate to other functions in the organism.

3 Recently, supervised clustering methods have emerged from the need for more control over the
meaning of the resulting clusters or the features that are considered by the unsupervised clustering
technique. However, this section concentrates on unsupervised clustering.
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Fig. 1. Gene expression data interpretations: (a) a set of vectors representing expression
values for one gene under different experiments and (b) a set of vectors representing
expression values for multiple genes under a single experiment

In the case of gene expression data, clustering gives insight on the relationships between genes
and, in consequence, is considered the first step towards gene network inference (Lee & Yang, 2008;
Thieffry, 1999). Genes that belong to the same cluster are assumed to be co-regulated, (i.e.
regulated by the same protein complex), or co-regulating, (i.e. regulating each other). Once
the clusters are generated, the objective is to look for binding site motifs in the precursors4

of the genes in each cluster. In this way it is possible to find unknown binding sites or to
generate hypotheses on which proteins regulate the co-regulated genes in the cluster, (based
on previous knowledge on regulatory motifs). These hypotheses can be further validated by
laboratory experiment.
A gene expression dataset can contain thousands of genes so that the elements to be
clustered/classified are points in a high-dimensional space, hence analysis is computationally
intensive. Also, as data are intrinsically noisy, the high number of dimensions can bias
the algorithm convergence. It is possible that some features of the gene expression data
are redundant, (Liu et al., 2002), hence the need to develop feature selection techniques, in
order to make analysis more efficient. Subsection 3.2 describes some of the feature selection
methods, which have been applied in the context of clustering or classification of microarray
data. Although classification of different experiments, (for diagnostic purposes, such as
distinguishing between infected and healthy tissue), may not have an immediate use in GRN
inference, feature selection techniques do give an indication as to which genes are most
important in the processes under analysis, so we have included them at the first inferential
stage.
A second stage in GRN inference is mathematical modelling using time series gene expression
data. In these data, gene expression levels are measured over time, with each experiment
in the data describing a different time point. These series patterns can be modelled using
mathematical tools, of which a large number have been applied to GRNs, (see e.g. He et al.
(2009); Lee & Tzou (2009) and references therein). Generally, the process of modelling GRNs
consists of a few main steps: choosing an appropriate model, inferring parameters from
data, validating the model and conducting simulations of the GRN to predict its behaviour
under different conditions. Due to the large number of genes in such datasets, clustering
methods (stage one) have been applied by some authors for dimensionality reduction (either
by considering cluster centroids as being one gene in the network, Wahde & Hertz (2000), or
by analysing subsets of genes corresponding to selected clusters, Lee & Yang (2008)).

4 The region in the DNA sequence located before the gene.
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In order to model a GRN, genes are taken to be variables that change their (expression)
values over time. Depending on variable type, methods can be classified as discrete or
continuous, deterministic or stochastic, or as hybrid (using more than one type of variable).
Two broad approaches are described in the literature (Lee & Tzou (2009)): coarse-grained
and fine-grained models, with the former containing less detail on the interactions between
genes. Usually, coarse-grained models use discrete variables, while fine grained models use
continuous ones. A GRN can be very large and can contain complicated interactions, so a
fine-grained model will have an enormous number of parameters to deal with. Analysis of
this kind of model is very complex, so viewing the network ‘top-down‘, in order to be able to
analyse it globally, is the aim of coarse-grained models, ( e.g. Linden & Bhaya (2007); Maki
et al. (2001); Repsilber et al. (2002)). Other authors, (e.g. Kikuchi et al. (2003); Morishita et al.
(2003); Noman & Iba (2006); Tominaga et al. (1999); Wahde & Hertz (2000); Xu et al. (2007)),
have chosen to focus on detailed models, but for analysis of sub-networks only of the entire
GRN. A useful approach, clearly, is to combine the two levels of detail, moving between the
coarse and fine-grained model to highlight key biological knowledge (Maki et al., 2001).
To reverse engineer GRNs, EAs require a specified model type and data set. This enables
parameter evolution to be monitored and performance in terms of fitting input data to be
evaluated. A population of such parameters representing different models, (also known as
population of candidate solutions or individuals), evolves towards a better set, by applying
genetic operators (e.g. crossover and mutation). The fitness function is typically defined as
the difference between the observed data and the output of the model, (squared, or averaged
over the data points), as described in Equation 1.

fitness =
n

∑
i=1

T

∑
t=1

(xi(t)− yi(t))2 (1)

where xi(t) is the expression value of gene i at time t, observed in real experiments, and yi(t)
is the expression value of gene i at time t generated by the model. Since every model has its
distinctive features, steps in the algorithm differ from one approach to another, but the main
skeleton is usually preserved. In this chapter we describe several such methods, following the
development from classical to advanced hybrid methods.
The ideal model for a GRN would be fine-grained, accounting for all the features of the real
GRN, applied to the entire genome in a cell. Achieving such a model is a non-trivial task,
as most methods to date are either too coarse or can not model large systems. Also, existing
gene expression time-series data are insufficient to infer the large number of parameters for
such a detailed model, resulting in an under-determined problem. However, a very large pool
of biological knowledge, from different types of experiments, does exist in the literature. The
issue then is whether it is possible to combine all existing knowledge in an attempt to improve
system inference. Approaches that use gene promoter data, results from protein-protein
interaction experiments, knock-out microarray experiments and other related information
have started to appear, (Hecker et al. (2009) and references therein), opening the road for a
third stage of GRN inference, based on heterogeneous data integration. Some efforts have used
evolutionary computation but are at an early stage only, so that they benefit only partially, at
best, from the flexibility offered by EAs for large scale data integration. We aim to address this
question also, (Section 5).
In the rest of this section, an outline of mathematical models, used in conjunction with
evolutionary algorithms for GRN modelling, is provided.
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2.2.1 GRN modelling approaches
Boolean networks

Boolean networks are coarse-grained models for GRNs that use Boolean values for gene
expression: the gene is on/off with values 1/0 respectively (Liang et al. (1998)). Regulation is
expressed in terms of Boolean functions attached to each gene :

Yi = Fi(Xi1 , ..,Xik )

where Xi1 , ..,Xik are the binary expression levels of regulators of gene i and Yi is the predicted
expression value for gene i. This model is very well suited to modelling large networks,
as it does not require a large number of parameters. Due to their relative simplicity
and limited detail, Boolean networks have been employed in the analysis of steady states
and general behaviour of GRNs. However, they have a few disadvantages as they can
not simulate continuous behaviour and complex nonlinear interactions, characteristic of
GRNs. Additionally, discretisation of expression values, which are continuous, may lead to
information loss, which can result in fewer interactions identified.
A generalisation of the Boolean network is the multistate discrete network (Repsilber et al.,
2002). In this model, gene expression levels can take more than two discrete values ( in the
set S = {0, .., n}) and the transition functions are general functions Fi : {0, .., n}k → {0, .., n},
mapping between current expression values for all genes and that of gene i at the next time
point.

Rule sets

Another model of regulation uses different types of rules to explain the observed patterns in
the data. This approach has the advantage of being more intuitive, as relationships between
genes are expressed using natural language. One such model uses fuzzy rules, (Linden
& Bhaya, 2007), which are based on the notion of fuzzy sets. These sets have imprecise
boundaries, defined by a membership function: applied to any element in the universe,
they return a number in the interval [0,1], representing the degree to which that element is
a member of the current set. A fuzzy rule is a conditional of the form if x is in A then y is in B,
which specifies a relation between fuzzy setsA and B. Every fuzzy rule also has a membership
function that specifies the degree of truth of the implication.

Ordinary differential equations

The models described in previous paragraphs are coarse-grained models. These use discrete
states for gene expression values, with the influences of a given set of genes on other genes
described qualitatively, rather than quantitatively. However, gene interactions are very
complex and, in order to model these, a fine-grained continuous model is needed, which
considers interactions quantitatively. One such model is a system of differential equations.
Ordinary differential equation systems express the change in the expression level of each gene
in time as a function of the expression levels of other genes, but make no other assumption
about the mathematical form:

dxi
dt

= Fi(x1, .., xn) (2)

where xi represents the expression level of gene i. The inferential algorithm, therefore, is not
restricted to a prescribed set of functions and can model complex behaviour. At the same time,
few constraints mean that the search space is very large and more sophisticated methods are
typically required to refine the analysis.
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Linear differential equations

The simplest model example, and one that has received a lot of attention (e.g. (Akutsu et al.,
2000; Ando & Iba, 2003; Deng et al., 2005)), is the linear system of differential equations. This
simplifies the way genes interact, by using linear dependencies but at the same time retains
the continuous aspects inherent in differential equations. This simplification results in loss of
modelling power, compared to a nonlinear model choice, (as gene interactions are known to
be more complex), but gains from the perspective of simpler inference.
This model describes changes in gene expression values as:

dxi
dt

=
n

∑
j=1

wijxj (3)

where xi and xj represent expression values of genes i and j and wij the regulation strength
of gene j on gene i. A negative value for wij corresponds to repression of gene i by gene
j, a positive value corresponds to activation and a null value to no effect of gene j on gene
i. Different versions of the model exist, which add other terms to the equation, accounting
for external stimuli, degradation rates or noise. The system can be described by the matrix
W= (wij), also known as the interaction or regulation matrix. Inferring a model means finding
the values in W.

S-Systems

Although linear systems improve the level of detail achieved by the modelling approach,
these still exclude some information. Regulatory networks are intrinsically nonlinear systems
and approaches that correctly model gene interactions are needed. S-Systems are a special
type of differential equation systems, based on power-law formalism, and are capable of
capturing complex dynamics. The disadvantages are an increase in the number of parameters
and reduction in the available choices of reverse engineering techniques, as linear regression
methods are not applicable any more. The equations in S-Systems are of the form:

dxi
dt

= αi

n

∏
j=1

x
gij
j − βi

n

∏
j=1

x
hij
j (4)

The two terms correspond, respectively, to synthesis and degradation influence from other
genes in the network; specifically, αi and βi, are rate constants and represent basal synthesis
and degradation rate, while gij and hij, (kinetic orders), indicate the influence of gene j on the
synthesis and degradation of the product of gene i.

Linear time-variant model

The linear time-variant model expresses the regulatory effect on a gene using a linear
expression:

ri(t) =
n

∑
j=1

wij(t)xj (5)

and computes the expression value of that gene at time t+ 1 by applying a sigmoid function
5 to this effect:

xi(t+ 1) =
1

1 + exp(−ri(t)) (6)

5 Mathematical function that has an S-shaped graphical representation. One example of a sigmoid
function is the logistic function that restricts the output to the interval(0, 1): f (x) = 1

1+e−x
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The values wij(t) represent the interactions between genes, and are expressed using a Fourier
series, as described in Equation 7.

wij(t) = αijsin(ωi t+ φij) + βij (7)

Thus, interactions are modelled by a linear term, βij and a non-linear sinusoidal term.

Partial differential equations

The differential equations models, presented so far, do not take into account the spatial
distribution of cells and gene products. However, in certain situations, such as cell
differentiation during development, the spatial information is very important, so more
complex differential equation-based models are needed (partial differential equation systems,
introduced by Baldi & Hatfield (2002)). These express concentration changes in both space and
time, by reaction-diffusion equations. Here, the one-dimensional version of these equations
is described, but these can be extended to 2 or 3-D situations. Considering a linear sequence
of L compartments or cells, the concentration of product i in cell l depends on the regulatory
effects in cell l but also on the diffusion process between this cell and its neighbours. Diffusion
is considered to be proportional to the concentration difference between the two cells. So, the
differential equation that describes this process is:

dX(l)
i
dt

= Fi(X
(l)
1 , ..,X(l)

n ) + Di(X
(l−1)
i − 2X(l)

i + X(l+1)
i ) (8)

where Fi are the regulation functions and Di are diffusion functions. This is for the case
when space is discrete (well delimited cells and compartments). In the continuous case, the
concentrations of the products are functions of both time and space, so the system can be
modelled with equations of the form

∂Xi
∂t

= Fi(X1, ..,Xn) + Di(
∂2Xi
∂s2 ) (9)

where s is the space variable.

Artificial neural network models

ANNs are very suited for modelling complex behaviour as, any function can be simulated, by
adjusting the weights. A type of ANN that has been repeatedly used to model GRNs is the
recurrent neural network (RNN) (Lee & Yang, 2008; Vohradsky, 2001; Wahde & Hertz, 2000),
which model dependencies between genes as:

dxi
dt

= miS(
n

∑
j=1

wijxj + bi)− rixi (10)

where ri is the degradation rate of gene product i, bi accounts for external input, mi is the
maximum expression rate and xj are expression levels while S is a sigmoid function. This
model is similar to that of linear systems of differential equations; however the introduction
of the sigmoid function allows for modelling non-linear behaviour. A variant of this model
considers discrete time points, and computes the expression value of gene i at time point t+ 1
using the values of the regulators at time t:

xi(t) = S(
n

∑
j=1

wijxj + bi − rixi) (11)
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Fig. 2. Chromosome representation in GenClust

This reduces the computational cost for simulating the data, as no differential equations are
involved, which is an important advantage in the context of evolutionary optimisation, (which
requires simulation for every fitness evaluation).

3. Stage 1 : Pattern recognition methods

3.1 Clustering
Evolutionary algorithms have been applied in clustering gene expression data, either
individually, (Di Gesu et al., 2005), or by hybridisation with classical clustering methods (Lu
et al., 2004a;b). Additionally, evolutionary bi-clustering methods have been developed and
applied to this type of data (Chakraborty & Maka, 2005; Mitra & Banka, 2006).
GenClust (Di Gesu et al., 2005) is a novel method, using a genetic algorithm-like approach.
It differs from other genetic algorithms in that the population does not represent a set of
possible solutions, but only one. Each individual in the population encodes one sample
and a label representing its cluster (Figure 2). By analyzing these labels the components
of each cluster can be computed. The approach incorporates elements of EC, such as
genetic operators, that are applied at each generation. To generate a secondary population,
classical one-point crossover and bit-flip mutation are applied to each individual with given
probability. After applying the operators, redundancy and inconsistency have to be removed
from the population, so that it still represents a partition of the data set. Fitness evaluation
is based on the sum of intra-cluster variances. The aim of the algorithm is to minimise
this measure and, consequently, to obtain tight clusters. The method has been validated on
five datasets (Rat Nervous System, Reduced Yeast Cell Cycle, Yeast Cell Cycle, Peripheral
Blood Monocytes and Reduced Peripheral Blood Monocytes) and compared with other
clustering methods like K-Means. The algorithm has been shown to converge rapidly to
a local minimum; however, the resulting clusters were comparable those obtained by other
techniques.
A similar objective was pursued by Lu et al. (2004a;b), where a hybrid genetic K-Means
algorithm (GKA) with two different versions (FGKA - fast GKA and IGKA - iterative GKA)
was introduced. Hybridisation with K-Means consists of a custom genetic operator, based
on this classical clustering method, which changes cluster allocation to the closest centroid
in random individuals. This operator is applied to each individual with given probability.
Neither FGKA nor IGKA uses a crossover operator, and mutation is performed based on
dynamically computed probabilities depending on current cluster assignment. The difference
between the two algorithms is that the latter updates cluster centroids and within cluster
variance each time a mutation is performed on an individual, while the former computes
these for each generation. This makes IGKA faster when mutation probabilities are low, while
FGKA is faster when these are large. In consequence, a hybridisation of the two (HGKA-
hybrid GKA) is also proposed (Lu et al., 2004b). The algorithms were applied to microarray
yeast and serum data and IGKA was shown to obtain better clusters of genes from the same
functional categories.
In Chakraborty & Maka (2005) a genetic bi-clustering algorithm based on K-Means and greedy
local search seeding is presented. The algorithm was applied to yeast and human lymphoma
data and was shown to provide better bi-clusters when validated against previous biological
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knowledge, compared to Cheng & Church (2000) (which adopts a greedy search approach).
A similar algorithm, that of Mitra & Banka (2006), employs multi-objective optimisation
for bi-clustering. The algorithm is initialised using a greedy algorithm based on random
initial solutions. Two objective functions are used, one maximising the number of genes
and conditions in the bi-cluster, and another maximising homogeneity. Method evaluation
was performed on the same yeast and human lymphoma datasets, and results indicate
better performance compared to the single objective variant and to simulated annealing for
bi-clustering Bryan (2005).

3.2 Feature selection techniques
Given the high dimensionality of gene expression data, clustering and classification are
computationally expensive. However, a large fraction of the genes in these datasets are not
differentially expressed between different experiments, (i.e. are redundant), so these could
be eliminated from the analysis to reduce dimensionality. To achieve this, feature selection
techniques have been formerly applied to gene expression data, mainly for classification
purposes. Such methods select features (genes) that are important in the process under
analysis, as they display a change in expression from one experiment to another. This
filtering not only reduces the computational cost, but also improves pattern recognition for
participating elements.
Feature selection methods can be classified into two categories: wrapper and filter methods.
Filter methods compute for each feature a measure of relevance for the current classification
task. The features are sorted by their relevance and the top n are further used for pattern
recognition. Wrappermethods, on the other hand, use the classifier itself to find the importance
of a set of genes. They select a feature subset and train a chosen method on that set. The
performance of the trained classifier can be seen as a measure of the relevance of the genes
in the subset. The wrapper method iterates this operation for different subsets and chooses
the best one, and the difficulty is how to choose feature subsets that maximise the accuracy of
the classifier, while minimising the number of selected genes and iterations. The search space
for this problem is huge: if the number of initial genes is n, 2n possible subsets exist. In this
context, evolutionary techniques are known to cope well, as they benefit from mechanisms
obtaining good solutions by searching a small portion only of the entire space, (Baeck et al.,
2000). Consequently, there are several approaches that use EAs as wrapper methods for
feature selection, for example Li (2001); Li et al. (2004); Ooi & Tan (2003); Shah & Kusiak
(2004); Souza & Carvalho (2005). One of these has also been applied to proteomics data, (Li,
2001; Li et al., 2004).
Most evolutionary approaches for wrapper methods are very similar. A population of gene
subsets is maintained and allowed to evolve using different genetic operators. The fitness
of each candidate solution is a measure based on the training error of the classifier when
using that specific set of features. After applying genetic operators, the fittest individuals
remain in the next generation. While principles are the same, existing methods differ in
terms of classifier used or EA components, (e.g. size of the chromosomes, fitness function,
etc). Additionally, some methods ,(Li, 2001; Liu et al., 2009; Shah & Kusiak, 2004), aggregate
features obtained in multiple runs in order to improve performance. Table 1 summarises
existing EA wrapper methods.
Recently, a new method for feature selection using genetic algorithms has been developed
(Zhu et al., 2007). This is a hybrid of the wrapper and filter methods: two operators that add
or remove features from a set, in a filter-like manner, are applied to the feature set encoded by
the best individual of each generation. In this way, the individuals of the genetic algorithm,
(candidate feature sets), are fine tuned to improve the overall fitness and reduce the number of
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Method EA Classi-fier Multi-
class

Feature
set size

Combining
results

Fitness Datasets

Li (2001);
Li et al.
(2004)

GA K-NN No Fixed Filter by
appearance
count

Classifier
accuracy

Leukemia
(microarray),
Ovarian cancer
(SELDI-TOF)

Shah &
Kusiak
(2004)

GA Decision
tree

No Fixed Reunion or
intersection

Classifier
accuracy

Emulated

Ooi & Tan
(2003)

GA Bayesian Yes Variable None Classifier error
rate in cross-
validation and
independent
test

9 cancer types,
14 cancer types

Souza &
Carvalho
(2005)

GA SVM Yes Variable None Classifier error
rate and feature
set size

Leukemia,
Blue-cell
tumour

Liu et al.
(2009)

GA ICA-SVM,
P-ICR

No Variable Intersection LOOCV +
feature set size

Colon cancer,
High-grade
glioma

Table 1. Features of EA wrapper methods. Abbreviations: ICA - Independent Component
Analysis, (Liu et al., 2009), GA- genetic algorithm, SVM - support vector machine, K-NN - K -
nearest neighbours, LOOCV - leave one out cross validation

generations. The algorithm uses an SVM as a classifier. The two newly introduced operators
are based on the Markov Blanket concept. The Markov Blanket of a feature F is the set M of
features that satisfies :

P(F −M− F|F, M) = P(F −M− F|M), (12)

where F is the set of all possible features. So, the probability of the values for all features
except F and M are independent of F, given M. Intuitively, in our case, if the Markov Blanket
of feature F is in a subset of features, then it can bring no more information to that subset so it
can be removed. The algorithm was applied by the authors on 11 different datasets, including
ones for lung or breast cancer, and compared to other filter and wrapper feature selection
methods. It was shown to perform better than other methods for most datasets. In Zhu
& Ong (2007), also, another hybrid filter-wrapper genetic algorithm-based feature selection
algorithm is presented, which implements the new genetic operators using a ranking method,
i.e. Robnik-Łikonja & Kononenko (2003), instead of the Markov Blanket. This is shown to have
similar results in terms of accuracy. However, the Zhu et al. (2007) algorithm finds smaller
gene sets, so it has an important advantage in terms of practical use: the smaller the number of
features, the less expensive the diagnostic procedure. Further, the Markov Blanket embedded
genetic algorithm has also been applied very recently to multi-class problems, (Zhu, Jia & Ji,
2010; Zhu, Ong & Zurada, 2010), using multi-objective optimisation, (where each objective
corresponds to the accuracy of a bi-classification task in a one-versus-all manner). Here,
the notions of full class relevant and partial class relevant features are introduced. These,
respectively, are features that have a role in differentiating all classes (i.e. display different
expression levels in all classes) and features that differentiate only part of the classes (i.e. may
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have similar values is some classes). The algorithm identifies both types of features and is
shown to perform better than Zhu et al. (2007) on synthetic and microarray gene expression
data.

4. Stage 2: Modelling GRNs from time series data

An overview of existing EAs for GRN model inference from time series data is presented
in this section. The discussion considers methods applied to both discrete and continuous
models. Due to added complexity of the latter models, many EA approaches have been
developed, from classical to advanced algorithms, and these are outlined, indicating their
gradual development and their role in GRN inference.

4.1 Discrete models
Although applied more extensively for continuous models, evolutionary algorithms have
been used for qualitative model analysis also. Linden & Bhaya (2007) introduced a method
of inferring fuzzy rules from microarray data, using genetic programming. The algorithm
uses the reverse Polish notation6 for rules, which can be easily represented as trees, with
three Boolean operators for the conditions: NOT, AND and OR. A population of this type
was evolved using classical genetic operators on trees and the best individuals were selected
to progress to the next generation. Fitness was defined as the percentage error observed
between real data and the data generated by the rules. The algorithm was applied to finding
rules in microarray data from experiments on the response to cold of the plant Arabidopsis
Thaliana, as well as on the rat nervous system. A clustering algorithm was applied initially
to reduce dimensionality, with resulting clusters considered to form one node in the network.
Results were validated based on previous knowledge of the datasets, while new hypotheses
for subsequent laboratory experimentation were proposed.
In Repsilber et al. (2002) a genetic algorithm was used to fit a multistate discrete network,
(Section 2.2.1), to simulated gene expression data. The aim was to rank previously known
hypotheses about the structure of the network, by allowing model parameters to evolve. The
approach also introduced time delays (δ = {δ1, .., δN}) to model the time gap between the
transcription of one gene and the regulation effect of the resulting protein. This time gap is
the time needed for the mRNA to be translated into a protein, so a node changes its state
only after initiation of transcription plus a time delay. The algorithm thus searches for the most
probable model structure for the data available.
Another method of inferring discrete GRN models, based on genetic programming, was
developed by Eriksson & Olsson (2004). Here, genes take Boolean values and the regulatory
network structure for each target gene is encoded as a tree and evolved to obtain better
structure. For each such tree in the population, a Boolean function is determined from data,
(by computing the truth table using expression levels in the data), and fitness is assigned
based on ambiguities that arise. This results in choosing those structures that have fewer
ambiguities, so indicate more plausible interactions. The method was tested on synthetic
networks of different size, (10 to 160 genes), and shown, for networks smaller than 40 genes
to successfully locate structures with over 75% of the optimal fitness, (with a value of 51% for
the 160-gene network). However, to date, this method has not been validated with real data.
A similar evolutionary algorithm optimising the wiring of a Boolean network is described in
Esmaeili & Jacob (2009). This method starts with randomly generated wirings with a limited
number of regulators for each gene and evolves these structures using differential evolution.

6 In the reverse Polish notation, the symbol order in an expression is changed: the operators are in front
of the operands. For instance, a× (b+ c)− d becomes −× a+ bcd.
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Method EA Mo-del Fitness Local
search

Sta-ges Datasets (Size)

Ando et al. (2002); Iba
(2008); Sakamoto & Iba
(2001)

GP ODE Error + degree
penalty

LMS - Synthetic (5)

Fomekong-Nanfack et al.
(2007)

ES PDE Error - - Fly (6)

Ando & Iba (2003) GA LDE Error -
√

E. coli (9), Yeast
(8)

Deng et al. (2005) GA LDE 1 + Error -
√

Rat 20)
Tominaga et al. (1999) GA SS Error - - Synthetic (2)
Iba & Mimura (2002) GA SS Error -

√
Synthetic (10)

Kikuchi et al. (2003) GA SS Error +
parameter
penalty

Simplex
Crossover

√
Synthetic (5)

Kimura et al. (2003) GA SS Error +
parameter
penalty

QP
√

Synthetic (30)

Noman & Iba (2005) DE SS Error +
parameter
penalty

-
√

Synthetic (5)

Noman & Iba (2006; 2007) DE SS Error +
parameter
penalty

HC
√

Synthetic (20),
Yeast (14-
qualitative)

Table 2. Evolutionary algorithms for continuous model inference (1). Error is a measure of
the difference between observed and simulated data, and different versions of this (RSS,
MSE) have been used; however, their use is equivalent, as the number of genes and time
points, (i.e. degrees of freedom), is the same for all individuals to be evaluated in a given
optimisation run. Methods employing any type of iterated optimisation (Section 4.2.2),
nested optimisation (Section 4.2.1) or divide et impera (Section 4.2.1) contain

√
in column

Stages. Abbreviations: ODE - ordinary differential equations, EA - evolutionary algorithm,
GP - genetic programming, LMS - least means squares, PDE - partial differential equations,
LDE - linear differential equations, SS - S-System, ES - evolutionary strategy, DE - differential
evolution , HC - hill climbing, QP- quadratic programming.

Each structure is evaluated using a multi-objective approach, which aims at optimising
sensitivity, attractor cycle length and number of attractors. The method is shown to yield
more stable structures for a synthetic network of size 8. However as before, the method was
not applied to real gene expression data, so further analysis is required.

4.2 Continuous models
Several algorithms for inference of continuous GRN models from gene expression data have
been developed in recent years, and Tables 2 and 3 give an overview of methods. These
include application of classical evolutionary techniques and development of novel algorithms,
especially tailored for gene expression data.
One of the first approaches to GRN reverse engineering, based on evolutionary computation,
is that of Tominaga et al. (1999). A classic, double-encoded genetic algorithm is used to
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Method EA Mo-del Fitness Local
search

Sta-ges Datasets (Size)

Xu et al. (2007) DE
PSO

RNN Error - - Synthetic (8), E.
Coli(8)

Koduru et al. (2007; 2004;
2005; 2008)

GA
PSO

LDE, SS,
RNN

Multi Objective
- Error per gene

Simplex - Rice (2), A.
Thaliana(3)

Imade et al. (2004; 2003);
Morishita et al. (2003);
Ono et al. (2004)

GA SS Error GA
√

Synthetic (5)

Spieth, Streichert, Supper,
Speer & Zell (2005); Spieth
et al. (2004)

GA SS Error ES
√

Synthetic (20)

Keedwell & Narayanan
(2005)

GA ANN BP Error BP
√

Synthetic
Boolean (10),
Rat (112), Yeast
(2468)

Daisuke & Horton (2006) GA SS Error Simplex
Crossover,
Scale free

√
Synthetic (5),
Mouse (7)

Spieth, Streichert, Speer &
Zell (2005b)

GA,
ES

SS Multi Objective
- Error,
Connectivity

- - Synthetic (5, 10)

Kabir et al. (2010) SA-
DE

LTV Error - - Synthetic (5), E.
Coli (6)

Table 3. Evolutionary algorithms for continuous model inference (2). Abbreviations: LDE -
linear differential equations, SS - S-System, PSO - particle swarm optimisation, RNN -
recurrent neural network, ES - evolutionary strategy, ANN - artificial neural network, BP -
back-propagation, SA-DE - self adaptive differential evolution, LTV - linear time-variant.

infer S-System models from time series data. However, this method was only applied to
synthetic data for a very small network (2 genes). Another more recent application of a
classic evolutionary algorithm is that of Fomekong-Nanfack et al. (2007). This employs an
evolutionary strategy to optimise model parameters for a 6-gene developmental network
for Drosophila Melanogaster, based on partial differential equations, (reaction-diffusion model,
Section 2.2.1). Although suitable for a larger network than Tominaga et al. (1999), the size of
the inferred GRN is still very small compared to the total number of genes typically involved
in such a system, showing that classical evolutionary algorithms are not powerful enough for
larger networks. This was also indicated in Sîrbu et al. (2010a), where an empirical comparison
was performed between different evolutionary algorithms, including Tominaga et al. (1999),
and which showed that only hybrid evolutionary algorithms scaled to larger systems.
The limitation in size and model quality for quantitative analysis derives from the nature
of the data to be studied. Typically, gene expression time series are too short, due to
experimental limitations, while the number of parameters needed to describe quantitative
models is very large. This creates an under-determination problem, so that multiple models
can have very similar simulated behaviour, with corresponding poor reliability for inferential
algorithms. Additionally these data are intrinsically noisy, hence application of algorithms
to real data is not straightforward, (Sîrbu et al., 2010a). This is emphasised in Tables 2 and
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3, where many algorithms are seen not to have been applied to real data. A consequence of
noise and under-determination is the ruggedness of the fitness landscape7 for this problem,
(Rodrigo et al., 2010). However, evolutionary algorithms are known to perform well on
underdetermined problems and noisy fitness functions (Mitchell, 1999), so have clear benefit
over other inferential methods. Evolutionary computation approaches that address these
issues can guide the optimisation towards more plausible solutions and are discussed next.

4.2.1 Addressing the under-determination problem
Divide et impera

Given that model parameters are independent for each gene, (relying only on the expression
level of the genes at previous time points), one method of addressing under-determination is
to use a divide et impera approach. This consists of separate optimisation of parameters for each
individual gene, using observed rather than simulated expression levels for the other genes.
This method has been implemented in several evolutionary algorithms, (Ando & Iba, 2003;
Iba & Mimura, 2002; Keedwell & Narayanan, 2005; Liu et al., 2008; Noman & Iba, 2006; 2007),
and has the advantage of reducing the solution space by decreasing the number of parameters
to be inferred at any one time. In a recent comparison study, Sîrbu et al. (2010a), algorithms
using this approach scaled better than those which sought to optimise parameters for the
entire network simultaneously. However, a disadvantage of this method is that, typically,
expression levels in the data are noisy, and these are used in single gene simulations, resulting
in model parameters slightly different from those that would be obtained by simulating all
genes. In consequence, models obtained by combining single gene solutions may not fit the
data very well. This can be avoided by a second optimisation stage: starting from single
gene models, evolutionary optimisation is employed to fine-tune the parameters for the entire
network, (e.g. Ando & Iba (2003); Noman & Iba (2005)). Further, a model that handles noise
better, such as an artificial neural network, (which employs a sigmoid function to compute
expression levels), may also decrease this effect.

Obtaining skeletal/ scale free structures

To further distinguish between many possible models, known characteristics of the network
structure, such as low connectivity or scale-free nature, have been considered also. Many
methods apply such knowledge to the optimisation process at different levels of the algorithm.
The simplest idea sets parameters to zero once these fall below a fixed threshold (Kikuchi et al.,
2003; Tominaga et al., 1999). However, more advanced approaches have also been developed.
For instance, Kikuchi et al. (2003); Kimura et al. (2003); Noman & Iba (2005; 2006) use an
additional term that penalises solutions with large parameter values. A refinement of this
penalty-based idea can be seen in methods, which start by penalising all connections, and
then use a connectivity threshold to reduce possibilities. This results in more advanced fitness
functions, and is possible because evolutionary optimisation, unlike numerical methods,
has the advantage of not restricting fitness function type. A similar method, (Spieth,
Streichert, Speer & Zell, 2005b), uses the connectivity as a second objective in multi-objective
optimisation. Analogously, Ando et al. (2002); Iba (2008); Sakamoto & Iba (2001) have used
genetic programming to evolve sparse ordinary differential equations, by penalising functions
of large degree. Deng et al. (2005) also employed a limit on the connectivity of a linear
differential equation model, evolving the connectivity parameter during optimisation, rather

7 In evolutionary algorithms, each candidate solution can be considered a point in a multidimensional
space (i.e. the solution space), with a corresponding fitness value. The fitness values for all points in
the solution space generate the so called fitness landscape.
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than fixing it initially, in order to find the optimal connectivity for the network, i.e. the number
of regulators that achieves best data fit.
Another mechanism, used to obtain solutions with more plausible structures, is local search.
For instance, Noman & Iba (2006) use hill climbing to set as many parameters to zero in
two candidate solutions for each generation. Also, in Daisuke & Horton (2006), models are
checked for scale-free structure, and modified if they do not comply, by adding or removing
random connections, (setting the corresponding parameters to 0). All these methods result in
sparser networks, as unnecessary parameters are set to zero.

Nested optimisation

Reduction in the number of parameters to be optimised has been also performed using a
nested optimisation approach, (Keedwell & Narayanan, 2005; Morishita et al., 2003; Spieth,
Streichert, Supper, Speer & Zell, 2005; Spieth et al., 2004). These methods divide the search
into two stages: structure and parameter search. During structure search, network topology
is evolved using a genetic algorithm. Candidate structures are built so that the number
of regulators is bounded for each gene, and these are evaluated by a second algorithmic
stage, which optimises parameters for the existing connections. This reduces the number of
real-valued parameters to be inferred at the second stage. The parameter search is performed
using an evolution strategy, (Spieth, Streichert, Supper, Speer & Zell, 2005; Spieth et al., 2004),
a genetic algorithm, (Morishita et al., 2003), or back-propagation, ( Keedwell & Narayanan
(2005), with an artificial neural network as the model). Again, this is facilitated by the
flexibility of fitness evaluation, which is characteristic of evolutionary algorithms. Nested
optimisation increases parallelisation potential, (a parallelised version of Morishita et al.
(2003) was later developed by Imade et al. (2003)). Separation of structure and parameter
search is important as this allows the topology to have a larger influence in the optimisation
process, rather than optimising real-valued parameters directly. This is particularly relevant in
the current context as dynamical behaviour in biological networks relies mostly on topology,
(Alvarez-Buylla et al., 2007), with parameter perturbations of lesser importance.

Parallelisation

Quantitative models require optimisation of a very large number of parameters, and fitness
evaluation is costly in simulation terms. These costs increase when additional time series
datasets are used, so parallelisation of methods is mandatory. Evolutionary algorithms
have the advantage of being intrinsically parallel, facilitating efficient multi-threading of the
optimisation process. Several examples of parallel implementations exist in evolutionary
methods for GRN modelling, (Daisuke & Horton, 2006; Fomekong-Nanfack et al., 2007; Imade
et al., 2004; 2003; Spieth, Streichert, Speer & Zell, 2005a). These correspond to both grid
and cluster systems, while parallel frameworks for analysis have been implemented and are
publicly available (Spieth et al., 2006; Swain et al., 2005).

4.2.2 Handling local minima
Combining multiple methods

Due to the ruggedness of the fitness landscape, an evolutionary algorithm can be trapped
in local minima, and fail to find an optimal solution. One approach that seeks to avoid
this is to combine different evolutionary methods. This is facilitated by their simplicity
and flexibility. For instance, Xu et al. (2007) alternates differential evolution and particle
swarm optimisation, (parameterisation of a neural network model), to obtain better overall
models than from the two optimisation strategies separately. A different approach, (Daisuke
& Horton, 2006; Kikuchi et al., 2003), uses Simplex crossover, which efficiently balances the
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exploration and exploitation of the search space (Kikuchi et al., 2003), and in consequence
speeds up convergence, (as the local minima problem is diminished).

Iterated optimisation

A second technique with the same aim is iterated optimisation, (possible due to the stochastic
nature of evolutionary computation). Multiple runs of the same algorithm typically lead to
different solutions, i.e. different local minima, which can be combined to obtain a better
model: Kikuchi et al. (2003) describe a second optimisation run, initialised with these local
solutions. An alternative is to analyse local solutions by methods other than evolutionary
algorithms. For instance, Daisuke & Horton (2006); Deng et al. (2005) employ a voting
procedure for connections found in multiple runs, while Noman & Iba (2005) use voting to
find null parameters in the model. Similarly, Noman & Iba (2007) apply Z-score analysis to
local solutions to find plausible qualitative connections for yeast cell cycle data (quantitative
analysis being hampered by data limitations of length and noise).

4.2.3 Handling noise
Noise is a serious problem in gene expression measurements and, unfortunately, most of the
algorithms developed for model inference from these data do not specifically take it into
account. This makes many methods unfit for real data, even when validated in principle
for synthetic systems. A recent comparison of evolutionary methods for quantitative model
inference has enabled evaluation of method performance on noisy data, (Sîrbu et al., 2010a).
While most methods give good behaviour up to 5% added noise, only two maintained this
with up to 10%. One, (Keedwell & Narayanan, 2005), uses an artificial neural network
to model gene regulation, while the second employs a local search procedure, based on
Quadratic Programming, that handles noisy measurements, (Kimura et al., 2003). The
superior performance of these two methods is a strong indication that noise needs to be
explicitly addressed in the model or evolutionary process, in order to obtain algorithms that
can be applied to real-world data. (Refer again to Tables 2 and 3)

5. Stage 3: Data integration for GRN modelling

Evolutionary approaches for data integration are few, so far, even though the need for
inclusion of other types of data in the inferential process, (due to the under-determination
problem), has been widely acknowledged, (Hecker et al. (2009) and references therein). One
of the first methods attempting to incorporate previous knowledge is that of Shin & Iba (2003),
where the AIC-based8 fitness function, (similar to that of Noman & Iba (2006)), is modified to
account for known interactions between genes in an S-System model. Thus models containing
known interactions have better fitness and this leads the search towards regions in space that
are more likely to contain the correct structure. The Shin & Iba (2003) algorithm was applied
repeatedly and results were analysed using Z-scores to identify significant relationships.
On synthetic data, the approach was shown to have increased sensitivity in finding correct
interactions, compared to the standard method, which made no use of previous knowledge.
Further, the former worked well even when previous knowledge was partially incorrect, (not
unusual in a real experiment). When applied to the real microarray data of E. Coli, the method
was also shown to identify previously known interactions.
A second data type integrated into the evolutionary optimisation process relates to knock-out
experiments. Ono et al. (2004) attempted inclusion of time series knock-out data, and

8 Akaike’s Information Criterion (AIC, Noman & Iba (2006)) is an information criterion used for model
selection, which is based on the error between observed and simulated data.
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demonstrated that this improved the structure search. Again, the method was only applied
to synthetic systems. However, Ferrazzi et al. (2007) integrated steady state knock-out
measurements to infer parameters for a linear model of regulation in the cell cycle of
Saccharomyces Cerevisiae. The additional data are used to initialise a genetic algorithm
with biologically plausible interactions, by analysing differentially expressed genes in the
knock-out experiments, and keeping these known interactions fixed in the structure. This
enhanced approach was compared to a simple genetic algorithm, and was shown to be more
robust. Thus, feeding the optimisation with interactions from knock-out data guided the
algorithm towards similar solutions in the search space during different runs, (implying that
these were closer to the real network of interactions).

5.1 Large scale data integration
To date, only one additional piece of knowledge data has been added to the evolutionary
optimisation process. However, combining information sources could bring significant
improvement. Consequently, we are developing a novel integrative evolutionary algorithm
that aims at combining multiple data sources for GRN modelling. The algorithm uses an
ANN as a model and is based on the idea introduced by Keedwell & Narayanan (2005) of
dividing the structure and parameter optimisation process. A genetic algorithm is used for
structure search, and back-propagation for parameter search and structure evaluation. As
this is a divide et impera approach, a second optimisation stage has been added to the original
algorithm, which performs fine tuning of models, obtained by combining single gene results.
This second stage is executed after iterating the first stage several times for each gene with
different connectivity limits (i.e. different number of regulators), so each gene connectivity
is optimised to obtain structures that are better able to simulate the data. Additionally, the
algorithm allows for reducing the list of possible regulators to a user defined list, (from
previously known transcription factors, if available). This further decreases the search space
and allows introduction of meta-information into the algorithm.
A first step for heterogeneous data integration is combining gene expression data from
different sources. Although time series from one laboratory are typically short, multiple
data sets from different sources, which nevertheless measure the same process, are available.
A study of cross-platform microarray data integration has been performed, (Sîrbu et al.,
2010c), and has demonstrated that models obtained from combined data are both more
robust to noise and parameter perturbation, and display less noise over-fitting. Additionally,
normalisation methods for multiple microarray platforms have been analysed in the context
of GRN modelling (Sîrbu et al., 2010b).
It appears that time series data integration does reduce the under-determination problem,
but it makes the inferential process much more computationally intensive, (especially for
evolutionary optimisation, as multiple series have to be simulated for each fitness evaluation).
To address this, a fine-grained parallelisation of the algorithm has been performed. This uses a
different processor to evaluate each candidate solution in the population. Additionally, during
the first stage, individual gene runs are also divided between multiple processors.
A second step for data integration, as seen earlier, is that of using steady state knock-out
experiments. These are used here not only for initialisation, as in Ferrazzi et al. (2007), but
also for model evaluation. Unlike Ferrazzi et al. (2007), the structure extracted from these
data is not fixed, so the algorithm can change this during optimisation, in order to select
the interactions that give better data fit. For evaluation, the models are simulated for a
user-defined number of time points, to reach the steady state, using null expression values for
the knocked out genes and starting with expression values of 0.5, (middle of interval (0, 1),
which is the range of gene expression values), for the rest. The error between the resulting
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Fig. 3. Initialisation with knock-out (KO) experiments. Graph shows average values over
three runs for each experiment: KO Init (initialisation with knock-out experiments) and
Random Init (random initialisation). Qualitative results are displayed using AUROC (area
under ROC curve), AUPR (area under precision-recall curve), PAUROC (p-value of AUROC)
and PAUPR (p-value of AUPR). Quantitative results show MSE values between data and
simulation for knock-out (Dual KO and Single KO) and wild-type (MSE) experiments.
Results obtained using KO Init are better both quantitatively and qualitatively.

state and the data is used as an additional term in refining the fitness function. This evaluation
is only performed during the second stage of the algorithm, when the model for the entire
network is optimised, as it requires simulated values for all the genes in the network.
We have validated this approach with simulated gene expression data from the DREAM 4
challenge, (Marbach et al., 2009). Although these are synthetic data, they are generated using
models inspired by real GRNs,( as provided by the authors), so have plausible structures.
Also, the data contain added noise, in an effort to mimic real gene expression data. We
have compared models, which use both knock-out initialisation and fitness evaluation, to
those from the simple version of the algorithm, and results are shown in Figures 3 (for
initialisation) and 4 (for evaluation). These show that adding initialisation with knock-out
experiments leads to models containing more correct interactions, (higher AUPR, AUROC
and lower p-values), which can simulate known dynamical behaviour, (giving lower MSE
values in both wild type and knock-out simulations). If knock-out experiments are used for
evaluation, simulation of wild-type experiments is disimproved (higher MSE), but this may
be due to residual noise, given the improvement in dual and single knock-out simulations
and in qualitative results, (more correct interactions). Considering the promising results for
synthetic systems, validation of the method against real data is clearly required.
Given that structure is important in simulating GRN behaviour, with currently used fitness
functions, (based on error between observed and simulated data), unable to reward those
models that can reproduce these, albeit with shifts in expression values, an additional
evaluation term has been introduced, (Sîrbu et al., 2010d). This measures the Pearson
correlation between observation and simulation. Additionally, inclusion of this term in
back-propagation, allows us to find parameters that minimise the error and maximise the
correlation. In comparison to the initial algorithm, (incorporating error-based fitness and
back-propagation), the modified approach is found to yield better structures (with higher
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Fig. 4. Evaluation with knock-out experiments. Average performance over three runs for
each experiment: MSE+KO (with knock-out evaluation) and MSE (without knock-out
evaluation). Qualitative and quantitative results are analysed using the same criteria as in
Figure 3. These indicate better behaviour for models obtained from MSE+KO.

AUPR and AUROC) for synthetic data (from DREAM4) and more plausible interactions in
real microarray data (Yeast cell cycle). Further details are given in Sîrbu et al. (2010d).
Extension of the integrative framework is anticipated for future work, which should involve
inclusion of promoter sequence and binding affinity data (ChIP-chip), as well as incorporation
of RNA-seq and RNA-interference measurements in model evaluation and inference process.

6. Conclusions

This chapter has presented the role of evolutionary algorithms at different stages of gene
regulatory network inference. These include (i) expression pattern analysis, (ii) model
inference from time series data and (iii) data integration for model inference. For (i), methods
for clustering and feature selection for gene expression data have been described. For (ii),
method development from classical to more advanced hybrid algorithms has been presented.
This has been motivated by issues in network modelling, such as under-determination and
noisy data. These issues have been addressed to some extent by taking advantage of the
flexibility and power of evolutionary approaches. For instance, the flexibility of the fitness
function has been used to reward models with sparse or scale free structures. Hybridisation
with local search and other optimisation algorithms has also benefited from the simple basis of
the evolutionary algorithmic scheme, in order to avoid local minima traps and to handle noise.
Additionally, the parallelisation potential of these methods, combined with their stochastic
underpinning, has led to iterated algorithm versions, (designed to handle local solutions), and
nested optimisation, (used to limit the number of real-valued parameters to be addressed). All
these improvements have permitted a scale-up of quantitative modelling, from 2 to 30 genes.
However, this is still very modest compared to real GRN requirements.
Many of the methods presented have, to date, been applied only to synthetic data, while most
applications to real data can yield only qualitative results, as quantitative models obtained
remain unreliable. In order to further improve inference, different data sources can be
combined, and this has been presented as the third stage of GRN inference. Advances in
high-throughput technologies other than microarrays and global research efforts have created
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very large biological data sets containing protein-protein interactions, protein measurements,
knock-out experiments, protein binding sites and gene sequence information. Although
current such data are insufficient to determine the underlying GRN, combining them could
prove to be very powerful and EAs are flexible enough to enable their integration. Existing
methods, nevertheless, under-exploit EC potential, to some extent, by integrating only
one additional data type. In consequence, we have outlined here the basis for a novel
framework, which is being developed and which aims at large-scale data integration for
GRN quantitative modelling. This uses fitness evaluation, initialisation and parallelisation
to include heterogeneous data and knock-out experiments in the optimisation process. The
framework will be extended in the future to employ promoter sequences and protein binding
affinities, (such as those extracted from ChIP-Chip data), for model evaluation, and will
integrate RNA-seq data and RNA-interference measures in the inferential process.
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1. Introduction

Evolutionary algorithms (EA, see for a general introduction Holland, 1975; Goldberg, 1989;
Davis, 1991; Back, 1996) are “probabilistic” optimization procedures. Differently from the
“deterministic” ones (yielding an unique and reproducibile solution for assigned input data),
EA are somewhat aleatory and not reproducible. Such methods are part of the heuristics
(Polya, 1971). To be pedantic the term algorithm should indicate some sequence of mathematical
operations producing a foreseeable result if applied to definite input data. There is a resounding
oxymoron in the terms evolutionary algorithm. This contradictory language is however diffuse;
as this one is not an erudite essay of epistemology, we prefer to be tolerant and fly over
on semantic questions. Really evolutionary methods have aleatory routes and also aleatory
conclusions in many cases (e.g. stock exchange estimate, weather forecast, etc.); in some cases
instead (it happens in crystallography), unique and certain results can be reached in spite of
the multiplicity of routes travelled.
Multi-parameter optimization problems are encountered in many fields: industrial process
planning, financial investments, environment control, hurricane evolution, and many others
(Weise, 2009). We shall however not consider the general aspects of EA but rather to treat
about a specific argument: the study of chemical structures based on X-ray diffraction. In this
field, as shown later, there is a lot of a priori and useful information so that the aleatority of
the procedure can be considerably attenuated. Evolutionary methods in crystallography are
better formulated as Constraint Satisfaction Problems (CSP, see Ionita et al., 2010).
Evolutionary methods have a future in crystallography, particularly in solving hard problems.
The structural elucidation from X-ray powder diffraction data is among these (section
4.1). However, procedures are not consolidated yet, there are numerous alternatives to be
considered for which the common sense and the experience, rather than the theory, could
have a role.
This article will not treat the EA in the crystallographic context in its generality; rather it
will summarize some ideas and strategies which yielded a specific procedure: it is a possible
route, not the only possible one. These procedures are now included in a general-purpose
computer program with numerous options for finding and refining crystal structures termed
TRY (Immirzi, 2007b). In its actual structure the EA procedure needs that many parameters
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are assigned by the user. Assigning them in a more automatic fashion could no doubt improve
the program versatility.
The effectiveness of EA in solving crystal structures by diffraction methods is improved if one
makes systematically use of the so called internal coordinates (i.c.) for describing structures,
instead of the more common cartesian coordinates. The i.c. were first considered, in diffraction
analysis, by Arnott & Wonacott (1966). A computer program performing least-square
refinement of i.c. (LALS, Linked Atom Least Square) was first issued (Smith & Arnott, 1978)
and later updated repeatedly (the last edition, WINLALS , was published by Okada et al.,
2003). LALS has been used mainly in studying polymers. Also Tadokoro (1975) discussed the
use of i.c. in polymer case.
Both Arnott (and disciples) and Tadokoro did however neglect a very important complication:
the mutual independency (non-redundancy) of i.c., being of great importance in all
crystallogaphic applications, and in particular in EA, as will be shown later.
Now a procedure for carrying-out a molecular building always using non-redundant i.c. has
been devised (Immirzi 2007a,b); it is very simple, practical, and perfectly analytical, runs
thoroughly, and eliminates the necessity of using exotic instruments in matrix manipulations
(pseudoinversion, diagonalization, etc.; note that the mathematic instruments employed are
those of Newton, Gauss, and Lagrange).

2. Crystalline matter and X-ray diffraction

Characterization of chemicals, both natural and synthetic, is done always looking at the
matter at the atomic scale. In 19th century, atoms were speculative entities and scientists
had not instruments for ascertaining their shape or position. Nevertheless, in the middle
of century, some of them (Kekulé, Le Bel, van’t Hoff and others), with evident attitude versus
the heuristics (without awareness of course as heuristics did not exist yet) were persuaded
about molecules (proposed many years before by Avogadro finding much skepticism); they
begun, with much imagination and using logical arguments, to give them definite shapes,
for instance the tetrahedral shape to methane and the hexagonal shape to benzene. Many of
these intuitions were demostrated later be perfectly exact. Today to ascertain the geometrical
structure of molecules is not more a work of imagination: it is an exact science. Structure is
a “property” of any pure substance, defined and reproducible, like colour, density, melting
temperature, etc.1

The discovery of X-ray diffraction by crystals by Laue in 1912 made possible to ascertain the
structure. In the crystalline state, necessarily solid, atoms are ordered: there is a small portion
of space, a parallelepiped, generally oblique, termed the unit cell, which repeats itself by
translation in three directions and generates the whole solid. If the disposition of atoms in the
cell is determined, the whole crystal is determined. Frequently there is also symmetry: only
a fraction of the unit cell is independent; the remainder if given by appropriate orthogonal
transforms. Edges and interaxial angles of the unit cell are collectively termed lattice constants.
Just order makes possible X-ray diffraction of crystal, whose study permits to guess the matter
at the atomic scale; resolution is of the order of 0.02 Å or better; consider that the separation of
bonded atoms is 1-2 Å. The size of molecules studied by X-ray diffraction was initially modest;
now studying 50-100 atom molecules is a common matter.

1 There are indeed exceptions: some substances exhibit more than one structure (polymorphism).
Crystalline minerals are frequently polymorphic.
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3. Molecules and molecular crystals

Molecules are finite assemblies of atoms joined by strong forces (chemical bonds). In
molecular crystals molecules are orderly assembled through well weaker non-bonding forces
(van der Waals forces, dipole-dipole forces, hydrogen bonds, etc.).2

Thanks to the repetition, crystals diffract X-ray radiation: when a beam of monochromatic
radiation strikes a crystalline sample many beams emerge and their intensities can be
one-by-one measured. The intensity of the diffracted beams is related to the molecular
structure (see below).3

In absence of symmetry, ifV is the volume of the unit cell, λ the radiation wavelength, and 2ϑm
the highest angular deviation, there are altogether 3.35(V/λ3) sin3 ϑm different diffracted
beams (reflections). The above relationship indicates that the number of reflections raises as
sin ϑm/λ increases. The latter is an important parameter: the higher is sin ϑm/λ the higher
is the chance of success in a structural analysis, and the higher is the accuracy of the result.
Consider however that the intensity of the reflections decreases as ϑ angle increases and that
sin ϑm/λ may be limited by natural circumstances: there are materials which are intrinsecally
weakly diffracting; their structural study cannot be done accurately.

4. Structure and diffraction

It is possible to obtain crystal structures from X-ray diffraction data thanks to the mathematical
relationship between atomic positions and the intensities of the reflections. The latter, as
numerous as the volume of the unit cell is large (see above), are singled out by three integer
numbers: the Bragg indices (h, k, �). Each is deviated from the incident direction by a
characteristic angle 2ϑ, an analytical function of the Bragg indices and of the lattice constants.
One must intercept these beams and measure intensity.
There are nowadays very sophisticated instruments (diffractometers), controlled by computers,
allowing, with a minimal human intervention and in a short time, a complete characterization
of a crystal: measurement of the lattice constants, diagnosis of symmetry, localization and
measurement of all reflections with their Bragg indices h, k, �. If the unit cell contains N atoms,
and xj, yj, zj are the atomic coordinates (referred to the unit cell), the complex quantities

F(h, k, �) =
N

∑
j=1

f j exp[2πi(h
xj
a
+ k

yj
b
+ �

zj
c
)] (1)

are termed structure factors. The f j (atomic factors) are known real quantities which depend
on the chemical nature of the j-th atom and on sin ϑ/λ. The larger is the atomic number the
higher are f j. In every cases f j decreases as sin ϑ/λ increases.
The above relationship applies at 0 K; at higher temperature F’s are somewhat reduced
because of the thermal vibration. There are of course as many F(h, k, �) as reflections.
Now the squared moduli of F(h, k, �) should be orderly proportional to the measured
diffraction intensities I(h, k, �). This occurs, of course, when the xj, yj, zj coordinates are the
true ones. To get the unknown crystal structure one must find all the xj, yj, zj rendering the

2 Not all crystalline materials are molecular . There also ionic crystals and extended covalent structures.
3 The deviation of diffracted beams from the incident direction obeys to the Bragg’s law. Geometry is

quite similar to the case of a reflecting mirror: diffracted beams can be considered as “reflected” by the
sample. For this reason they are frequently termed reflections
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|F(h, k, �)|2 as close as possible to the I(h, k, �). Introducing the residual

χ2 = ∑
hk�

[I(h, k, �)− |F(h, k, �)|2]2 (2)

one can assume that the solution is the one rendering χ2 a minimum. For this reason to
find a structure is to solve a global optimization problem. The above χ2, divided by the sum of
F2(h, k, �) is the common R2 index, widely used as fitness function.

4.1 Single-crystals and polycrystalline samples
X-ray diffraction studies use either single-crystal samples or polycrystalline samples (powder,
fiber). In the second case things are more difficult because all diffracted beams having a given
2ϑ are overlapped. While the diffraction pattern of a single crystal is a three-dimensional
function I(h, k, �) rich of information, the powder diffraction is an uni-dimensional function
I(2ϑ) with poor information.
Structural studies based on powder diffraction data meet the difficulty of measuring the
diffracted intensities one-by-one, singled out by the Bragg indices, in presence of overlap.
The difficulty can be overcome employing deconvolution techniques (see e.g. Harris, 1998) or,
alternatively, renouncing to the separation of reflections and considering the quasi-continous
function I(2ϑ) (Rietveld, 1967; Rietveld, 1969; Young, 1995) exploiting the so called full-pattern
powder profile analysys.
In this case, the measured diffraction intensities I(2ϑi) are compared with the computed ones
given by

Icalcd,i = ∑
k
F2
k Ω(2ϑi − 2ϑk) (3)

where the sum is extended to all the reflections whose Bragg 2ϑk fall near to the current 2ϑi point. In
equation (3) Ω(2ϑi − 2ϑk) is the peak function having a maximum for 2ϑi = 2ϑk. In full-pattern
profile analysis the residual χ2 considered is given by the expression

χ2 = ∑
2ϑi

[I(2ϑi)− Icalcd,i]
2

and the most used fitness index is Rwp = χ2/ ∑ I2(2ϑ)
Just because EA techniques need a reduced number of data they are attractive in studies based
on powder diffraction, particularly when the full-pattern profile analysis is performed. For
recent studies see Harris (1998), Feng (2006), Hanson (2007), Oganov (2006).
When a structure has been solved (at a coarse level) a second problem arises: to refine atomic
positions. This is a local optimization problem. Once again the goal is to find the minimum of
χ2 varying systematically atomic positions in the vicinity of the initial coarse values and adding
some parameters for expressing the thermal vibration.
While the local optimization is done using deterministic algorithms (typically a least-square
refinement) and proceeds, in most cases, without problems, the global optimizazion, even at
coarse level, is much more exacting.
The remainder of this chapter concerns only global optimization problems. In addition
we shall not treat the traditional solution methods but only some based on evolutionary
algorithms.
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5. The three-dimensional space and the problem space

Solving a structure of N atoms means finding N positions in the 3D space. Unfortunately
there are no algorithms for finding positions one by one (unless rather simple cases occurring
in inorganic chemistry). Atomic positions must be find simultaneously.
An alternative way to define the terms of problem is to refer to another space, the so called
problem space, having 3N dimensions instead of three. To catch a structure means to locate a
single point in this hyper-space. Simple to say, but very difficult to do. As explained later the
EA follow this crazy idea.
Small-medium size problems, are solved using deterministic algorithms, provided that the
available diffraction measurements are numerous, accurate, and complete (i.e. including all
the intensities with the diffraction angles ϑ lower than the assigned 2ϑm). For these methods,
not discussed in this article, there are many excellent textbooks (e.g. Giacovazzo et al., 2002;
Stout & Jensen, 1995).4 The EA are indicated instead in difficult cases: limited 2ϑm, poor
quality of data, low number of reflections.
One could ingenuously believe that all structural problems can be solved moving the
representative point systematically in the whole problem-space and examining all solutions.
Atomic coordinates are however real and continuous quantities; so points are infinite.
Well, even though finite (and coarse) intervals are considered to render the problem-space
discontinuous, one obtains astronomic numbers also in the simple cases (see later). The
systematic exploration of the whole problem-space is not a practical tool, unless some tricks
are adopted. Possible strategies are:

i) to reduce substantially the number of variables adopting other kinds of coordinates rather
than crystallographic (see section 6) and choosing coordinate systems for which a good
fraction of variables are predictable;

ii) to render the problem-space discontinuous;

iii) to reduce as much as possible the range of variation for each variable.

We shall suppose that the crystal under study is a molecular crystal with known composition
(chemical formula) and known interatomic connection (structural formula); consider that the
chemical formula is obtained by chemical analysis; structural formula is the result of a
number of physical observations (e.g. NMR, IR, UV spectroscopy) and chemical observations
(relations of the unknown substance to other already known).
Using diffraction techniques one can establish size, shape, and symmetry of the unit cell. From
the experimental density of crystals one obtains the atom content of the unit cell. Using the
diffractometers one obtains an appropriate number of diffracted intensities.

6. Coordinates

Structures are commonly described by using the crystallographic coordinates (c.c.) to define
atom positions. The c.c. (collectively indicated with pi) are 3N if atoms are N. This choice
is the most natural and also practical because the simple analytical relationship with the
structure factors F(h, k, �), see equation (1).

4 Among deterministic methods we include the so called direct methods, actually the most used. Also
direct methods are somewhat probabilistc and aleatory, in modest amount however. Also using direct
methods the risk of finding false solutions exists.
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As a matter of fact, infinite alternative systems for describing structures are conceivable: if
new coordinates qi are introduced, so that one can transform from pi to qi and viceversa using
analytic and biunivocal relationships, the qi can be used as alternative stuctural variables. The
number of qi must be, of course, again 3N.5

Which are the alternative useful descriptions among the infinite possible ones? To reply it is
important to point out that atomic positions are not fully impredictable. The systematic study
of molecular crystals did demonstrate that atomic positions are not random quantities. Any
structural hypothesis must obey to the following rules:

i) atoms must be appropriately separated among them; for each atom pair distance is
anything but random: if the two atoms are chemically bound, atom separation is a
bond-length (b-l) and must be close to the sum of the atomic radii (see e.g. Cotton, 1999);
if not bound and spaced by three bonds or more, the distance must be higher than the sum
of the so called van der Waals radii (Bondi, 1964); the same applies when the two atoms
belong to different molecules (packing distances).

ii) the bond-angles (b-a) must be close to the “canonical” values prescribed by the rules of
orbital hybridation (see e.g. Cotton, 1999): angles close to 109.5◦ on carbon atoms with sp3

hybridation, close to 120◦ on carbon atoms with sp2 hybridation, etc. The examination of
“molecular models” suggest in much cases angles in rather restricted intervals.

iii) the molecular conformation must obey to the rules of stereochemistry: aromatic rings
must have D6d symmetry, the sequences C–C=C–C have to be planar, the torsion-angles
(t-a) about single bonds must have values close to those typical of ethane-like molecules
(-60, 60, 180◦), etc. These limitations can be thus “rigid” in some cases (double bonds),
“flexible” in other cases (single bonds).

The above restrictions for b-l, b-a, and t-a are of simple mathematical formulation if the
crystallographic coordinates pi are employed; there is however the disadvantage that the
restrictions (constraints) apply not to the pi themselves, but to a number of mathematical functions
of the pi. Indeed there are procedures for doing minimizations in presence of constraints:
the Lagrange method (Goldstein, 1980) with the drawback that only a few constraints can
be accounted for, while in molecular building there are numerous. Instead, introducing
alternative coordinates qi chosen with cleverness, it is possible to impose the above constraints
not on the functions but directly on the qi. If so happens one simply removes the qi from the
list of variables.

7. The internal coordinates. Eyring algorithm

It is customary studying complicate problem by means of the so called internal coordinates
(i.c.), used in performing molecular building in various other contexts (e.g. spectroscopy,
theoretical chemistry). The pioneer work (in chemistry) was that of Eyring (1932) who devised
the procedure later called Z-matrix . Really the idea is well older; it was skilfully described by
Lagrange (1796) who coined the term generalized coordinates. Lagrange studied not molecules
but machines; things are rather similar after all: Lagrange’s machines are made by rigid objects

5 3N coordinates are necessary for describing the crystal structure. If only the molecular structure is of
interest, the coordinates are 3N − 6 being six the rigid body coordinates (Goldstein 1980).
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connected to each other with limited freedom of movement; in molecules the rigid objects are
the chemical bonds and movements are limited to torsion and (in small amount) to bending.6

Eyring’s algorithm is simple, provided that there are neither rings nor polyhedra. The idea is
to build molecules first defining three atoms, (C1 , C2 , and C3 in Fig. 1) then inserting the
other atoms stepwise as function of three i.c. in each step: a b-l b, a b-a τ and a t-a ϑ. Of course,
in each step one must specify which atoms are to be considered.
Three i.c. are needed for starting a molecular building, viz. two b-l (b1, b2) and a b-a (τ3). It
is customary to put the 1st atom on the origin, the 2nd atom along x axis, the 3rd atom in the
x, y plane with y > 0.
Fig. 1 shows how the building starts (chbe command, green atoms) and the Eyring
construction (red atom). The construction of the 5th atom (blue) is discussed later.

Fig. 1. Building a 5 atoms molecule

The Eyring’s machinery for attaching a new atom after a given sequence A, B, C, is as follows:
one computes the vector v with components b cos τ, b sin τ cos ϑ, b sin τ sin ϑ, the vector
product u = (B− A)× (C− B), and the orthogonal transformation matrix T aligning A and
B points along z′ and making y′C = x′C = 0; then adds to C atom the product T · v . The
analytical expression of T matrix is:

T =

∣
∣
∣
∣
∣
∣

xB − xA xC − xB ux
yB − yA yC − yB uy
zB − zA zC − zB uz

∣
∣
∣
∣
∣
∣

with each column normalized to length 1.
Besides the Eyring’s construction (setx) needing three variables b, τ, ϑ, another construction
is practical when atoms are inserted on tertiary carbon atoms of known chirality; this
construction (tetr) makes use of two b-a τ1, τ2 (instead of one b-a and one t-a); the advantage
is the restricted range of the b-a compared with the wide range of the t-a. The above 5-atom
skeleton (Fig. 1) has been built just with 3 constructions: chbe (for atoms C1–C2–C3, in
green), setx (for atom C4, in red), and tetr (for atom C5, in blue).
In Fig. 1 the three constructions are indicated “symbolically” according to a conventional
syntax (see later).
Of course six other variables must be added to the molecular i.c. for defining the actual
position and orientation of the molecule in the unit cell: three translations and three rotation
angles. Rototranslation i.c. can be less than six because of crystal symmetry.

6 This representation applies when bonds are considered rigid and bond-angles semirigid . This situation
applies in studying molecular crystals (at a coarse level). In other contexts (e.g. spectroscopy) things
are different.
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7.1 Redundant coordinates
A serious drawback encountered in building molecules using Eyring method is the possible
redundancy of the i.c. In simpler words they might be not independent. While independent
i.c. can be varied each in turn preserving the stuctural formula, this does not apply in case
of redundancy. When molecular building is performed within random search and genetic
procedures, the preservation of the structural formula is of basic importance. Also regarding
reduncancy there is nothing new after Lagrange; he said all the necessary: the generalized
coordinates are exactly the same thing.
As illustrated below, non-redundancy in molecular building can be fulfilled by selecting the
3N− 6 i.c. of a molecule with shrewdness among b-l, b-a, t-a, and also bending angles if necessary
(see later). Bending angles become necessary in two cases: cyclic molecules and polyhedric
molecules.

7.2 Cyclic molecules
A possible solution overcoming redundancy in cyclic molecules is shown in Fig. 2 considering
the case of cyclohexane.
Since the gi must be, at a molecular level, 3N − 6, considering N bond-lengths, only other
2N − 6 gi must be assigned, necessarily, angular. The method adopted (Immirzi, 2007a,b)
integrates Eyring’s procedure for building atoms C1, C2, . . . C5 (9 gi are employed altogether,
4 b-l, 3 b-a, and 2 t-a) with a new machinery for building atom C6 (proposed by Goto and
Osawa, 1989) using two b-l and one angle only, a so called bending angle (ϕ); with this
construction the molecule is bent about a line crossing two atoms separated by one bond
only. Such construction (termed flap) has been added to the above ones. The machinery for
computing C6 as a function of ϕ and the two b-l C1–C6 (g11) and C5–C6 (g12) is very simple
(see Immirzi, 2005a).
The construction shown in Fig. 2, termed flap resolves the problem for rings of any dimension
and also every polyciclic molecule (e.g. decaline, steroids, etc.) and resolves also intricate
multicyclic molecules like norbornane, pinene, spirocompounds, etc.

Fig. 2. Building a ring without redundancy, cyclohexane C6H6, (the blue atom is computed
by a flap instruction).

7.3 Polyhedric molecules
A possible solution overcoming redundancy in polyhedric molecules is shown in Fig. 3
considering the simplest polyhedron: the cubane C8H8, represented as a bare carbon atom
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Fig. 3. Building a polyhedric molecule without redundancy (cubane C8H8). The green atoms
are computed by chbe, the red atom by setx, the blue atoms are computed by flap, and
the yellow atom by cage.

skeleton. Remember that the gi must be, at the molecular level, 3 × 8 − 6 = 18 and 12 gi are
b-l. In order to build without redundancy one must use only 6 angles. Building the first 7
atoms can be done as indicated symbolically in the figure. After the 5th command one atom is
lacking, C8, and all the 6 angles have been used besides 9 over 12 bond-lengths. To complete the
molecule one can find x8, y8, z8 imposing C8 has assigned distances b16, b17, b18 from points
C4, C5, C7. This is a simple (and classical) problem of 2nd degree having an unique solution
provided that the polyhedron is convex. The command cage computes the lacking atom.
Note that cage allows modeling also giant polyhedra like the fullerenes.

8. Other constructions and symbolic building

Molecular and crystal building through internal coordinates is not used only in performing
structural analysis by EA. It can be used instead in all conventional procedures. In
particular for doing interactive modeling, trial-and-error calculation, and at last for doing
the least-square refinement of structures based on the i.c. themselves as optimized variables.
In the latter case the non-redundancy of the variables plays a crucial role since only in absence
of redundancy normal matrices are always non-singular.7

For these reasons all the mentioned constructions have been programmed devising an unique
subroutine (termed LAGR , an homage to Lagrange, the authentic, and ignored, discoverer of
the i.c.) performing the whole construction at each call. To simplify the input data preparation
LAGR has been structured so that the various constructions invoked are specified symbolically
according to a conventional syntax with one line of data for each construction step. Examples
of this syntax are indicated in the figures and in the input data for procedure validation (Tables
1 and 2).
Besides the mentioned four basic constructions needed for building molecules of any kind
(chbe, setx, tetr, flap, and cage, tetr is really not indispensable) there are numerous
other constructions, not strictly necessary but very useful. Among them there are phen
(building phenyl groups), metl (building a CH3 group) and others. LAGR subroutine
includes also the commands necessary for placing the built molecule in the unit cell, for doing
orthogonal transforms, for referring the molecule to its inertial axes, and others. A clever

7 A persuasive argument is that normal matrix needed for carrying out the least-square procedure is
computed evaluating the first-order partial derivatives of structure factors vs. the variables. Such
derivatives are computed wrong if the variables are not strictly independent to each other.
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usage of these commands brings to a further reduction of the effective number of i.c. by
imposition of local symmetry, i.e. the identity of structurally independent i.c. but chemically
indistinguishable. At last a number of special commands were implemented for the case of
linear polymers: to create regular helices and chains with glide-planes, to orient the chain
parallel to the crystallographic c edge, etc.

9. General layout of a EA based procedure. Metaheuristic approach

The evolutionary (or genetic) algorithms for resolving global optimization problems are based
on the idea of finding the “true” solution starting from a number of more or less arbitrary
solutions and performing combinations of the variables analogous to the ones occurring in
the cellular reproduction.
There is an analogy between chromosomes and molecular structures. As a chromosome can
be described by a sequence of genes, a molecular structure can be described by a sequence of
structural variables. For these reasons the terms are used as synonyms.
In order to limit the aleatority of the procedure it is practical to follow the so called
metaheuristic approach (Weise, 2009) assuming that the gi vary as multiple of a small increments.
With this contrivance the i.c. (real and continuous quantities) become integer numbers
whose upper limit is limited by the range of excursion of the gi themselves. “Solutions” can
binary-coded using a finite number of bits. Consider anyway that the number of points in
the problem-space remains astronomic; for instance a 10-variable structure codified in 60-bits
may assume 260 ≈ 1018 values. If, for simplicity, a 5-gene case is considered, and 7, 6, 3, 4, 6
bits are dedicated to the 5 genes respectively, the binary code will be (braces groups the bits
of given g):

b6b5b4b3b2b1b0︸ ︷︷ ︸
g1

b5b4b3b2b1b0︸ ︷︷ ︸
g2

b2b1b0︸ ︷︷ ︸
g3

b3b2b1b0︸ ︷︷ ︸
g4

b5b4b3b2b1b0︸ ︷︷ ︸
g5

9.1 Planning the complete structural building
It is propedeutical to write-up a complete schema for the structural building based on the
symbolic language.8 This important step is anything but “automatic”; rather it requires
much attention and cleverness. One must assign the non-redundant i.c. and prepare the full
list of the symbolic building commands which, using the aforementioned subroutine LAGR,
will provide the full structural building as function of the current i.c. This schema serves
not only for carrying out the EA procedure, but for all the numerous options of TRY program
(calculation of structure factor, model adjustment, crystal packing, least-square refinement,
geometrical computations, etc.). Among the symbolic instructions there is one indispensable
for carrying out the random search in the problem space, termed xcon, and discussed in
details later.

9.2 Binary encoding
Now the user must: i) decide which gi must be kept fixed and which varied (it is customary
to exclude the bond-lengths and, possibly, also the bond-angles); ii) assign to each variable
gi a convenient increment Δgi (the gi will be varied by multiple of Δgi), iii) assign to each

8 These schemas are familiar to people using the Eyring’s mechanism for molecular building. In the
present case things are a little bit more difficult for the variety of constructions, which are necessary to
avoid redundancy.
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variable gi how many bit (mi) are to be used in binary encoding. Δgi and mi determine the
range of excursion of the gi (range it is exactly Δgi × 2mi ).
It is evident that some common sense must be exerted in assigning Δgi and mi with a
compromise between fine steps in exploring the problem-space and wide spanning intervals.
For instance, for a bond angle on a carbon atom one could assign Δ = 1.0◦ and mi = 4; the
angle will span a sufficient interval of 16◦. Torsion angles (about single bonds), have instead
higher uncertainity; giving them e.g. 5 bits and Δgi = 3◦ will permit a span of 64◦. A large
number of bits, e.g. 7 or 8, must be assigned to the molecular rotation angles: using m = 7 and
Δ = 2.8◦ will ensure a 360◦ span; with m = 8 the same is fulfilled for finer step: 1.4◦. Using
common sense is no doubt necessary; but also experience turns out to be useful.
In this mechanism the initial value of each variable g◦i (to be defined in the input data) plays
a role, since the values assumed by gi are (k = 1, 2 . . . 2m)

g◦i , g◦i − Δgi, g◦i + Δgi, g◦i − 2Δgi, g◦i + 2Δgi, g◦i − 3Δgi, . . .

Note however that the g◦i are not critical quantities, provided they are internal to the span
intervals.

10. Creating the initial population. Constraints

The first step of an evolutionary procedure is the creation of a population of tentative structures
by means of a Montecarlo method (using e.g. pseudo-random numbers).9

One must assign the size of the population desired (e.g. 100-300 items) and the selection
criteria (see below). Size and selection criteria control, in a very unforeseeable manner, the
duration of the search, from few minutes to days. Anyway the search can be in any moment
interrupted and restarted with new parameters, either creating a new list of solutions or
queuing to the existing one.
If K is the number of gj searched (K is of course well lower than 3N), the random search is
performed generating, for each tentative structure, K integer random numbers each in the
range 0 ÷ 2mj − 1 to obtain a random combination of gi. By using the cited subroutine LAGR,
the corresponding model is created. It is evident that most of these models will be unfeasible.
There are two alternatives: i) to retain all solutions, attaching to each solution a proper
“penalty function”, ii) to apply some selection criteria and reject immediately unfeasible
items. The latter has been chosen in our procedure to avoid endless populations. Much
experience is anyway necessary for calibrating the rejection parameters, actually under user
control.

10.1 Selection criteria. The xcon command
The computer program implemented in our laboratory includes the following selection
criteria (filters):

1) the 1st filter, most incisive and mandatory, is the one checking the connectivity of the trial
structure versus the known connectivity (remember that the chemical formula is supposed
known!). We define as connectivity a group of eight integer codes (connv) to be inserted

9 True random numbers should be preferable. Some hardware devices are produced, but we do not have
direct experience. Such devices should be of course very fast as billions random numbers are necessary.
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in the xcon command: the first is the number of atom-pairs separated by one bonds, the
second the same number for two bonds, etc. up to 8 bonds.10

2) the 2nd filter eliminates structures with unfeasible bond angles. Non bonded pairs must
have distances exceeding more than sepn2 (atoms separated by two bonds) or sepn3
(atoms separated by three or more bonds) the sum of covalent radii. Unrealistic structures
with acute bond angles can so be eliminated. (In few cases, eg. cyclobutane, acute angles
occur). The quantities sepn2 and sepn3 are supplied in the command xcon.

3) the 3rd filter checks the connections of the trial molecule with the neighbour (in molecular
crystals no connections should be present; in linear polymer, instead, two connections take
place); the number of external connections (linkno) is also assigned in xcon command.
Connection are illegal if distance is lower than the sum of covalent radii augmented by
tolnk, also supplied in xcon.

4) the 4th filter consists in computing the lattice energy, again rejection occurs if energy
exceeds the assigned threshold, chosen by the user at the beginning of search.

5) the 5th filter is based on the R2 index defined as the residual χ2 (equation 2) divided by the
sum of intensities. the tentative solution is rejected if R2 exceeds an assigned value. Also
for R2 the threshold is chosen by the user.

Parameters sepn2, sepn3, tolnk, linkno and connv are defined in command xcon. Note
that the same filters apply also in the subsequent breeding (see later).
It is evident the importance of assigning the above values cum grano salis, avoiding both excess
or lack of severity. Indeed the ratio accepted-structures / generated-structures leans to be low
(e.g. 10−5); the conformational freedom of the molecule has of course a critical role.

10.2 Optimizing of the initial population
We have introduced (as an optional) the local optimization of the random solutions found with
the above procedure. Each random solution is a point in the (discontinuous) problem-space.
The idea is to examine the nearest points in the problem-space and find points possibly more
promising, based e.g. on R2 index. In a K-dimension problem space points are 3K − 1, a value
prohibitively high if K is large.
On belief that the local optimizazion is a good idea (experience seems to confirm) we have
exploited a trick: to assign a reasonable value to the number of neighbouring points P to be
examined, say 500-1000, and select, at random, P points among the 3K − 1 ones.11 With this
contrivance the duration of an optimization step is reasonable.

11. Genetic combinations

The heart of the genetic procedure is the systematic combination (breeding) of the solutions
belonging to the initial population following the rules of genetics. In this context two kinds of

10 Establishing the connectivity codes is rather bothering, but the problem is easily resolved using TRY.
One considers a dummy unit cell without symmetry and with large lattice constants. If the molecule is
well constructed and displayed on the monitor the eight connection codes will appear on the top of the
screen. Keep note and insert in xcon.

11 For each integer p running from 1 to P one computes a real random number in the range 0-1, multiply
it by 3K and truncate. The point to be considered is given by the digits of the product above written in the
basis 3. If desired 5 or 7 points can be considered instead 3.
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combinations are considered: the cross-over and themutation. A cross-over (binary combination)
consists of an interchange of a selected gene belonging to the two mating items; a mutation
(unary combination) is the change of a single bit (chosen at random) belonging to the bit-string.
Considering a 9-gene example and a cross-over between genes g2, g7 one obtains:

Parent sequence (father): g1 g2 g3 g4 g5 g6 g7 g8 g9
Parent sequence (mother): g′1 g′2 g′3 g′4 g′5 g′6 g′7 g′8 g′9
Child sequence: g1 g′7 g3 g4 g5 g6 g′2 g8 g9
Mutated sequence: g1 g′7 g3 g∗4 g5 g6 g′2 g8 g9

the symbol ∗ has been used for a mutation (the g4 has been chosen by chance). In each case a
new sequence is born for each crossover, two if also a mutation takes place. If the crossover
takes place for all the pairs of K genes, K× (K+ 1)/2 new strings occur; twice as many if also
mutation is done.
Of course if two feasible structures are coupled, it is not warranted that child structures are
meaningful. The above described “filtering” could be used again to eliminate unfeasible
structures. At present the structures having R2 higher than an assigned limit or a lattice
energy higher than an assigned limit are eliminated. The limits, of course, should be fixed
using experience. The new selected structures, anyway, are added to the initial ones.
The crossover can be done either considering a single gene, selected at random, or considering
all genes; in the last case there are K combinations, for each pair of mated structures. When the
genetic combination is ended the population of solution is extended by an amount depending
on the used filters. The new population will be again sorted using an appropriate figure like
the R2 index.
Examining the sorted list one observes, frequently, that the first solutions happen to be very similar
to each other. That is no doubt an indication of success. If this is not the case a good idea is
to repeat the breeding as many times as it is necessary. If however the breeding has resulted
ineffectual in finding new solutions, it is better to repeat the whole process in more appropriate
conditions. The exploration of a wide fraction of the problem-space is no doubt essential for
the success.

12. Procedure validation

For testing purposes two already reported structures (single-crystal X-ray diffraction studies,
molecular models are shown in Fig. 4) have been considered using published data. Only
the reflections having d > 1.2 Å have been considered to show that the method needs few
reflections and that resolution can be modest.
The first test concerns the steroid equilin (a 20-atom molecule, ignoring hydrogen atoms) with
restricted conformational freedom (Sawicki et al. 1999), the second test considers sucrose,
a 23-atom molecule with high conformational freedom (Hynes et al., 1991). The latter was
already considered in the first publication describing the method (Immirzi et al., 2008); the
analysis has been repeated however in more challenging conditions. The input data for
doing the two tests are given in Table 1 and Table 2; many comments are added for reader’s
convenience.
All computations were done using the program TRY (Immirzi, 2007) and assuming fixed
bond-lengths in both cases, also fixed bond-angles in the case of equilin. The computing
scheme is the simplest one: no hydrogen atoms, isotropic thermal vibration (an unique Biso),
unitary weight factors. In both cases the EA procedure consists of three phases: i) formation of
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the initial population, ii) improvement of solutions looking at adjacent points, iii) breeding by
cross-over and mutation. The reliability of the resulting structures has been tested performing
some cycles of full-matrix least-square refinement optimizing the same i.c. considered in the
EA phase. The resulting R indices are, of course, not competitive with the ones published
because of the crude simplicity of the followed computation scheme and because of the
reduced number of reflections. The LS convergency is anyway excellent.

(a) Equilin (b) Sucrose

Fig. 4. Molecular models of the two test molecules: equilin and sucrose. Bond angles (τn) are
shown. Torsion angles (ϑn) are listed in Tables 1 and 3.

The following scheme summarizes the essential data for the two tests.

equilin sucrose
reflections considered (d > 1.2 Å) 715 589
number of non-hydrogen atoms 20 23
number of internal coordinates 60 68
varied internal coordinates 15 28
bits used in binary encoding 75 123
random structures generated 50 × 103 141 × 106

initial population 300 150
lowest R2 index after search 0.43 0.74
lowest packing energy -3Kcal -11Kcal
search duration 3 min. 29 hr.
mated structures 20 30
resulting R2 after breeding 0.39 0.43

Note how the formation of initial population is performed in a very short time in the former
case (75-bit encoding), and longer time in the latter (123 bit encoding).
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Equilin by Sawicki 1999
6.5429 9.0345 23.894 0 0 0 ! lattice constants
C=C O=O ! atomic species
4 0.72080 56.55 4 4 6 ! 3 non-operative codes + crystal extension
-x+1/2, -y, z+1/2, ! symmetry (P2_12_12_1 space group)
-x, y+1/2, -z+1/2, *
! here begin lines processed by LAGR subroutine
xcon 0.10 0.10 0.10 0 23 36 39 30 22 16 12 7
! 1st ring (aromatic) C1-C2-C3-C4-C5-C10 (conventional geometry)
chbe C1 C2 C3 1.40 1.40 1.20
setx C1 C2 C3 C4 1.40 1.20 0.0
setx C2 C3 C4 C5 1.40 1.20 0.0
setx C3 C4 C5 C10 1.40 1.20 0.0
! 2nd ring (cyclohexene) C6-C7-C8-C9
setx C2 C1 C10 C9 1.52 1.20 1.80
setx C1 C10 C9 C8 1.52 g1 g2
setx C10 C9 C8 C7 1.33 g3 g4
flap C8 C7 C5 C6 1.52 1.52 g5
! 3rd ring: (cyclohexane)
setx C1 C10 C9 C11 1.54 g6 g7
setx C10 C9 C11 C12 1.54 g8 g9
setx C9 C11 C12 C13 1.54 g10 g11
flap C9 C8 C13 C14 1.54 1.49 g12
! 4th ring (cyclopentane)
setx C9 C8 C14 C15 1.54 g13 g14
setx C8 C14 C15 C16 1.54 g15 g16
flap C15 C16 C13 C17 1.52 1.52 g17
tert C12 C14 C17 C13 C18 1.54
! O atoms
setx C5 C4 C3 O19 1.36 1.20 1.80
trig C13 C17 C16 O20 1.22 0
iner C1 Q31 20 0 ! refer the 20-atom molecule to inertial axes
rtax 1 C1 20 g18 ! Rx rotation
rtax 2 C1 20 g19 ! Ry rotation
rtax 3 C1 20 g20 ! Rz rotation
move C1 20 g21 g22 g23 0 ! translation
end
1.0800 1.6900 1.2000 0.0800 1.7000 ! starting values
1.0900 -0.6400 1.0900 1.7800 1.0600 ! for i.c.
0.5450 1.2700 1.2200 1.7700 1.0200 !
1.6600 1.7200 -0.9521 -0.5334 -0.5628
2.0146 3.5320 9.8812
*
*
180 -90 180 50 1.0 1 ! screen projection and scale
5.2 5.2 ! B-iso ! thermal parameters
0.0 0.0 ! B-33 ! anisotropic component of ditto
! the following 15 lines define the g(i) kept variable in EA
! and the binary-encoding scheme: no. of bit and step; span intervals
! (sp) are also given as comments
2 4 0.028 0 0 ! sp for C1-C10-C9-C8 t-a =45deg
4 4 0.028 0 0 ! sp for C10-C9-C8-C7 t-a =45deg
5 4 0.028 0 0 ! sp for C8-C7-C5-C6 t-a =45deg
7 4 0.028 0 0 ! sp for C1-C10-C9-C11 t-a =45deg
9 4 0.028 0 0 ! sp for C10-C9-C11-C12 t-a =45deg

11 4 0.028 0 0 ! sp for C9-C11-C12-C13 t-a = 45deg
14 4 0.028 0 0 ! sp for C9-C8-C14-C15 t-a = 45deg
16 4 0.028 0 0 ! sp for C8-C14-C15-C16 t-a = 45deg
17 4 0.028 0 0 ! sp for C15-C16-C13-C17 flap =45deg
18 7 0.028 0 0 ! sp for Rx rotation = 360deg
19 7 0.028 0 0 ! sp for Ry rotation = 360deg
20 7 0.014 0 0 ! sp for Rz rotation = 360deg
21 5 0.200 0 0 ! sp for Tx translation = 6 A
22 6 0.200 0 0 ! sp for Ty translation = 12 A
23 7 0.200 0 0 * ! sp for Tz transl. = 25 A
0 1.0 10.0 0.1 1.0 1.0 1.0 1.0 0.8 1.0 0.0
EQUILIN.DAT ! file containing the F2hkl

Table 1. Input data for equilin test
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Sucrose by Hynes (1991)
10.8631 8.7044 7.7624 90 102.94 90 ! lattice constants
C=C O=O H=H ! atomic species
8 1.5418 56.55 4 4 4 ! 3 dummy codes and cell extension
-x, 1/2+y, -z, * ! symmetry (P2_1 space group)
! here begin lines processed by LAGR subroutine
xcon 0.30 0.30 0.40 0 24 36 43 36 32 30 26 17 ! connections
chbe C16 C15 C14 1.521 1.521 g1 ! build piranose
setx C16 C15 C14 C13 1.521 g2 g21
setx C15 C14 C13 C12 1.521 g3 g22
flap C15 C16 C12 O5 1.427 1.427 g23
setx C16 O5 C12 O1 1.427 g4 g24 ! O atom bridge to furanose
setx C16 C15 C14 O3 1.427 g5 g25 ! O3
setx C13 C14 C15 O4 1.427 g6 g26 ! O4
setx C15 C14 C13 O2 1.427 g7 g27 ! O2
setx C14 C15 C16 C17 1.521 g8 g28 ! lateral CH2OH group
setx C15 C16 C17 O6 1.427 g9 g29
setx C13 C12 O1 C19 1.427 g10 g30 ! build furanose
setx C12 O1 C19 C20 1.521 g11 g31
setx O1 C19 C20 C21 1.521 g12 g32
setx C19 C20 C21 C22 1.521 g13 g33
flap C21 C22 O19 O8 1.427 1.411 g34
setx O8 C19 C20 O9 1.427 g14 g35 ! O lateral to furanose
setx C19 C20 C21 O10 1.427 g15 g36 ! O lateral to furanose
setx C19 O8 C22 C23 1.521 g16 g37 ! lateral CH2OH
setx O8 C22 C23 O11 1.427 g17 g38
setx C21 C20 C19 C18 1.521 g18 g39 ! lateral CH2O
setx C20 C19 C18 O7 1.427 g19 g40
iner C1 Q50 23 0 ! compute the inertial axes and orient accordingly
rtax 1 C1 23 g41 ! overall Rx rotation
rtax 2 C1 23 g42 ! overall Ry rotation
rtax 3 C1 23 g43 ! overall Rz rotation
move C1 23 g44 0 g45 0 ! translation
end ! i.c. starting values follow

1.1072 1.0725 1.1207 1.1010 1.0771 1.1249 1.0982 1.1219 1.1124
1.1381 1.0818 1.0225 1.0285 1.1583 1.1181 1.0999 1.1284 1.1479
1.1137 0.0000 -0.5680 0.5729 1.2994 -0.6819 -1.7724 -1.7409 1.7851
1.7344 -0.6413 1.3017 1.6018 -0.8762 -0.3520 1.7662 1.5806 -1.5559

-1.3286 0.7047 1.4875 0.7208 0.7006 -0.1187 0.5964 2.4590 3.1670
*
-90 0 0 50 1.0 1 ! molecular orientation, and image scale factor
1.3 1.3 1.3 ! Isotropic thermal parameters
0.0 0.0 0.0 ! anisotropic component of ditto
! binary-encoding scheme for g(i): no. of bit and step; span intervals (sp) after !
4 3 0.00500 0 0 ! sp for O5-C12-O1 b-a = 4 deg
10 3 0.00500 0 0 ! sp for C12-O1-C19 b-a = 4 deg
11 3 0.00500 0 0 ! sp for O1-C19-C20 b-a = 4 deg
21 3 0.02812 0 0 ! sp for C16-C15-C14-C13 t-a = 22.4 deg
22 3 0.02812 0 0 ! sp for C15-C14-C13-C12 t-a = 22.4 deg
23 3 0.02812 0 0 ! sp for C15-C16-C12-O5 flap = 22.4 deg
24 3 0.02812 0 0 ! sp for C16-O5-C12-O1 t-a = 22.4 deg
25 3 0.02812 0 0 ! sp for C16-C15-C14-O3 t-a = 22.4 deg
26 3 0.02812 0 0 ! sp for C13-C14-C15-O4 t-a = 22.4 deg
27 3 0.02812 0 0 ! sp for C15-C14-C13-O2 t-a = 22.4 deg
28 4 0.02812 0 0 ! sp for C14-C15-C16-C17 t-a = 44.8 deg
29 4 0.02812 0 0 ! sp for C15-C16-C17-O6 t-a = 44.8 deg
30 7 0.02812 0 0 ! sp for C13-C12-O1-C19 t-a = 358 deg
31 7 0.02812 0 0 ! sp for C12-O1-C19-C20 t-a = 358 deg
32 7 0.02812 0 0 ! sp for O1-C19-C20-C21 t-a = 358 deg
33 3 0.02812 0 0 ! sp for C19-C20-C21-C22 t-a = 22.4 deg
34 3 0.02812 0 0 ! sp for C21-C22-C19-O8 flap = 22.4 deg
35 4 0.02812 0 0 ! sp for O8-C19-C20-O9 t-a = 44 deg
36 4 0.02812 0 0 ! sp for C19-C20-C21-O10 t-a = 44 deg
37 4 0.02812 0 0 ! sp for C19-O8-C22-C23 t-a = 44 deg
38 4 0.02812 0 0 ! sp for O8-C22-C23-O11 t-a = 44 deg
39 4 0.02812 0 0 ! sp for C21-C20-C19-C18 t-a = 44 deg
40 4 0.02812 0 0 ! sp for C20-C19-C18-O7 t-a = 44 deg
41 8 0.01400 0 0 ! sp for Rx rotation = 358 deg
42 8 0.01400 0 0 ! sp for Ry rotation = 358 deg
43 8 0.01400 0 0 ! sp for Rz rotation = 358 deg
44 5 0.17000 0 0 ! sp for Tx translation = 5.5 A
45 5 0.13600 0 0 * ! sp for Tz translation = 4.4 A
0 3.0 10.00 0.25 0.80 0.20 0.10 0.70 0.005 0.0 0.0 ! powder data
SUC1.dat ! file contaning F2hkl

Table 2. Input data for sucrose test
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13. Conclusions

The power of evolutionary algorithms in resolving difficult crystal structures from diffraction
data has been discussed evidencing the convenience of basing the approach on internal
coordinates. A specific procedure has been implemented, having the following main features:
i) it is based on internal coordinates (this reduces considerably the number of variables
and their uncertainty); ii) it uses discretized coordinates and binary structure encoding
(metaheuristic approach); iii) the procedure is designed as a constraint satisfaction problem
so incorporating the numerous a priori information available; the constraints are considerd
both in the initial step of the procedure (formation of the initial population of solutions based
on Montecarlo methods) and in the subsequent steps (breeding of the population).
The ideas above afforded a Fortran-language computer program suitable for any kind of
molecular structure and available free of charge. The evolutionary procedure has been
inserted into a general-purpose program, entirely based on internal coordinates. The program,
presently tested on known structures (in difficult conditions), runs well. It has however the
disadvantage of needing numerous parameters (presently assigned by the user) which could
be assigned automatically in more evolute versions of the program.
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1. Introduction 
During the last 20 years, structural optimization has become one of the most important topics 
of engineering applications. Design optimization of structure has been an interesting area of 
research in the field of engineering design for its ability to short the design cycle and to 
enhance product quality. Significant research activity has occurred in the area of structural 
optimization in the last decade. Especially for topology optimization of structure, many new 
theoretical, algorithmic, and computational contributions have resulted by researchers and 
engineers. Topology optimization is a powerful tool for global and multi-scale design of 
macrostructures, microstructures, and the cell of prescribed composite materials. 
The population based evolutionary algorithms have emerged as powerful mechanism for 
finding optimum solutions of complex optimization problems in engineering during the last 
two decades. Evolutionary computation is the study of computational systems which use 
ideas and get inspiration from natural evolution and adaptation [1]. The thinking has wide 
application in various engineering fields, such as computer science, artificial intelligence, 
operations research. Genetic algorithm is another kind of bio-inspired optimization method 
and it is playing an increasingly important role in studies of complex adaptive systems. Its 
application ranges from adaptive agents in economic theory to the use of machine learning 
techniques in the design of complex devices and structures, such as aircraft turbines and 
integrated circuits [2]. 
Optimization of structures can be classified into three categories: sizing, shaping, and 
topology optimization. In the topology optimization, it is concerned with the structure 
members and connectivity between members. In general, it is easily represented by discrete 
variables rather than by those used for continuous optimization problems. Topology 
optimization is the most difficult and complex among three categories and it is special 
useful in developing innovative conceptual designs. Structural optimization, in particular 
the topology optimization, has been identified as one of the most challenging tasks in 
structural design. Various techniques and approaches have been established during the last 
two decades. Topology optimization usually referred to as layout optimization or general 
shape optimization [3]. It lets engineers get the optimal topology of structure or new 
configurations during product design phase, as they are implementing the design of the size 
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and shape of structure. In the last two decades, topology optimization has been becoming 
increasingly popular in industrial applications [4-6]. For in many cases, tremendous cost 
savings have been achieved due to the impact of this design tool in the early stage of the 
design procedure. However, because of the complicacy of the mathematical formulation and 
the difficulties in solving it, topology optimization is considered as one of the most 
challenging research field. 
In order to improve the efficiency in global optimization search the topology of engineering 
problems, many heuristic algorithms [7, 8, 9] have been developed, such as evolutionary 
algorithm [8, 9], genetic algorithms[10, 11], ant algorithm, simulated annealing algorithm,. 
In recent years, many biologically inspired methods come to be used in topology 
optimization of structure. Evolutionary algorithms are a popular and robust strategy for 
structure optimization. Especially the evolutionary structure optimization (ESO) has been 
applied widely in solving structural topology optimization problems [12, 13, 14]. These 
methods have special characteristics such as parallel computing and globally optimum 
searching. Based on hole image interpretation techniques, Lin et al. [7] gave two-stage 
artificial neural networks for topology and shape optimization, which contains improved 
template variety and recognition reliability. Salami and Hendtlass [8] proposed a “fast 
evolutionary algorithm” that does not evaluate all new individuals, in which fitness and 
associated reliability value are assigned to each new individual that is evaluated using the 
true fitness function only if the reliability value is below a threshold. In 1992, Xie and Steven 
[9, 12, 13] proposed the ESO and bidirectional ESO (BESO) approach [13] for topology 
optimization and applied to the optimization of structures successfully. During 
implementation of the method, elements are gradually removed from the structure by 
altering the material properties. The removal or additional criterion is based on the 
comparison of the Von Misses stress, principal stress or the deformation energy of the 
candidate element. Considering the low efficiency of the usage of the material in the low 
value of stress or strain energy, the element can be removed from the structure, or added in 
high value region for the need of material. For its simplicity in implementation and 
convenience in coping with the local buckling, displacement constraint and local stress 
constraint, ESO algorithm has wide applications in the dynamic modification, topology 
optimization thermal-structure coupling problems with different criteria, for further please 
see refernces [14, 15, 16]. Mariano Victoria etc. [17] gives the isolines topology design 
algorithm, and in essence it is a variant of Evolutionary Structure Topology optimization 
approach. Based on the thinking of perfect state of harmony in musical processing, Lee and 
Z. W. Geem [18] give the implementation of harmony searching algorithm for structural 
optimization. The merit is independent of the initializing design variable and derivative 
information of objective and constraint function. 
To get good topology of the final structure, in 1994 Eschenauer, et al. [19] put forward the 
Bubble Method. The main idea is first to introduce a new small circle and then implement a 
shape optimization by a conventional fixed topology shape optimization to get the size, 
shape and position of the hole. Osher and Sethian [20, 21, 23] proposed the concept of level 
set, it has been proven to be phenomenally successful as a numerical device, and since its 
appearance it has wide applications ranging from capturing multiphase fluid dynamical 
flows to special effects in hollywood to visualization, image processing, topology 
optimization of structure[24, 25], computer vision and many more. Wang and his coauthors 
[26, 27] Proposes level set method for structural topology optimization and many other 
variant of this algorithm. Wei [27] proposed piecewise constant level set method to nucleate 
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holes during optimization and some benchmark problems show the validity of the 
algorithm. 
There are several advantages to this approach for topology optimization of continuum 
structures. Firstly, we solve the elastic strain equations on a fixed grid through a version of 
the immersed interface method (IIM), which avoids the complications that come from using 
distorted and convoluted unstructured meshes. Secondly, the Level Set Method allows us to 
perturb the shapes of the interface, without worrying about changes in topology, such as 
how many holes are required. Thirdly, the entire method carries over to three dimensions, if 
desired. This method attracts many interests of engineers and researchers in optimization 
field for the smoothness of the boundary and having no intermediate density in the final 
topology [24-30].  
The studies all aimed at developing a robust and efficient algorithm for searching global 
optimum solution for engineering applications. 
The demanding computational cost for engineering optimization is often very high for each 
iteration needs at least one finite element analysis. Because the finite element analysis for 
engineering model takes lots of time in finding required data for calculating the parameters 
of objective function in optimization problem and that of constraint function. Various 
mathematical programming methods have been used to solve engineering optimization 
problems. But these methods need calculation of the first or second order differentiation that 
will increase the difficulty in searching optimum solution. In another hand, the 
mathematical programming methods are easily to fall into local optimum for non-convexity 
of topology optimization problems. 
The Traditional level set method algorithms for topology optimization use a Hamilton 
Jacobi equation to connect the evolution of the scalar function with the boundary of the 
topology contours. For this reason, it can hardly create new holes during evolving otherwise 
other measures has been taken. 
This paper proposes an improved LSM algorithm. The newly modified method integrates 
the ESO inspired hole-inserting technique in LSM method and overcome the shortcomings 
of traditionally approach. Using this algorithm, new holes can be inserted at different 
positions during the optimization to determine the optimal topology. From the point of 
view of “ground structure”, the proposed method of topology optimization enlarged the 
searching space of Level Set Method. 

2. Mathematical formulation of the evolutionary optimization algorithm 
Traditionally, the problem of topology optimization of structure to maximize stiffness can 
be specified as (1)-(4): 

Minimize:  ( ) ( )J u F u d
Ω

= Ω∫  (1) 

 s.t.: ( , ) ( )a u v L v=   (2) 

 0|
d

u u v UΓ = ∀ ∈  (3) 

 maxV d V= Ω ≤∫   (4) 



Evolutionary Algorithms 

 

568 

Here, the design domain of the structure is represented byΩ, ( )J u is the objective function, 
( )F u  is specific physical or geometric type on design domain. In this paper, ( )F u  is the 

compliance of structure and the objective is to find the minimum of it, let the structure be 
the stiffest. In terms of the energy bilinear form ( , , )a u v φ , ( )L v and ( )ij uε  described by (5)-
(7) respectively, 

 ( , , ) ( ) ( )ijkl ij kla u v E u v dφ ε ε
Ω

= Ω∫ , (5) 

 ( )L v pvd vdsτ
Ω Γ

= Ω +∫ ∫ ,  (6) 

 1( )
2

ji
ij

j i

uuu
x x

ε
⎛ ⎞∂∂
⎜ ⎟= +
⎜ ⎟∂ ∂⎝ ⎠

. (7) 

The purpose of the topology optimization is to optimize the objective function by layout of 
the material in design domain. 
In the Level Set Method, the boundary of structure is described by zero level set and it can 
easily represent complicated surface shapes that can form holes, split to form multiple 
boundaries, or merge with other boundaries to form a single surface. Zero level sets are 
decided by the objective function such as energy of deformation, stress, eigenvalue etc., and 
the optimal structure can be gotten through the movement, amalgamation of the external 
boundary of the structure.  
Compared with the homogenization method and SIMP (Solid Isotropic Material Penalty) 
[30] method, the LSM has some excellent aspects: no chessboard, no mesh-dependency 
problems, and good numerical stability. 
The LSM describes the topology of structure implicitly, and the course of the topology 
optimization of continuum is achieved by solving the Hamilton-Jacobi equation (8). 

0V
t
φ φ∂
+ ⋅ =

∂
  (8) 

Here, according to objective function how to descend, V is chosen to let level set function 
change. Time variable is length that satisfies Courant-Friedrichs-Levy (CFL) condition which 
makes difference calculation stability. The model of optimization can be specified as (9)-(12): 

Min:  ( , ) ( ) ( )J u F u H dφ φ
Ω

= Ω∫   (9) 

 s.t.: ( , , ) ( , )a u v L vφ φ=  (10) 

 0|
d

u u v UΓ = ∀ ∈   (11) 

 ( ) maxV H d Vφ= Ω ≤∫  (12) 
In terms of the energy bilinear form ( , , )a u v φ , the load linear form ( , )L v φ , and the volume 

( )V φ  of the structure, respectively described by (13)-(15): 

 ( , , ) ( ) ( ) ( )ijkl ij kla u v E u v H dφ ε ε φ
Ω

= Ω∫  (13) 
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 ( , ) ( ) ( )L v pvH d vH dφ φ τ φ δ φ
Ω Ω

= Ω + ∇ Ω∫ ∫  (14) 

 ( ) ( )V H dφ φ
Ω

= Ω∫  (15) 

Where ( )xδ is Dirichlet function， and ( )H x  Heaviside function, see paper [22].  
As known to all, only the moving and merging of holes can be implemented during the LSM 
topology optimization, no new holes can be generated through the optimization. The 
disadvantage of level set based topology optimization is apparent for some engineering 
problems. To conquer the difficulty, one method is to initialize the guess design with 
enough holes in order to include as more topologies as possible. To get a good result, we 
should comply with the following two fundamental principles to initialize the guess 
configuration before carrying out the optimization:  
a. The number of holes must be enough to include all the possible topology; 
b. The layout of the holes should be rationally positioned. 
Cantilever beam is a benchmark problem in topology optimization. As shown in Figure 1, it 
has a length of 64mm and a height of 40mm, thickness of the plate t =1 and is subjected to a 
concentrated load of 80N at the middle of its free end. The objective function of the problem is 
the strain energy of the structure with a material volume constraint. The Young’s Modulus 
and Poisson’s Ratio of the material used in the example are 200GPa and 0.3, respectively. 
Parameters 910α −= , 1.0Δ =  are used in the numerical approximation of ( )xδ and ( )H x . The 
volume ratio is limited to 25%. A mesh including 64 x 40 4-node-isoparametric elements is 
used, and the problem is dealt with as a plane stress problem. As shown in Figure 2, the guess 
topology configuration is initialized with 4 x 6 holes in level set function. 
Figure 3 gives the topology evolving procedure during optimization progress. The final 
result in Figure 3(f) shows that good topology can be obtained if the initialized configuration 
includes sufficient number of holes, see in Figure 2. It consists with the result in paper [31] 
in Figure 5 and that from the optimization criteria(OC) approach in Figure 6. For more 
detailed description on the theory and numerical computation of the level set based 
topology optimization, see [26]. 
 

 
Fig. 1. Geometry parameters and boundary conditions of cantilever plate 
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Fig. 2. Topology Initialization with evenly distributed 4X6 holes 
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Fig. 3. Computational flow of the structural topology optimization 
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Fig. 4(a) Iteration number 15 

 

 
Fig. 4(b) Iteration number 30 

 

 
Fig. 4(c) Iteration number 45 
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Fig. 4(d) Iteration number 60 

 
Fig. 4(e) Iteration number 75 
Fig. 4. Traditional Level set method for topology optimization, initialized with uniformly 
distributed holes 
 

 
Fig. 5. Resultant topology in paper [32] 
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Fig. 6. Final topology through optimization criteria (OC) method 

Numerical experiments show that the optimal topology depends on the initialization 
considerably. In fact, the final topology is only a subset of the candidate topology set of 
initialization. The more the topologies are included, the higher the possibility a good design 
can be obtained. 
To illustrate the invalidity of the level set based topology optimization algorithm, let us 
design the topology of a cantilevered plate, a classical benchmark problem for topology 
optimization, from an initial guess topology with no hole. The design result indicates that 
the optimal topology is a two-bar-truss-like structure, which is apparently different from the 
real optimum topology. From this example, we can safely come to the conclusion that the 
optimal topology highly depends on the initial guess design, and that LSM can only find a 
best topology in the given topology sets in advance. 
To circumvent the obstacle of independence of initialization, new criteria are needed to 
insert new holes at the right position during the right iteration. This is the emphasis of this 
paper. 
The proposed method is based on the node neighboring strain energy as illustrated in 
Figure 7, and calculated through (16), 

 ( ) ( )ei ijkl ij klE u v dα ε ε
Ω

= Ω∫  (16) 

In (16), eΩ indicate the node neighboring region as shown in Figure 8, and iα is the 
Performance Index of the i-th node relative to the whole structure, this value indicate the 
effect of the i-th node on strain energy of whole structure when it is removed from structure.  
For each iteration of optimization, the algorithm finds small percentage of the lowest strain 
energy of all nodes within solid material region, see Figure 7. For different problems, the 
initial value can be changed a little to get better result accordingly. 
The implementation of the proposed algorithm as follows: 
Step 1. Initialization of the guess topology of the structure with signed distance function in 

terms of the external boundary; 
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Step 2. Solving the equilibrium equation of the structure. FEA (Finite Element Analysis) is 
adopted to compute the displacement field and the adjoint displacement field 
through the linear elastic system; 

Step 3. Computing the sensitivity of the candidate node. The value is the strain energy of a 
node-neighboring region iα ; 

Step 4. Hole inserting, in the material region, according to the value, remove the low 
energy element (generally the remove rate is 2-3% of those violating the volume 
constraint); 

Step 5. Evolving of the topology of the structure. Solve the level set equation to update the 
embedding function. Same as that of the Level Set Method. 

Step 6. Convergence checking. If volume constraint met, then the iteration finished; or 
repeats Step2 - Step6 until convergence. 

In Step3 and Step4, the proposed method can control the position of the inserted hole 
adaptively. Apart from that, the number of holes and the iteration number can be carried 
out individually in code implementation. For different fields of topology optimization 
problems, corresponding parameters should be adjusted accordingly. 
 
 
 

NΩ Nodei

 
 

 
Fig. 7. Computational diagram for strain energy of node neighboring region 
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Fig. 8. Averaged strain energy of 4 neighboring gauss point 

 
 

 
Fig. 9. Updated topology boundary after inserting a new hole during evolving optimization 
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3. Numerical examples 
To illustrate the reliability and the validity of the nodal ESO hole-inserting LSM topology 
optimization method, the classical cantilever beam in Figure 1 is optimized and gets a good 
result. At the same time, to show the efficiency of the improved algorithm, guess topology 
has no hole is computed to show the characteristics. 

Case 1 

To solve the problem with no hole the initialization configuration has, one cannot get the 
optimal topology using traditional LSM algorithm easily.  
According to the theory of Evolutionary Structure Optimization method, this paper gives 
the automated hole-inserting approach. The evolution procedure of structural topology is 
shown from Figure 10(a) to Figure 10(f). The topology optimization of the cantilever shows 
the validity of the proposed method. 
Figure 11 gives the structural strain energy variation history during optimization. Figure12 
shows the iteration history of material usage within the design domain during topology 
evolving. 

Case 2 

To illustrate the efficiency of the proposed algorithm, the same benchmark problem is 
solved. but the initialization has initialized holes and inserting holes when impossible 
during the optimization iteration. Figure 13(a) until Figure 13(f) gives the key intermediate 
topology during optimization. Optimization history shows that the iteration number 
decreased from 72 to 39. 
Figure14 gives the structural strain energy variation history during optimization. Figure15 
shows the iteration history of material usage within the design domain during topology 
evolving. 
 
 
 

 
Fig. 10(a) Topology initialization without holes 
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Fig. 10(b) Iteration number 14 
 

 
Fig. 10(c) Iteration number 30 
 

 
Fig. 10(d) Iteration number 46 
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Fig. 10(e) Iteration number 61 

 
Fig. 10(f) Iteration number 72 
Fig. 10. The proposed algorithm: Topology evolving process with initialization having no 
holes 
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Fig. 11. Strain Energy of the structure V.S. iteration number 
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Fig. 12. Value of constraint function v.s. iteration number, the value indicted the gross 
material usage during the optimization 
 

 
Fig. 13(a) Iteration number 6 

 
Fig. 13(b) Iteration number 13 



Evolutionary Algorithms 

 

580 

 
Fig. 13(c) Iteration number 20 

 

 
Fig. 13(d) Iteration number 27 

 

 
Fig. 13(e) Iteration number 33 
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Fig. 13(f) Iteration number 39  

Fig. 13. The proposed algorithm: Topology evolving process with initialization having holes 
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Fig. 14. Strain energy of the structure v.s. iteration number 
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Fig. 15. Value of constraint function V.S. iteration number, the value indicted the gross 
material usage during the optimization 

4. Conclusions 
This paper proposed a LSM combined ESO hole-inserting algorithm for topology 
optimization. The algorithm integrated the merits of two methods and eliminated the 
weaknesses of conventional Level Set Method. Smooth boundary of the final topology can 
be gotten and need no post-processing for the manufacturability. The optimization iteration 
needs no explicit description of the variation of the topology, all the merits of LSM methods 
are kept and implemented in the new algorithm so that it makes the computation 
convenient and improves the efficiency accordingly. In conclusion, the nodal ESO integrated 
level set methods for topology optimization has the following characteristics: 
1. Enlarged the optimum searching scope of the ground structure, solved the topology 

optimization without holes in initialization of guess configuration. which cannot get 
satisfied topology within proper iteration for traditional LSM method. 

2. With the proposed algorithm in this paper to solve benchmark problems, the 
computational efficiency can be improved considerably, it can get the optimal topology 
in less iteration for initialization with enough initialized holes. 

3. Additionally, the proposed algorithm can be used to solve other engineering problems 
easily if given different optimization criteria, such as local stress constraint, eigenvalue 
optimization and design of compliant mechanism. 

Further work includes the parallelization of the genetic algorithm with the aim of reducing 
the iteration times as well as the extension of the proposed approach to 3D structures. 
Moreover, availability of the bi-direction evolutionary structure optimization algorithm the 
automatic mechanism of inserting and removing hole will be further implemented and 
integrated with the level set method to tackle more complex engineering problems. 
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